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Highlights
Endogenous DNA G-quadruplex

(G4) structures have been detected

in human cells and mapped in

genomic DNA and in an endoge-

nous chromatin context by adapt-

ing next-generation sequencing

approaches, to reveal cell type-

and cell state-specific G4 land-

scapes and a strong link of G4s with

elevated transcription. Synthetic
Guanine-rich DNA sequences can fold into four-stranded, noncanonical secondary structures

called G-quadruplexes (G4s). G4s were initially considered a structural curiosity, but recent evi-

dence suggests their involvement in key genome functions such as transcription, replication,

genome stability, and epigenetic regulation, together with numerous connections to cancer

biology. Collectively, these advances have stimulated research probing G4 mechanisms and

consequent opportunities for therapeutic intervention. Here, we provide a perspective on the

structure and function of G4s with an emphasis on key molecules and methodological advances

that enable the study of G4 structures in human cells. We also critically examine recent mecha-

nistic insights into G4 biology and protein interaction partners and highlight opportunities for

drug discovery.
small molecules and engineered

antibodies have been vital to probe

G4 existence and functions in cells.

Several endogenous proteins have

been found to interact with DNA

G4s, including helicases, transcrip-

tion factors, and epigenetic and

chromatin remodellers. Detailed

structural and functional studies

provided novel insight into G4–

protein interactions and revealed a
Beyond the DNA Double Helix

A chemist’s perspective on the function of a molecule, or a system of molecules, is typically led by a

consideration of how molecular structure dictates function. The most widely recognised DNA struc-

ture is that of the classical DNA double helix [1], which defines a structural basis for the genetic code

via defined base-pairing. Yet, it is evident that DNA is structurally dynamic and capable of adopting

alternative secondary structures. One such class of DNA secondary structure is the four-stranded G-

quadruplex (G4). Herein, we discuss some of the key scientific history that has shaped our understand-

ing of this structural motif, its probable functions in biology, and major unanswered questions that

remain to be solved.
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potential involvement of G4s in a

range of biological processes.

Multiple new lines of evidence

suggest that G4s play a role in

cancer growth and progression.

More G4s are detectable in cancer

cell states compared with normal

state, rendering G4s highly inter-

esting targets in drug discovery.

Recent studies have started to

explore the potential for synthetic

lethality and global modulation of

cancer gene transcription.
G4 Structure

The capacity for guanylic acid derivatives to self-aggregate was noted over a century ago [2].

Some 50 years later, fibre diffraction revealed that guanylic acids form four-stranded, right-

handed helices leading to a proposed model in which the strands are stabilised via Hoogsteen

hydrogen-bonded guanines to form co-planar G-quartets [3–5]. Subsequent biophysical studies

using DNA oligonucleotides with sequences from immunoglobulin switching regions or telo-

meres (see Glossary) showed stable formation of G4 structures under near-physiological condi-

tions in vitro [6,7]. Stacks of G-quartets are stabilised by cations centrally coordinated to O6 of

the guanines with stabilising preference for monovalent cations in the order K+ > Na+ > Li+ (Fig-

ure 1A) [8]. G4s can be unimolecular or intermolecular and can adopt a wide diversity of topol-

ogies arising from different combinations of strand direction (Figure 1D–F), as well as length and

loop composition [9,10]. Structural studies using X-ray crystallography and NMR spectroscopy

have provided detailed insights into the structure of DNA G4s primarily based on the human

telomeric repeat (Figure 1B,C) [11] or sequences derived from the promoter regions of certain

human genes such as MYC or KIT [12,13]. Based on biophysical studies on different G4 struc-

tures, algorithms using sequence motifs such as GR3NxGR3NxGR3NxGR3 were developed and

deployed to predict putative G4 structures in genomic DNA [14,15]. Early models assumed

loop lengths no longer than seven and the requirement for four continuous stretches of Gs. Sub-

sequently, several G4 structures with longer loop lengths and discontinuities in G-stretches

causing bulges were observed [16,17], leading to alternative predictive models [18]. The recent

availability of large datasets on G4 formation has enabled the application of machine learning to

predict G4 forming propensity [19]. Further considerations include the effects of molecular

crowding [20] and DNA base modifications, such as cytosine methylation [21] and guanine oxida-

tion [22], on the stability of G4 structures.
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Figure 1. G-Quadruplex (G4) Structures.

