Lattice Energy

Pauling Rules

1

Bonding Models for Covalent and Ionic Compounds

Organic (molecular, covalent) vs. Inorganic (nonmolecular, ionic) bonding

Lattice Enthalpy, L

The **lattice enthalpy** change, L, is the standard molar enthalpy ΔH_L^0 change for the process:

$$M^{+}_{(gas)} + X^{-}_{(gas)} \rightarrow MX_{(solid)}$$
 (L)

The formation of a solid from ions in the gas phase is always **exothermic**

Lattice enthalpies are usually negative

L is the most important energy factor in determining the stability of an ionic compound

The most stable crystal structure of a given compound is the one with the highest (**most negative**) lattice enthalpy *L*

(entropy considerations neglected)

Lattice Enthalpy, L, kJ/mol

$1 7 7 a^2$						
$E_{coul} = \frac{1}{4\pi\varepsilon_0} \frac{\mathcal{L}_A \mathcal{L}_B \varepsilon}{d}$		F ⁻	Cl⁻	Br⁻	I-	O ²⁻
	Li^+	1049.0	862.0	818.6	762.7	2830
All compounds adopt	Na^+	927.7	786.8	751.8	703	2650
the NaCl structure,	K^+	825.9	716.8	688.6	646.9	2250
except CSCI, CSDI, CSI	Rb^+	788.9	687.9	612	625	2170
1100	Cs^+	758.5	668.2	635	602	2090
	$\mathrm{Mg}^{2^{+}}$		2522			3795
	Ca ²⁺		2253			3414
	Sr^{2+}		2127			3217
ergy.			235 pm	1 212 pm	i I	ScN 7547
tice en	-					
TE 700 -	-				2+ 02-	
600						4
F- CI-	Br ⁻ I	-				
			NaF	Mg	gO	

Lattice Enthalpy, L

One ion pair

$$E_{coul} = \frac{1}{4\pi\varepsilon_0} \frac{Z_A Z_B e^2}{d}$$

(calculated exactly)

$$E_{rep} = \frac{B}{d^n}$$

(modelled empirically) n = Born exponent (experimental measurement of compressibility or Pauling)⁶ B = a constant

Coulombic Contribution to L

Coulombic contributions to lattice enthalpies, E_{Coul}

$$E_{Coul} = -N_A A \left(\frac{z_+ z_- e^2}{4\pi\varepsilon_0 d} \right)$$
 Coulomb potential of an ion pair

E_{Coul}: Coulomb potential (electrostatic potential)

- A: Madelung constant (depends on structure type)
- N_A: Avogadro constant
- z: charge number
- e : elementary charge (1.6022×10^{-19} C)
- ε_{o} : dielectric constant (vacuum permittivity, 8.854 × 10⁻¹² F m⁻¹)
- d: shortest distance between cation and anion

Lattice Enthalpy, L

1 mol of ions

 $E_{Coul} = N_A A (e^2 / 4 \pi e_0) (z_A z_B / d)$

A = Madelung constant - a single ion interacts with all other ions

$$\mathbf{E_{rep}} = \mathbf{N_A} \mathbf{B} / \mathbf{d^n}$$
$$L = N_A A \frac{Z_A Z_B e^2}{4\pi\varepsilon_0 d} + N_A \frac{B}{d^n}$$

Find minimum dL/d(d) = 0

 $L = E_{Coul} + E_{rep}$

Madelung Constant, A

Count all interactions in the crystal lattice of one ion with all others

The simplest example : 1D lattice

Erwin Madelung (1881 – 1972)

Madelung constant A = 1.3862944..... for an infinite linear chain of ions = sum of convergent series

9

Madelung Constant for NaCl

3D ionic solids: Coulomb attraction and repulsion

A single ion interacts with all other ions

Sum of convergent series

$$A = 6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{2} + \frac{24}{\sqrt{5}} \dots = 1.74756$$
¹⁰

