Crystalline State

Basic Structural Chemistry

Structure Types

Degree of Crystallinity

Crystalline - 3D long range order Single-crystalline

Polycrystalline - many crystallites of different sizes and orientations (random, oriented)

Paracrystalline - short and medium range order, distortions, lacking long range order

Amorphous - no order, random

Degree of Crystallinity

- Single Crystalline
- Polycrystalline

- Nanocrystalline
- Amorphous

Metallic glass

Grain boundaries

Degree of Crystallinity

A crystalline solid: HRTEM image of strontium titanate SrTiO_{3}
Brighter atoms are Sr and darker are Ti

A TEM image of amorphous interlayer at the $\mathrm{Ti} /(001) \mathrm{Si}$ interface in an as-deposited sample

Single-Crystal X-ray Diffraction

Structure Analysis

Single-Crystal X-ray Diffraction

Structure Analysis

Crystals

- Crystal = a periodic arrangement of structural motifs = building blocks
- Building block is called a basis: an atom, a molecule, or a group of atoms or molecules
- A periodic arrangement must have translational symmetry such that if you move a building block by a distance:

$$
\bar{T}=n_{1} \bar{a}+n_{2} \bar{b}+n_{3} \bar{c}
$$

where n_{1}, n_{2}, and n_{3} are integers, and $\bar{a}, \bar{b}, \bar{c}$ are vectors.
then it falls on another identical building block with the same orientation

- If we remove the building blocks and replace them with points, then we have a point lattice or Bravais lattice

Crystal Structure

Crystal Structure $=$ Lattice $\boldsymbol{+}$ Motifs

(POINT) LATTICE

the geometrical pattern repeating periodically in space (2D or 3D) formed by points that have identical environment representing the locations of basis or motifs

MOTIF (BASIS) the repeating unit of a pattern (an atom, a group of atoms, a molecule etc.) inside the unit cell

UNIT CELL

the smallest repetitive volume of the crystal, which when stacked together with replication reproduces the whole crystal

Unit Cell

An „imaginary" parallel sided region (parallelepiped) of a structure from which the entire crystal can be constructed by purely translational displacements

Contains one unit of the translationally repeating pattern
Content of a unit cell represents its chemical composition
The unit cells that are commonly formed by joining neighbouring lattice points by straight lines, are called primitive unit cells

Unit cell

Primitive unit cell

Crystal = Periodic Arrays of Atoms

 (Atom, molecule, group of molecules,...)

Primitive Cell:

- Smallest building block for the crystal lattice
- Repetition of the primitive cell gives a crystal lattice

Five Planar Lattices

Ten Planar Point Groups

17 Plane Space Groups - Wallpaper

A space group = a complete set of all symmetry elements and translations

Seven Crystal Systems in 3D

Simple cubic
$a=b=c$
$\alpha=\beta=\gamma=90^{\circ}$

Tetragonal
$a=b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$

Orthorhombic
$a \neq b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$

Monoclinic
$a \neq b \neq c$
$\gamma \neq \alpha=\beta=90^{\circ}$

Triclinic
$a \neq b \neq c$
$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Rhombohedral

$$
a=b=c
$$

$$
\alpha=\beta=\gamma \neq 90^{\circ}
$$

Lattice points of spherical symmetry

Fourteen Bravais Lattices in 3D

7 Crystal Systems

+ Centering

= 14 Bravais Lattices

Simple cubic

Simple orthorhombic

Rhombohedral

Body-centered orthorhombic

Base-centered orthorhombic
 monoclinic

Triclinic

Centering

Simple Cubic (SC)

$$
a=b=c \quad \text { Conventional Cell }=\text { Primitive Cell }
$$

$$
a \perp b \perp c
$$

Add one atom at the center of the cube

Body-Centered Cubic (BCC)

Conventional Unit Cell $=$ Primitive Cell

3D Lattices and Space Groups

Primitive Cell

- The smallest cell that can be translated throughout space to completely recreate the entire lattice
- Volume of space translated through all the vectors in a lattice that just fills all of space without overlapping or leaving voids
- Contains just one Bravais lattice point ($Z=1$)
- There is not one unique primitive cell, many (∞) possible shapes
- The primitive cell for the simple cubic lattice is equal to the simple cubic unit cell (they are identical)

