Lattice Energy

Pauling Rules

Bonding Models for Covalent and Ionic Compounds

G. N. Lewis 1923 Electron pair sharing Orbital overlap Chemical bond Number of bonds $=$ atomic valence

Benzene Molecular formula
 $5 p^{2}$ Hybridized orbitals
 (Isomers)

 Simplified depiction

Born, Lande, Magelung, Meyer 1918
Electrostatic attraction
(Coulomb) + Repulsion

Organic (molecular, covalent) vs. Inorganic (nonmolecular, ionic) bonding

Lattice Enthalpy, L

The lattice enthalpy change, L , is the standard molar enthalpy ΔH_{L}^{0} change for the process:

$$
\begin{equation*}
\mathrm{M}_{(\text {gas })}^{+}+\mathrm{X}_{(\text {gas })}^{-} \rightarrow \mathrm{MX}_{(\text {solid })} \tag{L}
\end{equation*}
$$

The formation of a solid from ions in the gas phase is always exothermic

Lattice enthalpies are usually negative
L is the most important energy factor in determining the stability of an ionic compound

The most stable crystal structure of a given compound is the one with the highest (most negative) lattice enthalpy L (entropy considerations neglected)

Lattice Enthalpy, L, kJ/mol

Born-Haber Cycle

All enthalpies: $\mathrm{kJ} \mathrm{mol}^{-1}$ for normal conditions \rightarrow standard enthalpies

Lattice Enthalpy, L

$L=E_{\text {Coul }}+E_{\text {rep }}$

One ion pair

$$
E_{\text {coul }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B} e^{2}}{d}
$$

(calculated exactly)

$$
E_{\text {rep }}=\frac{B}{d^{n}}
$$

(modelled empirically)
n = Born exponent
(experimental measurement of compressibility or Pauling)
$B=\mathbf{a}$ constant

Coulombic Contribution to L

Coulombic contributions to lattice enthalpies, $\mathrm{E}_{\text {Coul }}$

$$
E_{\text {Coul }}=-N_{A} A\left(\frac{Z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} d} \quad \begin{array}{l}
\text { Coulomb potential } \\
\text { of an ion pair }
\end{array}\right.
$$

$\mathrm{E}_{\text {Coul }}$: Coulomb potential (electrostatic potential)
A: Madelung constant (depends on structure type)
\mathbf{N}_{A} : Avogadro constant
z: charge number
e : elementary charge ($1.6022 \times 10^{-19} \mathrm{C}$)
ε_{0} : dielectric constant (vacuum permittivity, $8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$)
d : shortest distance between cation and anion

Lattice Enthalpy, L

1 mol of ions

$$
E_{\text {Coul }}=N_{A} A\left(e^{2} / 4 \pi e_{0}\right)\left(z_{A} z_{B} / d\right)
$$

A = Madelung constant - a single ion interacts with all other ions

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{rep}}=\mathrm{N}_{\mathrm{A}} \mathrm{~B} / \mathrm{d}^{\mathrm{n}} \\
& \mathbf{L}=\mathrm{E}_{\mathrm{Coul}}+\mathrm{E}_{\text {rep }}
\end{aligned}
$$

Find minimum $\mathrm{dL} / \mathrm{d}(\mathrm{d})=0$

Madelung Constant, \mathbf{A}

Count all interactions in the crystal

 lattice of one ion with all othersThe simplest example : 1D lattice

$$
E_{\text {coul }}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d}\left[+2 \frac{1}{1}-2 \frac{1}{2}+2 \frac{1}{3}-2 \frac{1}{4}+\ldots .\right]=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d} 2 \ln 2
$$

Madelung constant $\mathrm{A}=1.3862944$. for an infinite linear chain of ions
= sum of convergent series

Madelung Constant for NaCl

Neighbors	Distance
$6 \mathbf{~ C l}$	d
12 Na	$\sqrt{2} \mathrm{~d}$
8 Cl	$\sqrt{3} \mathrm{~d}$
6 Na	$\sqrt{4} \mathrm{~d}$
24 Cl	$\sqrt{5} \mathrm{~d}$

3D ionic solids: Coulomb attraction and repulsion

A single ion interacts with all other ions

$$
E_{\text {coul }}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d}\left[+6 \frac{1}{1}-12 \frac{1}{\sqrt{2}}+8 \frac{1}{\sqrt{3}}-6 \frac{1}{\sqrt{4}}+24 \frac{1}{\sqrt{5}}+\ldots .\right]=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d} M
$$