Madelung Constant for NaCl

Madelung Constants for Some Structural Types

Structure	Α	A /v	Coordination
CsCl	1.762675	0.882	(8,8)
NaCl	1.747565	0.874	(6,6)
CaF ₂	2.51939	0.840	(8,4)
ZnS Wurtzite	1.64132	0.821	(4,4)
ZnS Sphalerite	1.63805	0.819	(4,4)
CdCl ₂	2.244	0.75	(6,3)
Cdl ₂	2.191	0.73	(6,3)
TiO ₂ Rutile	2.408	0.803	(6,3)
Al ₂ O ₃ Corundum	4.172	0.834	(6,4)
Linear Lattice	1.3862944		(2,2)
Ion Pair	?		(1,1) 12

v = the number of ions in a formula unit

Max Born 1882 – 1970

Born Repulsion, E_{rep}

Repulsion arising from overlap of electron clouds

Because the electron density of atoms decreases exponentially towards zero at large distances from the nucleus the Born repulsion shows the same behavior

approximation:

$$E_{rep} = \frac{B}{d^n}$$

B and **n** are constants for a given atom type

n can be derived from compressibility measurements or Pauling values

(e.g., for NaCl, n = 8)

The Born-Landé Equation (1918)

Total Lattice Enthalpy from Coulomb interaction and Born repulsion

$$\Delta H_L^0 = \min(E_{Coul} + E_{rep})$$

set first derivative of the sum to zero

$$\Delta H_{L}^{0} = -A \frac{z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} d} N_{A} (1 - \frac{1}{n})$$

14

Lattice Enthalpy Calculation Born–Lande

$$L = N_A A \frac{Z_A Z_B e^2}{4\pi\varepsilon_0 d} \left(1 - \frac{1}{n}\right)$$

For compounds of mixed ion types, use the average value (e.g., for NaCl, n = 8).

Pauling's approximate values of *n*

El. config.	n	Example
He-He	5	LiH, Be ²⁺
Ne-Ne	7	NaF, MgO, Al ³⁺
Ar-Ar	9	KCI, CaS, CuCI, Zn ²⁺ , Ga ³⁺
Kr-Kr	10	RbBr, AgBr, Cd ²⁺ , In ³⁺
Xe-Xe	12	Csl, Au ⁺ , Tl ³⁺ , Ba ²⁺ , Hg ²⁺

Born-Mayer

$$L = N_A A \frac{Z_A Z_B e^2}{4\pi\varepsilon_0 d} \left(1 - \frac{d^*}{d}\right)$$

d^{*} = 0.345 Å

The Kapustinskii Equation

Kapustinskii found that if the Madelung constant for a given structure is divided by the number of ions in one formula unit (v) the resulting values are almost constant:

Structure	Madelung constant (A)	A /v	Coordination
CsCl	1.763	0.882	8:8
NaCl	1.748	0.874	6:6
CaF ₂	2.519	0.840	8:4
α -Al ₂ O ₃	4.172	0.834	6:4

A general lattice energy equation that can be applied to any crystal regardless of the crystal structure

$$L = K \times v \times \frac{Z_A Z_B}{r_+ + r_-} \times \left(1 - \frac{G}{r_+ + r_-}\right)$$

K, G = constants

16

The Kapustinskii Equation

The most important advantage of the Kapustinskii equation

- it is possible to apply the equation for lattice calculations of crystals with polyatomic ions (e.g., KNO₃, (NH₄)₂SO₄...)
- a set of "thermochemical radii" was derived for further calculations of lattice enthalpies