Body-Centered Cubic (I)

Unit Cell

Primitive Cell
(magenta)

Primitive Cell

A primitive cell of the lattice may be constructed in 2 ways:
The primitive cell may have the lattice point confined at its CENTER = the WIGNER-SEITZ cell

The primitive cell may be formed by constructing lines
BETWEEN lattice points, the lattice points lie at the VERTICES of the cell

Nonprimitive Unit Cell vs. Primitive Cell

Face-Centered Cubic (F)

Unit Cell

Primitive Cell

Rotated 90°

(a) Conventional non-primitive cubic unit cell showing a close-
packed (111) plane packed (1 111) plane

(b) Primitive rhombohedral unit cell

The primitive cell is smaller or equal in size to the unit cell The unit cells possesses the highest symmetry present in the lattice (for example Cubic)

Index System for Points

1) Coordinates within a unit cell
2) Express the coordinates u, v, w as fractions of unit cell vectors (lattice parameters) a, b, and c: (h, k, l)
3) Do not clear fractions
4) Entire lattice can be referenced by one unit cell

Central point coordinates?

Index System for Directions (Miller Indices)

1) Determine coordinates of two points in direction of interest (simplified - origin):
u1 v1 w1 and u2 v2 w2
2) Subtract coordinates of the second point from those of the first point:
$u^{\prime}=u 1-u 2, \quad v^{\prime}=\mathrm{v} 1-\mathrm{v} 2, \quad \mathrm{w}^{\prime}=\mathrm{w} 1-\mathrm{w} 2$
3) Clear fractions from the differences to give indices in lowest integer values
4) Write indices in [] brackets - [uvw]

$$
\begin{aligned}
& A=[100] \\
& B=[111] \\
& C=\left[1^{-} 2^{-} 2\right]
\end{aligned}
$$

Index System for Directions (Miller Indices)

In the cubic system directions having the same
 indices regardless of order or sign are equivalent

For cubic crystals, the directions are all equivalent by symmetry:
[10 0 0], [$\begin{aligned} & 1- \\ & 0\end{aligned} 0$

Families of crystallographic directions e.g. <1 0 0>

Angled brackets denote a family of crystallographic directions

Index System for Crystal Planes (Miller Indices)

1. If the plane passes through the origin, select an equivalent plane or move the origin
2. Find the intercepts on the axes in terms of the lattice constants a, b, c. The axes may be those of a primitive or nonprimitive unit cell
3. Take the reciprocals of these numbers and then reduce to three integers having the same ratio, usually the smallest three integers
4. $(1 / \infty=0)$
5. The result enclosed in parenthesis (hkl), is called the index of the plane

Index System for Crystal Planes (Miller Indices)

Example	a	b	c	
1.	Intercepts	1	1	∞
2.	Reciprocals	$1 / 1$	$1 / 1$	$1 / \infty$
3.	Reduction	1	1	0
4.	Miller Indices	(110)		
Example	a	b	c	
1. \quad Intercepts	$1 / 2$	∞	∞	
2.	Reciprocals	$1 / 1 / 2$	$1 / \infty$	$1 / \infty$
3.	Reduction	2	0	0
3.	0	0		
4.	Miller Indices	(100)		

Index System for Crystal Planes (Miller Indices)

Cubic system - planes having the same indices regardless of order or sign are equivalent - braces $\{\mathrm{hkl}\}$
(111), (11 ${ }^{-1}$), (111 ${ }^{-}$).... belong to $\{111\}$ family
(100), (1-00), (010), and (001) belong to $\{100\}$ family

(001)

(111)

(100)

(110)

(1111)

(011)

(010)

(111)

Index System for Crystal Planes (Miller Indices)

The Miller indices (hkl) is the same vector as the normal to the plane [hkl]

Index System for Crystal Planes (Miller Indices)

Atomic planes influence

- Optical properties
- Reactivity
- Surface tension 28
- Dislocations

Quasiperiodic Crystals

Quasiperiodic crystal = a structure that is ordered but not periodic continuously fills all available space, but it lacks translational symmetry