(A) Structure of a G-quartet formed by the Hoogsteen hydrogen-bonded guanines and central cation (coloured

green) coordinated to oxygen atoms. Crystal structure of human telomeric G4s (Protein Data Bank: 1KF1): (B)

top view and (C) side view; backbone is represented by grey tube and the structures are colour-coded by

atoms. Schematic representation of unimolecular G4s based on the strand direction: (D) parallel, (E) anti-

parallel, and (F) hybrid with a bulge.

Glossary
ChIP-seq: chromatin immunopre-
cipitation (ChIP) is a commonly
used method to detect in-
teractions between proteins and
DNA in a native chromatin context
that is based on the enrichment of
DNA associated with the protein
of interest. The combination with
high-throughput DNA
sequencing analysis (ChIP-seq)
allows for genome-wide detection
of protein binding sites. G4 ChIP-
seq is a related technology
whereby an antibody directed
against the G4 structure rather
than a protein is used.
Chromatin: a complex of DNA
and proteins in eukaryotic cells. Its
main functions are the efficient
packaging of DNA to fit into the
volume of nucleus, the stabilisa-
tion and further condensation of
DNA during cell division, and the
control of gene expression.
Euchromatin is a slightly packed
chromatin, which is usually tran-
scriptionally active, whereas het-
erochromatin is more condensed,
inaccessible DNA that is usually
transcriptionally repressed.
DNA methyltransferases: a family
of enzymes that catalyse the
transfer of methyl groups to DNA.
They catalyse the formation of 5-
methylcytosine at CpG di-
nucleotides in mammalian cells.
fsp3: number of sp3 hybridised
carbons/total carbon count.
Helicase: a class of enzymes that
can bind, unpack, and remodel
nucleic acids or nucleic acid pro-
tein complexes. DNA helicases
play essential roles in vital cellular
processes. For instance, DNA
helicases unwind double-
stranded into single-stranded
DNA during replication or tran-
scription so that the strand infor-
mation can be copied.
Hypersensitivity site: (nuclease)
hypersensitivity sites are nucleo-
some-depleted regions of chro-
matin that are detected via their
very high sensitivity to cleavage
by nucleases. These regions are
less densely packed to allow the
binding of proteins, such as tran-
scription factors, and often mark
genomic regulatory elements.
Next-generation sequencing:
(deep sequencing) modern high-
throughput sequencing technol-
ogies, such as Illumina (Solexa),
Roche 454, and Ion Torrent
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Small Molecules that Bind G4s

Replicative immortality is a hallmark of cancer and several studies have suggested that cancer cells

achieve unlimited proliferation by protecting ends of chromosomes [23]. Telomerase is a reverse tran-

scriptase enzyme that adds repeat segments to the 30-end of telomeric DNA and is highly expressed

in most cancers [23,24]. One way to inhibit the action of telomerase was achieved using small mole-

cules that sequester telomeric ends as stable, liganded G4 structures, which are thought to render

telomeric ends inaccessible for telomerase-mediated extension [25]. An X-ray structure of the small

molecule daunomycin in complex with the G4 formed by four strands of d(TGGGGT) confirmed stack-

ing of small molecules on a terminal G-quartet [26]. Several structures based on NMR spectroscopy

and X-ray crystallography of small molecule-G4 complexes have since been reported [27]. The

concept of targeting telomeric G4 structures was extended to G4s located in gene promoters. A

cationic porphyrin TmPyP4, which binds to G4s (but does also bind duplex DNA) in vitro was shown

to inhibit transcription of oncogene MYC by a mechanism proposed to involve a G4 target in the

nuclease hypersensitivity element (NHE) in the MYC promoter [28]. Since then, a variety of different

G4-targeted ligands have been described to modulate the expression of genes carrying a sequence

capable of forming a G4 in their respective promoters. So far, few studies have investigated transcrip-

tional changes on a genome-wide level [29]. More carefully designed controls will be needed to

assess whether a particular G4 is in fact the main biological target or if changes in target gene expres-

sion are a result of the ligand binding to other genomic (G4 or non-G4) targets. The central hypothesis

would be strengthened bymore explicit evidence for G4 ligands actually engaging with G4 structures

in the promoters of affected genes in cells, for instance, by employing methods that enable the

genome-wide mapping of ligand binding sites in native chromatin [30,31].