Table 1.13 T	hermochemica	al radii of polyat	tomic ions*		
Ion	рт	Ion	рт	Ion	pm
NH ₄ ⁺	151	ClO_4^-	226	MnO_4^{2-}	215
Me_4N^+	215	CN^{-}	177	O_2^{2-}	144
PH ₄ ⁺	171	CNS ⁻	199	OH-	119
AlCl ₄	281	CO_{3}^{2-}	164	PtF_6^{2-}	282
BF_4^-	218	IO_3^-	108	$PtCl_6^{2-}$	299
BH_4^-	179	N_3^-	181	$PtBr_6^{2-}$	328
BrO_3^-	140	NCO ⁻	189	PtI_6^{2-}	328
CH ₃ COO ⁻	148	NO_2^-	178	SO_4^{2-}	244
ClO_3^-	157	NO_3^-	165	SeO_4^{2-}	235

*J.E. Huheey (1983) Inorganic Chemistry, 3rd edn, Harper and Row, London, based on data from H.D.B. Jenkins and K.P. Thakur (1979) J. Chem. Ed., 56, 576.

17

Experimental and Calculated Lattice Enthalpies

NaCl

Born–Lande calculation $L = -765 \text{ kJ mol}^{-1}$ Only ionic contribution considered

Experimental Born–Haber cycle $L = -788 \text{ kJ mol}^{-1}$ Lattice Enthalpy consists of ionic and covalent contributions

Applications of Lattice Enthalpy calculations

- thermal stabilities of ionic solids
- stabilities of oxidation states of cations
- solubility of salts in water
- calculations of electron affinity data
- lattice enthalpies and stabilities of "non existent" compounds ¹⁸

Pauling's Rules

Five principles which could be used to determine the structures of complex ionic/covalent crystals

Pauling's Rule no. 1 Coordination Polyhedra

- A coordinated polyhedron of anions is formed about each cation
- Cation-Anion distance is determined by sums of ionic radii
- Cation coordination environment is determined by radius ratio

Coordination Polyhedra

Different Types of Radii

The radius of one ion was fixed to a reasonable value

(r(O²⁻) = 140 pm) (Linus Pauling)

That value is then used to compile a set of self consistent values for all other ions 21

Variation of the Electron Density along the Li – F Axis in LiF

Variation of Ionic Radii with Coordination Number

23

Variation of Atomic Radii

through the Periodic Table

Ionic Radii

R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925-945 (1969) R.D. Shannon, Acta Cryst. A32, 751-767 (1976)

As the coordination number (CN) increases, the lonic Radius increases

Sr ²⁺		As the	oxidation state increases,
CN	Radius, Å	cations	s get smaller
6	1.32	(6-fold	coordination, in Å)
8	1.40		
9	1.45	Mn ²⁺	0.810
10	1.50	Mn ³⁺	0.785
12	1.58	Mn ⁴⁺	0.670
		Ti ²⁺	1.000
		Ti ³⁺	0.810
		Ti ⁴⁺	0.745

Ionic Radii

The radius increases down a group in the periodic table

The exception - 4d/5d series in the transition metals - the lanthanide contraction

(6-fold coord	nation, in Å)	Right t	o left across the periodic table
Al ³⁺	0.675	the rad	ius decreases
Ga ³⁺	0.760		
In ³⁺	0.940	(6 coor	dinate radii, in Å)
TI ³⁺	1.025	(0000)	
		La ³⁺	1.172
Ti ⁴⁺	0.745	Nd ³⁺	1.123
Zr ⁴⁺	0.86	Gd ³⁺	1.078
Hf ⁴⁺	0.85	Lu ³⁺	1.001

General Trends for Ionic Radii

1. Ionic radii increase down a group

(Lanthanide contraction restricts the increase of heavy ions)

2. Radii of equal charge ions decrease across a period

- 3. Ionic radii increase with increasing coordination number the higher the CN the bigger the ion
- 4. The ionic radius of a given atom decreases with increasing charge (r(Fe²⁺) > r(Fe³⁺))
- 5. Cations are usually the smaller ions in a cation/anion combination (exceptions: r(Cs⁺) > r(F⁻))
- 6. Frequently used for rationalization of structures: "radius ratio" r(cation)/r(anion) (< 1)

Cation/Anion Radius Ratio

Optimal radius ratio for given CN ions are in touch

Structure Map

Dependence of the structure type on parameters, such as ionic radii, ionicity, electronegativity etc.