Only 2, 3, 4, 6fold symmetry allowed to fill 2D plane completely

Penrose - a plane filled in a nonperiodic fashion using two different types of tiles

Five-fold symmetry

Crystals and Crystal Bonding

- metallic (Cu, Fe, Au, Ba, alloys)
metallic bonding, electron delocalization
- ionic ($\mathrm{NaCl}, \mathrm{CsCl}, \mathrm{CaF}_{2}, \ldots$)
ionic bonds, cations and anions, electrostatic interactions, ions pack into extremely regular crystalline structures, in an arrangement that minimizes the lattice energy (maximizing attractions and minimizing repulsions). The lattice energy is the summation of the interaction of all sites with all other sites.

- covalent network solid (diamond, graphite, $\mathrm{SiO}_{2}, \mathrm{AIN}, \ldots$) atoms, covalent bonding, a chemical compound (or element) in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material, there are no individual molecules, the entire crystal or amorphous solid may be considered a macromolecule
- molecular (Ar, $\mathrm{C}_{60}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}$, organics, proteins)
molecules, van der Waals and hydrogen bonding

Covalent Network Solids

Three Cubic Cells

Cube

$$
\begin{aligned}
& a=\text { edge } \\
& d=\text { face diagonl } \\
& \quad\left(d^{2}=a^{2}+a^{2}=2 a^{2}\right)
\end{aligned}
$$

$\mathrm{D}=$ body diagonal
$\left(D^{2}=d^{2}+a^{2}=2 a^{2}+a^{2}=3 a^{2}\right)$

$d=\sqrt{2} \cdot \mathrm{a}$

$D=\sqrt{3} \cdot \mathrm{a}$

Simple Cubic SC = Polonium

(b)

Space filling 52\%

BCC = W, Tungsten

BCC

Octasilicate $=$ motif

Zeolite

FCC = Copper, $\mathrm{Cu}=\mathrm{CCP}$

Space filling 74\%
CN 12

Close Packing in Plane 2D

The second layer - B and C holes cannot be occupied at the same time

Close Packing in Space 3D

The third layer decides:
Hexagonal HCP
$\xrightarrow[\begin{array}{l}\begin{array}{l}\text { holes in } \\ \text { layer B }\end{array} \\ \text { totrahedral }\end{array}]{\text { Cover }}$

Side view

Hexagonal close-packed

Side view

Hexagonal HCP

Cubic CCP

$\mathbf{M g}, \mathrm{Be}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Li}, \mathrm{Os}, \mathrm{Sc}, \mathrm{Ti}$, Co, Y, Ru, solid He

$C C P=F C C$

Close packed layers of CCP are oriented perpendicularly to the body diagonal of the cubic cell of FCC

Structures with Larger Motifs

$C_{60}-\mathrm{FCC}=\mathrm{CCP}$

SEM - Opal - 300 nm SiO 2 FCC = CCP

Structures with Larger Motifs

TEM images of superlattices composed of 11.3 nm Ni nanoparticles

Structures with Larger Motifs

Coordination Polyhedrons

Which is HCP and which is CCP?

Space Filling

a = lattice parameter	Atom Radius, \mathbf{r}	Number of Atoms (lattice points), Z	Space filling
SC	$\mathrm{a} / 2$	1	52%
BCC	$\sqrt{ } 3 \mathrm{a} / 4$	2	68%
FCC	$\sqrt{ } 2 \mathrm{a} / 4$	4	74%
Diamond	$\sqrt{ } 3 \mathrm{a} / 8$	8	34%

Periodic Tolple of Metal Structures

Two Types of Voids (Holes) in Close-Packed Structures (CCP and HCP)

5 Tetrahedral hole

2 Octahedral hole

3

Tetrahedral Holes T+

Octahedral Holes

Tetrahedral Holes T-

Ncp atoms in a lattice cell

N Octahedral Holes 2 N Tetrahedral Holes

Two Types of Voids (Holes)

Octahedral Holes (O)

$Z=4$
number of atoms in the CCP cell (N)
$\mathrm{O}=4$ number of octahedral holes (N)

Tetrahedral Holes (T)

$Z=4$
number of atoms in the CCP cell (N)
$\mathrm{T}=8$ number of tetrahedral holes (2 N)

Two Types of Voids (Holes)

HCP

N hcp atoms in a lattice cell
N Octahedral Holes (OC)
2N Tetrahedral Holes (TE)

Characteristic Structures of Solids
 = Structure Types

Rock salt NaCl : LiCl, KBr, AgCI, MgO, TiO, FeO, SnAs, UC, TiN, ...