To date, around 1000 small molecules targeting G4 structures have been reported in the G-Quadru-

plex Ligands Database (http://www.g4ldb.org/) [32], with some examples of widely used ligands

shown in Figure 2B. Small molecule G4 binders generally have an aromatic surface for p-p stacking
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Figure 2. G-Quadruplex (G4) Ligands.

(A) Crystal structure of a naphthalene diimide, MM41 bound to an intramolecular human telomeric DNAG4, colour-

coded by atoms; water molecules are shown as red spheres, MM41 carbon atoms are coloured green, surface of the

G4 is coloured light grey (Protein Data Bank: 3UYH). (B) Structures of selected widely used G4 ligands.

sequencing that produce data on
a genome scale in the form of
millions of short sequence reads.
8-oxoG: 8-oxoguanine is a com-
mon DNA lesion resulting from
reactive oxygen species; incorpo-
ration into the DNA sequence can
result in a mismatched pairing
with adenine, resulting in
mutations.
Promoter: region of DNA where
transcription initiates; typically
located directly upstream of the
transcription start site.
Telomere: region of repetitive
nucleotide sequence (TTAGGG)n
at the end of each chromosome.
Telomeres protect chromosomes
from end-to-end fusion and pre-
vent DNA damage and the loss of
genetic information. Telomeres
are typically shortened during cell
division. Telomerases are en-
zymes that extend telomeres by
addition of repeat sequences to
the 30-end, a process that is active
in stem cells and cancers, but
mostly absent in somatic cells.
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with G-tetrads, a positive charge or basic groups to bind to loops or grooves of the G4, and steric bulk

to prevent intercalation with double-stranded DNA [33]. To improve G4 binding, the aromatic ring

count, positive charge, and number of hydrogen bond donors generally exceed what would be
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optimal for a small molecule with good pharmacokinetic properties [34,35]. Contrary to the classical

perspective, it is noteworthy that a G4 ligand that lacks traditional ‘drug-like’ properties has shown

significant accumulation and efficacy in tumour xenografts of human cancers [29]. The X-ray crystal

structure of the G4 ligand MM41 bound to a human telomeric G4 (Figure 2A) suggests that certain

structural features of G4 ligands can exploit additional interactions in the groove regions of the G4

structure [36]. Interactions with the groove and with the backbone phosphates do not require a flat

aromatic structure. Therefore, compounds with reduced planarity (or high fsp3) and interactions

with the grooves and/or backbone phosphates may have merit for targeting G4s. Structure–activity

relationship studies on G4 ligands, controlling physicochemical properties such as planarity (fsp3),

polarity (total polar surface area), lipophilicity (LogD), and rotatable bonds would enable an optimum

balance between G4 binding, solubility, and permeability. In the targeting of structured RNA ele-

ments, it has previously been realised that increased planarity and strongly p-stacking compounds

leads to off-target activity and that these molecules are generally difficult to improve via further me-

dicinal chemistry [37].
G4 Detection and Mapping

Computational algorithms have predicted over 370 000 G4 sequence motifs in the human

genome, of which a general enrichment was observed in regions associated with genome regu-

lation, such as telomeres, promoters, and 50 untranslated regions [14,38]. G4s were first detected

in vivo using a G4 structure-specific antibody to stain G4s in the telomeres of ciliates, whereby

telomeric G4 structure formation was observed to be dynamically controlled through protein in-

teractions in a cell cycle-dependent manner [39,40]. Subsequently, G4s were visualised in human

cells [41–44] and cancer tissue [45]. Antibodies have been used to monitor the behaviour of G4

structures in human cell lines upon ligand treatment together with depletion of the G4 resolving

helicase FANCJ [41,42], to reveal increased numbers of G4 foci staining in nuclei after pyridos-

tatin [41] or telomestatin ligand treatment and FANCJ depletion in chicken DT40 cells [42]. Te-

lomeric BG4 foci colocalise with human telomerase, suggesting the enzyme is recruited to G4

structures (Figure 3A) [43].