Sum of convergent series

$$
A=6-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}}-\frac{6}{2}+\frac{24}{\sqrt{5}} \ldots=1.74756
$$

Madelung Constant for NaCl

Madelung Constants for Some Structural Types

Structure	A	A/v	Coordination
CsCl	1.762675	0.882	$(8,8)$
NaCl	1.747565	0.874	$(6,6)$
CaF_{2}	2.51939	0.840	$(8,4)$
ZnS Wurtzite	1.64132	0.821	$(4,4)$
ZnS Sphalerite	1.63805	0.819	$(4,4)$
CdCl_{2}	2.244	0.75	$(6,3)$
CdI_{2}	2.191	0.73	$(6,3)$
TiO_{2} Rutile	2.408	0.803	$(6,3)$
$\mathrm{Al}_{2} \mathrm{O}_{3}$ Corundum	4.172	0.834	$(6,4)$
Linear Lattice	1.3862944		$(2,2)$
lon Pair	$?$		$(1,1) \quad 12$

$v=$ the number of ions in a formula unit

Born Repulsion, $E_{\text {rep }}$

Repulsion arising from overlap of electron clouds

Because the electron density of atoms decreases exponentially towards zero at large distances from the nucleus the Born repulsion shows the same behavior
approximation:

$$
E_{\text {rep }}=\frac{B}{d^{n}}
$$

\boldsymbol{B} and \boldsymbol{n} are constants for a given atom type
\boldsymbol{n} can be derived from compressibility measurements or Pauling values
(e.g., for $\mathrm{NaCl}, \mathrm{n}=8$)

The Born-Landé Equation (1918)

Total Lattice Enthalpy from Coulomb interaction and Born repulsion
$\Delta \mathrm{H}_{L}^{0}=\min \left(E_{\text {Coul }}+E_{\text {rep }}\right)$
set first derivative of the sum to zero

$$
\Delta \mathrm{H}_{L}^{0}=-A \frac{Z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} d} N_{A}\left(1-\frac{1}{n}\right)
$$

Lattice Enthalpy Calculation
 Born-Lande

$$
L=N_{A} A \frac{Z_{A} Z_{B} e^{2}}{4 \pi \varepsilon_{0} d}\left(1-\frac{d^{*}}{d}\right)
$$

$$
d^{*}=0.345 \AA
$$

The Kapustinskii Equation

Kapustinskii found that if the Madelung constant for a given structure is divided by the number of ions in one formula unit (v) the resulting values are almost constant:

Structure	Madelung constant (A)	\mathbf{A} / v	Coordination
CsCl	1.763	0.882	$8: 8$
NaCl	1.748	0.874	$6: 6$
CaF_{2}	2.519	0.840	$8: 4$
$\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$	4.172	0.834	$6: 4$

A general lattice energy equation that can be applied to any crystal regardless of the crystal structure

$$
L=K \times v \times \frac{Z_{A} Z_{B}}{r_{+}+r_{-}} \times\left(1-\frac{G}{r_{+}+r_{-}}\right) \quad \mathrm{K}, \mathrm{G}=\text { constants }
$$

The Kapustinskii Equation

The most important advantage of the Kapustinskii equation

- it is possible to apply the equation for lattice calculations of crystals with polyatomic ions (e.g., $\mathrm{KNO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \ldots$)
- a set of „thermochemical radii" was derived for further calculations of lattice enthalpies

Table 1.13 Thermochemical radii of polyatomic ions*

Ion	$p m$	Ion	$p m$	Ion	$p m$
NH_{4}^{+}	151	ClO_{4}^{-}	226	MnO_{4}^{2-}	215
$\mathrm{Me}_{4} \mathrm{~N}^{+}$	215	CN^{-}	177	O_{2}^{2-}	144
PH_{4}^{+}	171	CNS^{-}	199	OH^{-}	119
AlCl_{4}^{-}	281	CO_{3}^{2-}	164	PtF_{6}^{2-}	282
BF_{4}^{-}	218	IO_{3}^{-}	108	PtCl_{6}^{2-}	299
BH_{4}^{-}	179	$\mathrm{~N}_{3}^{-}$	181	PtBr_{6}^{2-}	328
BrO_{3}^{-}	140	NCO^{-}	189	PtI_{6}^{2-}	328
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	148	NO_{2}^{-}	178	SO_{4}^{2-}	244
ClO_{3}^{-}	157	NO_{3}^{-}	165	SeO_{4}^{2-}	235

*J.E. Huheey (1983) Inorganic Chemistry, 3rd edn, Harper and Row, London, based on data from H.D.B. Jenkins and K.P. Thakur (1979) J. Chem. Ed., 56, 576.