Fluorite $\mathrm{CaF}_{2}: \mathrm{BaCl}_{2}, \mathrm{~K}_{2} \mathbf{O}, \mathrm{PbO}_{2} \ldots$	ICSD
	3555 NaCl
Lithium bismutide $\mathrm{Li}_{3} \mathrm{Bi}: \mathrm{Fe}_{3} \mathrm{AI}, \mathbf{M}_{3} \mathrm{C}_{60}$	$3438 \mathrm{MgAl2O} 4$
	2628 GdFeO 3

Sphalerite (zinc blende) ZnS: CuCl, HgS, GaAs ...

Nickel arsenide NiAs: FeS, PtSn, CoS ...
Wurtzite $\mathrm{ZnS}: \quad \mathrm{ZnO}, \mathrm{MnS}, \mathrm{SiC}$

Structure Types Derived from CCP = FCC

Fluorite CaF_{2} and Antifluorite $\mathrm{Li}_{2} \mathrm{O}$

Fluorite structure $=$ a face-centered cubic array (FCC) of cations = cubic close packing (CCP) of cations with all tetrahedral holes filled by anions $=$ a simple cubic (SC) array of anions

Antifluorite structure $=$ a face-centred cubic (FCC) array of anions = cubic close packing (CCP) of anions, with cations in all of the tetrahedral holes (the reverse of the fluorite structure)

Fluorite CaF_{2} and Antifluorite $\mathrm{Li}_{2} \mathrm{O}$

F/Li
Ca / O

Fluorite CaF_{2} and Antifluorite $\mathrm{Li}_{2} \mathbf{O}$

Oxides: $\mathrm{Na}_{\mathbf{2}} \mathrm{O}, \mathrm{K}_{\mathbf{2}} \mathrm{O}, \mathrm{UO}_{2}, \mathrm{ZrO}_{2}, \mathrm{ThO}_{2}$
alkali metal sulfides, selenides and tellurides
$\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right],\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{PtCl}_{6}\right], \mathrm{Cs}_{2}\left[\mathrm{SiF}_{6}\right]$, $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{TaF}_{6}\right]_{2}$
$\mathrm{CaF}_{2}, \mathrm{SrF}_{2}, \mathrm{SrCl}_{2}, \mathrm{BaF}_{2}, \mathrm{BaCl}_{2}, \mathrm{CdF}_{2}, \mathrm{HgF}_{2}, \mathrm{EuF}_{2}, \beta-\mathrm{PbF}_{2}, \mathrm{PbO}_{2}$
$\mathrm{Li}_{2} \mathrm{O}, \mathrm{Li}_{2} \mathrm{~S}, \mathrm{Li}_{2} \mathrm{Se}, \mathrm{Li}_{2} \mathrm{Te}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{Se}, \mathrm{Na}_{2} \mathrm{Te}, \mathrm{K}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{~S}$

Fluorite CaF_{2} and Antifluorite $\mathrm{Li}_{2} \mathrm{O}$

Pyrochlores = Disordered Fluorite

$\mathrm{CaF}_{2}\left(\mathrm{Ca}_{4} \mathrm{~F}_{8}\right)$

Pyrochlore $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$

$$
\begin{aligned}
& (\mathrm{Na}, \mathrm{Ca})_{2} \mathrm{Nb}_{2} \mathrm{O}_{6}(\mathrm{OH}, \mathrm{~F}) \\
& \mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}, \mathrm{La}_{2} \mathrm{Zr}_{2} \mathrm{O}_{7}
\end{aligned}
$$

Sphalerite (zincblende, ZnS)

Cubic close packing of anions with $1 / 2$ tetrahedral holes filled by cations

Sphalerite (zincblende, ZnS)