Structural map as function of radius ratios for AB compounds

Structural map as function of radius ratios for A₂BO₄ compounds

Structure Map

Dependence of the structure type (coordination number) on the electronegativity difference and the average principal quantum number (size and polarizability) AB compounds

Pauling's Rules

Pauling's Rule no. 2 Bond Strength

The strength of an electrostatic bond $S_{ij} = valence / CN$ The bond valence sum (BVS) of each ion equals its oxidation state V_i

The valence of an ion (V_i, equal to the oxidation state of the ion) is equal to a sum of the valences of its bonds (s_{ij}): $V_i = \Sigma s_{ij}$

In a stable ionic structure the charge on an ion is balanced by the sum of electrostatic bond strengths (s_{ij}) to the ions in its coordination polyhedron

TiO₂ (Rutile) Ti - oxidation state of +4, coordinated to 6 oxygens V_{Ti} = +4 = 6 (s_{ij}) s_{ij} = +2/3

The bond valence of oxygen, coordinated by 3 Ti atoms Vo = 3 (s_{ii}) = 3 (-2/3) = -2

Each bond has a valence of s_{ij} with respect to the cation and $-s_{ij}$ with respect to the anion

Bond Strength

Brown, Shannon, Donnay, Allmann: Correlation of the valence of a bond s_{ij} with the (experimental) bond distance d_{ij}

$$s_{ij} = \exp\frac{R_{ij} - d_{ij}}{b}$$

R_{ij} = standard single bond length - determined empirically from (many) structures where bond distances and ideal valences are accurately known

33

Tables of R_{ij} values for given bonding pairs (i.e., Nb-O, Cr-N, Mg-F, etc.) have been calculated, just as tables of ionic radii are available

A constant b = 0.37R = d $s = e^0 = 1$ R < d $s = e^{-1} < 1$ a bond longer than R is weaker than 1 R > d $s = e^1 > 1$ a bond shorter than R is stronger than 1

Bond Valence Sum (BVS)

Correlation of the valence of a bond s_{ij} with the (experimental) bond distance d_{ij}

$$s_{ij} = \exp \frac{R_{ij} - d_{ij}}{b}$$
 $v_i = \sum s_{ij} = \sum \frac{z_i}{CN}$

Use of the bond valence sum (BVS) concept:

A) To check experimentally determined structures for correctness, or bonding instabilities

B) To predict new structures

C) To locate light atoms such as hydrogen or Li ion, which are hard to find experimentally

D) To determine ordering of ions which are hard to differentiate experimentally, such as Al³⁺ and Si⁴⁺, or O²⁻ and F⁻

E) To check/confirm oxidation states of atoms (Co²⁺/Co³⁺, Fe²⁺/Fe³⁺)₃₄

Bond Valence Sum (BVS)

FeTiO₃ (mineral llmenite) possesses the **corundum** structure – an hcp array of oxides with cations filling 2/3 of octahedral holes.

Decide which oxidation states (valences) are present: Fe(II) Ti(IV) or Fe(III) Ti(III)

Bond Distances (d _{exp} , Å)	Tabulated R _{ij} values	Constants
Fe–O = 3×2.07 and 3×2.20	R₀(Fe–O) = 1.795 Å	b = 0.30
Ti–O = 3×1.88 and 3×2.09	R₀(Ti–O) = 1.815 Å	b = 0.37

35

Oxygen valence and coordination number? Each oxygen is bound to Fe and Ti with both bond distances

Pauling's Rules

Pauling's Rule no. 3 Polyhedral Linking

The presence of shared edges, and particularly shared faces decreases the stability of a structure This is particularly true for cations with large valences and small coordination number