Experimental and Calculated Lattice Enthalpies

NaCl

Born-Lande calculation $\quad \mathrm{L}=-765 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Only ionic contribution considered
Experimental Born-Haber cycle $\quad \mathrm{L}=-788 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Lattice Enthalpy consists of ionic and covalent contributions

Applications of Lattice Enthalpy calculations

- thermal stabilities of ionic solids
- stabilities of oxidation states of cations
- solubility of salts in water
- calculations of electron affinity data
- lattice enthalpies and stabilities of „non existent" compounds 18

Pauling's Rules

Five principles which could be used to determine the structures of complex ionic/covalent crystals

Pauling's Rule no. 1 Coordination Polyhedra

- A coordinated polyhedron of anions is formed about each cation
- Cation-Anion distance is determined by sums of ionic radii
- Cation coordination environment is determined by radius ratio

Coordination Polyhedra

Different Types of Radii

1 Metallic radius

2 Covalent radius

3 lonic radius
The radius of one ion was fixed to a reasonable value
$\left(r\left(O^{2-}\right)=140 \mathrm{pm}\right)$ (Linus Pauling)
That value is then used to compile a set of self consistent values for all other ions

Variation of the Electron Density along the $\mathrm{Li}-\mathrm{F}$ Axis in LiF

Sizes of atoms and their ions in pm

Variation of Ionic Radii with Coordination Number

3 lonic radius

As the coordination number (CN) increases, the lonic Radius increases

Variation of Atomic Radii through the Periodic Table

Ionic Radii

R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925-945 (1969) R.D. Shannon, Acta Cryst. A32, 751-767 (1976)

As the coordination number (CN) increases, the lonic Radius increases

| Sr^{2+} | | As the oxidation state increases,
 CN | Radius, \AA |
| :--- | :--- | :--- | :--- | | cations get smaller |
| :--- |
| (6-fold coordination, in \AA) |
| 6 |

Ionic Radii

The radius increases down a group in the periodic table
The exception - 4d/5d series in the transition metals - the lanthanide contraction

(6-fold coordination, in \AA)		
Al^{3+}	0.675	Right to left across the periodic table the radius decreases
Ga^{3+}	0.760	
In^{3+}	0.940	$(6$ coordinate radii, in \AA)
Tl^{3+}	1.025	
Ti^{4+}	0.745	La^{3+}
Nr^{3+}	1.172	
Hf^{4+}	0.86	0.85

General Trends for Ionic Radii

1. Ionic radii increase down a group
(Lanthanide contraction restricts the increase of heavy ions)
2. Radii of equal charge ions decrease across a period
3. Ionic radii increase with increasing coordination number the higher the CN the bigger the ion
4. The ionic radius of a given atom decreases with increasing charge $\left(r\left(\mathrm{Fe}^{2+}\right)>r\left(\mathrm{Fe}^{3+}\right)\right)$
5. Cations are usually the smaller ions in a cation/anion combination (exceptions: $\mathrm{r}\left(\mathrm{Cs}^{+}\right)>\mathrm{r}\left(\mathrm{F}^{-}\right)$)
6. Frequently used for rationalization of structures:

Cation/Anion Radius Ratio

Limiting Radius Ratios

unit cel/

NaCl 6:6

unit cel/

ZnS 4:4

face diagonal $a \sqrt{2}$ body diagonal $a \sqrt{3}$

$r_{k}+r_{x}=r_{x} \sqrt{3}$
$r_{4}+r_{x}=r_{x} \sqrt{2}$

$$
\digamma_{u}+\Gamma_{x}=\frac{1}{2} \Gamma_{x} \sqrt{6}
$$

$$
r_{u} / r_{x}=\sqrt{3}-1
$$

$$
r_{H} / r_{X}=\sqrt{2}_{-1}
$$

$$
r_{w} / r_{x}=\frac{1}{2} \cdot \sqrt{6}-1
$$

$$
=0.225
$$

Structure Map

Dependence of the structure type on parameters, such as ionic radii, ionicity, electronegativity etc.