13-15 compounds: BP, BAs, AIP, AIAs, GaAs, GaP, GaSb, AISb, InP, InAs, InSb
12-16 compounds: BeS, BeSe, BeTe, b-MnS (red), $\beta-\mathrm{MnSe}, \beta-\mathrm{CdS}, \mathrm{CdSe}, \mathrm{CdTe}$, $\mathrm{HgS}, \mathrm{HgSe}, \mathrm{HgTe}, \mathrm{ZnSe}, \mathrm{ZnTe}$

Halogenides: Agl, CuF, CuCl, CuBr, CuI, $\mathrm{NH}_{4} \mathrm{~F}$
Borides: PB, AsB
Carbides: β-SiC Nitrides: BN

Cubic Diamond

Diamond
 Wurzite

Sphalerite
Cubic $=$ chairs only

SiO_{2} cristobalite
Replace C-C with Si-O-Si

Hexagonal = chairs + boats

Lonsdaleite
SiO_{2} tridymite
Ice-hexagonal
Replace C-C with O-H...O

Diamond Structure

Elements of Group 14: C, Si, Ge, grey-Sn

	$a(\AA)$	$\mathrm{d}\left(\mathrm{g.cm}^{-3}\right)$
C	3.566	3.515
Si	5.431	2.329
Ge	5.657	5.323
$\mathrm{a}-\mathrm{Sn}$	6.489	7.285

- Add 4 atoms to FCC/CCP to $1 / 2$ of tetrahedral holes
- Tetrahedral bond arrangement of all atoms
- Each atom has 4 nearest neighbors and 12 next nearest neighbors

Cuprite $\mathrm{Cu}_{2} \mathrm{O}$ - Cubic Diamond Lattices

Two interpenetrating diamond lattices
Replace C-C with O-Cu-O

Wurzite, ZnS

Hexagonal close packing of anions with $1 / 2$ tetrahedral holes filled by cations

ZnO, ZnS, ZnSe , ZnTe, BeO, CdS, CdSe, MnS, Agl, AIN, GaN
Lonsdaleite

Zincite, ZnO

a Zn -polar face (0001)

O-polar face (0001)

c-axis

Zn -polar face (+ve)

Negative Substrate Charge

Semiconductors of 13-15 and 12-16 type

Structure of III-V and II-VI Compound Semiconductors

Zinc blende

Wurtzite

Rock Salt, NaCl

Cubic close packing of anions with all octahedral holes filled by cations

Rock Salt, NaCI

(a)

(b)

Anion and cation sublattices $\boldsymbol{=}$ same FCC/CCP

Rock salt (NaCl) = Anti-rock salt (CINa)

Rock Salt Structures (NaCl)

Hydrides: LiH, NaH, KH, $\mathrm{NH}_{4} \mathrm{BH}_{4}-\mathrm{H}_{2}$ storage material $\mathrm{Pd}(\mathrm{H})$

Borides: ZrB, HfB
Carbides: TiC, ZrC, VC, UC
Nitrides: ScN, TiN, UN, CrN, VN, ZrN
Oxides: MgO, CaO, SrO, BaO, TiO, VO, MnO, FeO, CoO, NiO
Chalcogenides: MgS, CaS, SrS, BaS, a-MnS, MgSe, CaSe, SrSe, BaSe, CaTe

Halides: LiF, LiCl, LiBr, Lil, NaF, NaBr, NaI, KF, $\mathrm{KCI}, \mathrm{KBr}, \mathrm{KI}, \mathrm{RbF}, \mathrm{RbCl}, \mathrm{RbBr}$, Rbl, CsF, AgCl, $\mathrm{AgF}, \mathrm{AgBr}$

Intermetallics: SnAs
Other
FeS_{2} (pyrite), $\mathrm{CaC}_{2}, \mathrm{NaO}_{2}$

Rock Salt Structures (NaCl)

Palladium-Hydrogen system

palladium

- face-centered cubic (fcc) structure
- dissociate hydrogen molecules $\left(\mathrm{H}_{2} / \mathrm{D}_{2}\right)$
and absorb large amount of $\mathrm{H}(\mathrm{D})$ atoms up to $\mathrm{H}(\mathrm{D}) / \mathrm{Pd}=1$

fcc structure

The spaces occupied by hydrogen are the interstitial octahedral (O) sites of palladium.