Avoid shared polyhedral edges and/or faces

Polyhedral Linking

Polyhedral Linking

The Coulombic interactions in stable structures

- Maximize the cation-anion interactions (attractive)
- Minimize the anion-anion and cation-cation interactions (repulsive)
- Increase the coordination number
- Decrease the cation-anion distance
- If ions too close electron-electron repulsions

The cation-cation distance decreases and the Coulomb repulsion increases as

- the degree of sharing increases (corner < edge < face)
- CN decreases (cubic < octahedral < tetrahedral)
- cation oxidation state increases (a stronger Coulomb repulsion)

Pauling's Rules

Pauling's Rule no. 4 Cation Evasion

In a crystal containing different cations those with large valence and small coord. number tend not to share polyhedral elements (anions)

Perovskite, CaTiO₃

Ca^{II} 12-coordinate **CaO**₁₂ cuboctahedra share **FACES**

Ti^{IV} 6-coordinate TiO₆ octahedra share only VERTICES

Pauling's Rules

Pauling's Rule no. 5 Environmental Homogeneity

The rule of parsimony

The number of chemically different coordination environments for a given ion tends to be small

Once the optimal chemical environment for an ion is found, if possible, all ions of that type should have the same environment

Strukturbericht Symbols

A partly systematic method for specifying the structure of a crystal **A** - monatomic (elements), **B** - diatomic with equal numbers of atoms of each type (AB), **C** - a 2-1 abundance ratio (AB₂), **D**0 - 3-1, etc.

Structure type	Struktur bericht	Space group (S.G. No.)	Lattice	
Cu	A1	Fm-3m (225)	fcc	
W, Fe	A2	lm-3m (229)	bcc	
Mg	A3	P6 ₃ /mmc (194)	hcp	
C - diamond	A4	Fd-3m (227)	diamond	
NaCl	B1	Fm-3m (225)		
CsCl	B2	Pm-3m (221)		
ZnS	B3	F43m (216)	Zincblende	
ZnS	B4	P6 ₃ /mc (186)	Wurtzite	41
CaF ₂	C1	Fm-3m (225)	Fluorite	

Pearson Symbols

Indicate the crystal symmetry and the number of atoms in the unit cell e.g., NaCl - a face-centered (**F**) cubic (**c**) structure with 8 atoms in the unit cell = cF8 monoclinic (**m**), hexagonal (**h**), orthorhombic (**o**), asymmetric (**a**), primitive (**P**) the Pearson symbol does not necessarily specify a unique structure (see cF8)

Structure type	Pearson Symbol	Struktur bericht	Space group (S.G. No.)
Cu	cF4	A1	Fm-3m (225)
W, Fe	cl2	A2	lm-3m (229)
Mg	hP2	A3	P6 ₃ /mmc (194)
C - diamond	cF8	A4	Fd-3m (227)
NaCl	cF8	B1	Fm-3m (225)
CsCl	cP2	B2	Pm-3m (221)
ZnS (zb)	cF8	B3	F43m (216)
ZnS (w)	hP4	B4	P6 ₃ /mc (186) ⁴²
CaF ₂	cF12	C1	Fm-3m (225)

Space Group Symbols (230)

primitive (**P**), face-centered (**F**), body-centered (**I**), base-centered (**A**, **B**, **C**), rhombohedral (**R**)

S. G. Class	Centering	Symbol syntax (examples)
Triclinic	Р	P1, P-1
Monoclinic	Р, С, В	Paxis, Pplane, Paxis/plane (P2₁, Cm , P2₁/c)
Orthorhombic	P, F, I, C, A	Paxisaxisaxis, Pplaneplaneplane (Pmmm, Cmc2₁)
Tetragonal	P, I	P4, P4axisaxisaxis, P4planeplaneplane (I4/m, P4mm)
Trigonal	P, R	P 3 axis, P3plane (R-3m)
Hexagonal	Р	P 6 , P6axisplane (P6₃/mmc)
Cubic	P, F, I	Paxis 3 plane, Pplane3plane (Pm-3m, Fm-3m)