Structural map as function of radius ratios for $A B$ compounds

Structural map as function of radius ratios for $\mathrm{A}_{2} \mathrm{BO}_{4}$ compounds

Structure Map

Dependence of the structure type (coordination number) on the electronegativity difference and the average principal quantum number (size and polarizability)
AB compounds

Pauling's Rules

Pauling's Rule no. 2 Bond Strength

The strength of an electrostatic bond $\mathrm{s}_{\mathrm{ij}}=$ valence / CN
The bond valence sum (BVS) of each ion equals its oxidation state \mathbf{V}_{i}
The valence of an ion (V_{i}, equal to the oxidation state of the ion) is equal to a sum of the valences of its bonds $\left(s_{i j}\right): \quad V_{i}=\Sigma s_{i j}$

In a stable ionic structure the charge on an ion is balanced by the sum of electrostatic bond strengths (s_{ij}) to the ions in its coordination polyhedron
TiO_{2} (Rutile) Ti - oxidation state of +4 , coordinated to 6 oxygens $\mathrm{V}_{\mathrm{Ti}}=+4=6\left(\mathrm{~s}_{\mathrm{ij}}\right) \quad \mathrm{s}_{\mathrm{ij}}=+2 / 3$

The bond valence of oxygen, coordinated by 3 Ti atoms $\mathrm{Vo}=3\left(\mathrm{~s}_{\mathrm{ij}}\right)=3(-2 / 3)=-2$

Each bond has a valence of s_{ij} with respect to the cation and $-\mathrm{s}_{\mathrm{ij}}$ with respect to the anion

Bond Strength

Brown, Shannon, Donnay, Allmann:
Correlation of the valence of a bond s_{ij} with the (experimental) bond distance d_{ij}

$$
s_{i j}=\exp \frac{R_{i j}-d_{i j}}{b}
$$

$\mathrm{R}_{\mathrm{ij}}=$ standard single bond length - determined empirically from (many) structures where bond distances and ideal valences are accurately known

Tables of R_{ij} values for given bonding pairs (i.e., $\mathrm{Nb}-\mathrm{O}, \mathrm{Cr}-\mathrm{N}, \mathrm{Mg}-\mathrm{F}$, etc.) have been calculated, just as tables of ionic radii are available

A constant $\boldsymbol{b}=\mathbf{0 . 3 7}$
$R=d \quad s=e^{0}=1$
$R<d \quad s=e^{-1}<1$ a bond longer than R is weaker than 1
$R>d \quad s=e^{1}>1$ a bond shorter than R is stronger than 1

Bond Valence Sum (BVS)

Correlation of the valence of a bond s_{ij} with the (experimental) bond distance d_{ij}

$$
s_{i j}=\exp \frac{R_{i j}-d_{i j}}{b} \quad v_{i}=\Sigma s_{i j}=\Sigma \frac{z_{i}}{C N}
$$

Use of the bond valence sum (BVS) concept:
A) To check experimentally determined structures for correctness, or bonding instabilities
B) To predict new structures
C) To locate light atoms such as hydrogen or Li ion, which are hard to find experimentally
D) To determine ordering of ions which are hard to differentiate experimentally, such as Al^{3+} and Si^{4+}, or O^{2-} and F^{-}
E) To check/confirm oxidation states of atoms $\left(\mathrm{Co}^{2+} / \mathrm{Co}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}\right)_{34}$

Bond Valence Sum (BVS)

$$
s_{i j}=\exp \frac{R_{i j}-d_{i j}}{b}
$$

$$
v_{i}=\Sigma s_{i j}=\Sigma \frac{z_{i}}{C N}
$$

FeTiO_{3} (mineral Ilmenite) possesses the corundum structure - an hcp array of oxides with cations filling $2 / 3$ of octahedral holes.

Decide which oxidation states (valences) are present:
Fe (II) $\mathrm{Ti}(\mathrm{IV})$ or $\mathrm{Fe}(\mathrm{III}) \mathrm{Ti}($ III $)$
Bond Distances ($\mathrm{d}_{\text {exp }}, \AA$)
Tabulated R_{ij} values
Constants
$\mathrm{Fe}-\mathrm{O}=3 \times 2.07$ and 3×2.20

$$
\begin{array}{ll}
R_{0}(\mathrm{Fe}-\mathrm{O})=1.795 \AA & \mathrm{~b}=0.30 \\
\mathrm{R}_{0}(\mathrm{Ti}-\mathrm{O})=1.815 \AA & \mathrm{~b}=0.37
\end{array}
$$

$\mathrm{Ti}-\mathrm{O}=3 \times 1.88$ and 3×2.09

Oxygen valence and coordination number?
Each oxygen is bound to Fe and Ti with both bond distances

Pauling's Rules

Pauling's Rule no. 3 Polyhedral Linking

The presence of shared edges, and particularly shared faces decreases the stability of a structure
This is particularly true for cations with large valences and small coordination number