PdH(D) x
(x :hydrogen concentration $\mathrm{H}(\mathrm{D}) / \mathrm{Pd}$)

Rock Salt Structures (NaCl)

FeS_{2} (pyrite), $\mathrm{CaC}_{2}, \mathrm{NaO}_{2}$

SiO_{2} pyrite - high pressure polymorph, in Uranus and Neptune core

Nickel Arsenide, NiAs

Hexagonal close packing of anions (As) with all octahedral holes filled by cations (Ni)

NiS, NiAs, NiSb, NiSe, NiSn, NiTe, FeS, $\mathrm{FeSe}, \mathrm{FeTe}$, FeSb , $\mathrm{PtSn}, \mathrm{CoS}$, CoSe, CoTe , CoSb, CrSe, CrTe , CoSb,
PtB (anti-NiAs structure)

ReB_{2} - type

Hexagonal close packing of anions with all tetrahedral holes filled by cations

$\mathrm{Li}_{3} \mathrm{Bi}\left(\right.$ anti $\left.\mathrm{BiF}_{3}\right)$

$\mathrm{Fe}_{3} \mathrm{Al}$
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$\mathrm{M}_{3} \mathrm{C}_{60}$

Cubic close packing of anions with all tetrahedral and octahedral holes filled by cations

Primitive cubic packing of anions with all cubic holes filled by cations

CsCl

Primitive cubic packing of CsCl_{8} cubes sharing all faces

CsCl

CsCl is not BCC

CsBr, CsI, CsCN, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{Br}$, TICl, TIBr, TII, CuZn, CuPd, LiHg

Both sublattices form independent diamond structures.
The atoms sit on the sites of a bcc lattice with $a_{b c c}=1 / 2 a$
Niggli - $\mathbf{2 3 0}$ space groups - restrictions on arrangement of atoms: There are only 4 possible AB cubic structures:
$\mathrm{NaCl}, \mathrm{ZnS}$-sphalerite, CsCl , and NaTI

ReO_{3}

What type of unit cell? sc, bcc, fcc

NaCl structure with $3 / 4$ of cations removed and $1 / 4$ of anions removed

Cubic- $\mathrm{WO}_{3}, \mathrm{UO}_{3}, \mathrm{MoF}_{3}, \mathrm{NbF}_{3}, \mathrm{TaF}_{3}, \mathrm{AlF}_{3}, \mathrm{Cu}_{3} \mathrm{~N}$

Perovskite, CaTiO_{3}

Two equvivalent views of the unit cell of perovskite

Perovskite, ABX_{3}

Perovskite - Ferroelectric BaTiO_{3}

Positive Positive Oxygen

Perovskite, BaTiO_{3}

$\mathrm{T}_{\mathrm{c}}=$ critical temperature

Perovskite - Ferroelectric BaTiO_{3}

Cubic centrosymmetric paraelectric

Ba^{2+}
0
Ti^{2+}
O^{2-}

Tetragonal, orthorhombic and rhombohedric non centrosymmetric - ferroelectric

$$
\mathrm{Pb}^{2+} \mathrm{O}^{2-} \bullet \mathrm{Ti}^{4+}, \mathrm{Zr}^{4-}
$$

$\mathrm{T}>\mathrm{T}_{\mathrm{C}}$

$\mathrm{T}<\mathrm{T}_{\mathrm{C}}$

Perovskite Structure of YBCO

Perovskite Structure of $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{PbI}_{3}$

$\mathrm{MeNH}_{2} \cdot \mathrm{HX}+\mathrm{PbX}_{2} \longrightarrow\left(\mathrm{MeNH}_{3}\right) \mathrm{PbX}_{3}$

Perovskite $\left(\mathrm{MeNH}_{3}\right) \mathrm{PbX}{ }_{3}$

Three Polymorphs of TiO_{2}

Rutile, TiO_{2}

CN - stoichiometry Rule $A_{x} B_{y}$

CN(A) / CN(B) $=y / x$

Distorted hexagonal close packing of anions with $1 / 2$ octahedral holes filled by cations (giving a tetragonal lattice)

Rutile, TiO_{2}

TiO_{6} - octahedra OTi_{3} - trigonal planar (alternative to CaF_{2} for highly charged smaller cations)
$\mathrm{GeO}_{2}, \mathrm{CrO}_{2}, \mathrm{IrO}_{2}, \mathrm{MoO}_{2}, \mathrm{WO}_{2}, \mathrm{NbO}_{2}, \beta-\mathrm{MnO}_{2}, \mathrm{OsO}_{2}, \mathrm{VO}_{2}$ ($>340 \mathrm{~K}$), $\mathrm{RuO}_{2}, \mathrm{CoF}_{2}, \mathrm{FeF}_{2}, \mathrm{MgF}_{2}, \mathrm{MnF}_{2}$

The Spinel Structure: $\mathbf{M g A l}_{2} \mathbf{O}_{4}$

FCC array of O^{2-} ions, A^{2+} occupies $1 / 8$ of the tetrahedral and $B^{3+} 1 / 2$ of the octahedral holes
\rightarrow normal spinel:
$\mathrm{AB}_{2} \mathrm{O}_{4}$
\rightarrow inverse spinel:
$\mathrm{B}[\mathrm{AB}] \mathrm{O}_{4}$
$\mathrm{Fe}_{3} \mathrm{O}_{4}=\mathrm{Fe}^{3+}\left[\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}\right] \mathrm{O}_{4}$
\rightarrow basis structure for several magnetic materials

Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right.$) and Maghemite ($\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$)

Cubic inverse spinel O^{2-} atoms are arranged in closepacked FCC lattice Fe^{2+} occupy $1 / 2$ of OCT sites Fe^{3+} are split evenly across the remaining OCT and TET sites

Fully oxidized form of magnetite Inverse spinel with cation deficiency
One of every six octahedral sites in magnetite is vacant Stoichiometry Fe ${ }^{\text {tet }}\left(\mathrm{Fe}_{5 / 3} \square_{1 / 3}\right)^{\text {oct }} \mathbf{O}_{4}$

Spinels, $\mathrm{AB}_{2} \mathrm{X}_{4}$

$A B_{2} X_{4}$ Spinel normal: Cubic close packing of anions with $1 / 2$ octahedral holes filled by B cations and $1 / 8$ tetrahedral holes by A cations
$\mathrm{MgAl}_{2} \mathrm{O}_{4}, \mathrm{CoAl}_{2} \mathrm{O}_{4}, \mathrm{MgTi}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{2} \mathrm{GeO}_{4}, \mathrm{NiAl}_{2} \mathrm{O}_{4}, \mathrm{MnCr}_{2} \mathrm{O}_{4}$
$A B_{2} X_{4}$ Spinel inverse: As for spinel but A cations and $1 / 2$ of B cations interchanged
$\mathrm{MgFe}_{2} \mathrm{O}_{4}, \mathrm{NiFe}_{2} \mathrm{O}_{4}, \mathrm{MgIn}_{2} \mathrm{O}_{4}, \mathrm{MgIn}_{2} \mathrm{~S}_{4}, \mathrm{Mg}_{2} \mathrm{TiO}_{4}, \mathrm{Zn}_{2} \mathrm{TiO}_{4}, \mathrm{Zn}_{2} \mathrm{SnO}_{4}$, $\mathrm{FeCo}_{2} \mathrm{O}_{4}$.
$\delta=$ the inversion parameter
$\left(\mathrm{A}_{\delta} \mathrm{B}_{1-\delta}\right)_{\mathrm{A}}\left[\mathrm{A}_{1-\delta} \mathrm{B}_{1+\delta}\right]_{\mathrm{B}} \mathrm{O}_{4}$
Values from $\delta=1$ (normal) to $\delta=0$ (inverse)
May depend on synthesis conditions

Corundum, $\mathrm{Al}_{2} \mathrm{O}_{3}$

$\mathrm{Al}_{2} \mathrm{O}_{3}$ lattice consists of HCP array of O^{2-} ions
Al^{3+} ions fill of all octahedral holes
The Al centres are surrounded by oxides