Avoid shared polyhedral edges and/or faces

Polyhedral Linking

Polyhedral Linking

The Coulombic interactions in stable structures

- Maximize the cation-anion interactions (attractive)
- Minimize the anion-anion and cation-cation interactions (repulsive)
- Increase the coordination number
- Decrease the cation-anion distance
- If ions too close - electron-electron repulsions

The cation-cation distance decreases and the Coulomb repulsion increases as

- the degree of sharing increases (corner < edge < face)
- CN decreases (cubic < octahedral < tetrahedral)
- cation oxidation state increases (a stronger Coulomb repulsion)

Pauling's Rules

Pauling's Rule no. 4 Cation Evasion

In a crystal containing different cations those with large valence and small coord. number tend not to share polyhedral elements (anions)

Perovskite, CaTiO_{3}

Call 12-coordinate CaO_{12} cuboctahedra share FACES

Tilv 6-coordinate TiO_{6} octahedra share only VERTICES

Pauling's Rules

Pauling's Rule no. 5 Environmental Homogeneity

The rule of parsimony

The number of chemically different coordination environments for a given ion tends to be small

Once the optimal chemical environment for an ion is found, if possible, all ions of that type should have the same environment

Strukturbericht Symbols

A partly systematic method for specifying the structure of a crystal A - monatomic (elements), B - diatomic with equal numbers of atoms of each type (AB), C-a 2-1 abundance ratio (AB_{2}), D0-3-1, etc.

Structure type	Struktur bericht	Space group (S.G. No.)	Lattice
Cu	A1	Fm-3m (225)	fcc
W, Fe	A2	Im-3m (229)	bcc
Mg	A3	$\mathrm{P6}_{3} / \mathrm{mmc}$ (194)	hcp
C - diamond	A4	Fd-3m (227)	diamond
NaCl	B1	Fm-3m (225)	
CsCl	B2	Pm-3m (221)	
ZnS	B3	F43m (216)	Zincblende
ZnS	B4	$\mathrm{P6}_{3} / \mathrm{mc}$ (186)	Wurtzite
CaF_{2}	C1	Fm-3m (225)	Fluorite

Pearson Symbols

Indicate the crystal symmetry and the number of atoms in the unit cell e.g., $\mathrm{NaCl}-$ a face-centered (F) cubic (c) structure with 8 atoms in the unit cell $=\mathrm{cF} 8$ monoclinic (\mathbf{m}), hexagonal (\mathbf{h}), orthorhombic ($\mathbf{0}$), asymmetric (a), primitive (\mathbf{P}) the Pearson symbol does not necessarily specify a unique structure (see cF8)

Structure type	Pearson Symbol	Struktur bericht	Space group (S.G. No.)
Cu	cF4	A1	Fm-3m (225)
W, Fe	cl2	A2	Im-3m (229)
Mg	hP2	A3	$\mathrm{P6}_{3} / \mathrm{mmc}$ (194)
C - diamond	cF8	A4	Fd-3m (227)
NaCl	cF8	B1	Fm-3m (225)
CsCl	cP2	B2	Pm-3m (221)
ZnS (zb)	cF8	B3	F43m (216)
ZnS (w)	hP4	B4	$\mathrm{P6}_{3} / \mathrm{mc}(186)^{42}$
CaF_{2}	cF12	C1	Fm-3m (225)

Space Group Symbols (230)

primitive (\mathbf{P}), face-centered (\mathbf{F}), body-centered (I), base-centered (A,B,C), rhombohedral (R)

S. G. Class	Centering	Symbol syntax (examples)
Triclinic	P	P1, P-1
Monoclinic	P, C, B	Paxis, Pplane, Paxis/plane (P2 $\left.{ }_{1}, \mathbf{C m}, \mathbf{P 2}{ }_{1} / \mathbf{c}\right)$
Orthorhombic	P, F, I, C, A	Paxisaxisaxis, Pplaneplaneplane (Pmmm, Cmc2 ${ }_{\mathbf{1}}$)
Tetragonal	P, I	P4, P4axisaxisaxis, P4planeplaneplane (I4/m, P4mm)
Trigonal	P, R	P3axis, P3plane (R-3m)
Hexagonal	P	P6, P6axisplane (P6 $\mathbf{3}_{\mathbf{3}} / \mathbf{m m c}$)
Cubic	P, F, I	Paxis3plane, Pplane3plane (Pm-3m, Fm-3m)