Oxides are coordinated by Al ${ }^{3+}$ ions

Garnets

Naturally occuring garnets $\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}=\mathrm{A}_{3} \mathrm{~B}_{2}\left(\mathrm{SiO}_{4}\right)_{3}$
$A_{3}=$ divalent cation ($\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}$ or Ca) dodecahedral $\mathrm{B}_{2}=$ trivalent (AI, Fe^{3+}, Ti, or Cr) octahedral $\mathrm{Si}_{3}=$ tetravalent, tetrahedral

Since Ca is much larger in radius than the other divalent cations, there are two series of garnets: one with calcium and one without:
pyralspite contain AI (pyrope, almandine, spessartine) ugrandite contain Ca (uvarovite, grossular, andradite)

Synthetic garnets $\mathrm{A}_{3} \mathrm{~B}_{5} \mathrm{O}_{12}$
$A_{3}=$ trivalent cations, large size (Y, La,...)
$\mathrm{B}_{5}=$ trivalent (AI, Fe^{3+}, Ti , or Cr) 2B octahedral, 3B tetrahedral
$\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$
$\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$

Synthetic Garnets $A_{3} B_{5} O_{12}$

YAG

Garnet $\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$
$Y_{3}=$ red - dodecahedral trivalent cations, large size
$A I_{5}=$ blue
2 octahedral
3 tetrahedral
O_{12}

Fullerides

$\mathrm{M}_{1} \mathrm{C}_{60}$ all the octahedral (O) sites (dark blue) are occupied (NaCl)
$\mathrm{M}_{2} \mathrm{C}_{60}$ all the tetrahedral (T) sites (light blue) are occupied (CaF_{2})
$M_{3} \mathrm{C}_{60}$ both the O and the T sites are occupied $\left(\mathrm{BiF}_{3}\right)$
$M_{4} C_{60}$ rearranged to a body-centered tetragonal (bct) cell and both the O and the T sites of the bct lattice are occupied
$M_{6} \mathrm{C}_{60}$ a bcc lattice and all its T sites are occupied

$$
M_{1} C_{60}
$$

$\mathrm{M}_{2} \mathrm{C}_{60}$

$M_{3} C_{60}$

$\mathrm{M}_{4} \mathrm{C}_{60}$

$\mathrm{M}_{6} \mathrm{C}_{60}$

Layered Structures

CdI_{2}
Hexagonal close packing of anions with $1 / 2$ octahedral holes filled by cations
$\mathrm{Col}_{2}, \mathrm{Fel}_{2}, \mathrm{MgI}_{2}, \mathrm{MnI}_{2}, \mathrm{PbI}_{2}, \mathrm{ThI}_{2}, \mathrm{TiI}_{2}, \mathrm{TmI}_{2}, \mathrm{VI}_{2}, \mathrm{YbI}_{2}, \mathrm{ZnI}_{2}, \mathrm{VBr}_{2}$, $\mathrm{TiBr}_{2}, \mathrm{MnBr}_{2}, \mathrm{FeBr}_{2}, \mathrm{CoBr}_{2}, \mathrm{TiCl}_{2}, \mathrm{TiS}_{2}, \mathrm{TaS}_{2}$ $\mathrm{Mg}(\mathrm{OH})_{2}$ - brucite

CdCl_{2}

Cubic close packing of anions with $1 / 2$ octahedral holes filled by cations
$\mathrm{CdCl}_{2}, \mathrm{CdBr}_{2}, \mathrm{CoCl}_{2}, \mathrm{FeCl}_{2}, \mathrm{MgCl}_{2}, \mathrm{MnCl}_{2}, \mathrm{NiCl}_{2}, \mathrm{NiI}_{2}, \mathrm{ZnBr}_{2}, \mathrm{ZnI}_{2}$, $\mathrm{Cs}_{2} \mathrm{O}^{*}$ (anti-CdCl C_{2} structure)

Cdl_{2} Hexagonal Close Packing

HCP of anions with $1 / 2$ octahedral holes filled by cations

Fully occupied and completely empty planes alternate

CdCl_{2} Cubic Close Packing

CCP of anions with $1 / 2$ octahedral holes filled by cations, fully occupied and completely empty planes alternate

Vocabulary of terms

Parallelepiped = rovnoběžnostěn