Besides antibodies, small molecules have also been used to detect G4s in cells. Early studies with ra-

diolabelled G4 ligands also showed localisation at telomeres [46]. Subsequently, G4s were detected

in human cells by treatment with alkyne functionalised G4 ligands followed by cell fixation and

coupling to fluorophores via coper-catalysed azide-alkyne cycloaddition [47] or strain-promoted

azide-alkyne cycloaddition [48]. Intrinsically fluorescent molecules that display different fluorescent

emission or excitation maxima and fluorescent decay lifetimes upon binding to G4s have been devel-

oped for imaging live cells. The uptake of these molecules to the nucleus and a displacement by the

G4 ligand pyridostatin have been monitored in living cells via fluorescence microscopy [49,50]. G4

specificity was further corroborated by colocalisation with the G4 structure-specific antibody BG4

in fixed cells [50].

The adaptation of next-generation sequencing has enabled the mapping of G4 structures in ge-

nomes. An in vitro reference map of G4s in purified human genomic DNA was obtained using

differential G4-stabilising conditions (i.e., ligands or cations) to recognise G4-specific DNA poly-

merase stalling sites during next-generation whole genome sequencing (G4-seq, see Figure 3B)

[51]. The G4-seq study identified more than 700 000 G4 sites in the human genome, exceeding

some earlier predictions. Many noncanonical G4s were identified that comprised longer loops,

as few as two G-tetrads or bulges caused by discontinuous G-tracts [16]. A recent study

extended G4-seq to a variety of other organisms to generate G4 maps and reveal a strong po-

tential for G4 formation in promoters that is particular to mammals (mouse, human), but mostly

absent in the other organisms studied [52].

It is important to consider the effects of chromatin and all its associated proteins on G4 stability and

formation, which are unaccounted for in maps generated by G4-seq or computational predictions.

Efforts have been made to probe the native G4 landscape in vivo. G4 formation has been inferred
126 Trends in Chemistry, February 2020, Vol. 2, No. 2



Figure 3. Detection and Mapping of DNA G-Quadruplexes (G4s).

(A) Visualisation of G4s in fixed or live cells using structure-specific antibodies as well as labelled or intrinsically fluorescent G4 ligands. The number of

detected G4 foci can be increased by small molecule treatment or helicase depletion. (B) High-throughput sequencing of G4s in human genomic DNA

(G4-Seq). Two consecutive sequencing runs, under normal and G4 stabilising conditions, provide a reference map and detect G4-dependent

polymerase stalling, respectively. (C) Chromatin immunoprecipitation employing antibodies against endogenous G4-binding proteins followed by next-

generation sequencing (ChIP-seq). Genomic occupancy of endogenous proteins is used to infer putative G4 sites. (D) Treatment with G4 ligands

induces G4-dependent DNA damage. ChIP-seq of DNA damage markers in combination with deep sequencing detects G4-associated regions. (E)

Permanganate oxidation of nucleotides in transiently unwound regions traps the unpaired state, resulting in sensitivity to a single-strand specific

nuclease. Computational prediction is then used to infer the type of underlying non-B-DNA structures based on sequence context. (F) G4-specific

chromatin immunoprecipitation and next-generation sequencing (G4 ChIP-seq). A G4-specific antibody (e.g., BG4) is used to precipitate G4 structures

directly from native chromatin and is identified by deep sequencing.
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from chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq)

experiments that use antibodies against proteins that are known to bind G4s in vitro (Figure 3C).

Enrichment of genomic regions comprising computationally predicted G4 structures was observed

for a-thalassemia mental retardation X-linked (ATR-X) [53] and for the XPB and XPD helicases [54],

yeast telomere binding protein RAP1-interacting factor 1 (Rif) [55], and yeast PIF1 helicase [56].

Such studies are consistent with G4 formation in vivo and suggest that the function of the respective

proteins is linked to being physically associated with G4s.

The G4 stabilising ligand pyridostatin generates DNA double-strand breaks in cells. The sites of

pyridostatin-induced strand breaks were determined by ChIP-sequencing of gH2.AX, a phosphory-

lated protein that marks stand break sites, and is found to occur predominantly at predicted G4

regions of the cellular genome (Figure 3D) [47]. In a similar approach, ChIP-seq of RAD51, which pro-

vides a more narrow ChIP-seq signal at DNA damage sites, identified �3000 genomic targets of the

G4 ligand CX-5461 [57].
Trends in Chemistry, February 2020, Vol. 2, No. 2 127
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Genome-wide potassium permanganate-dependent nuclease footprinting, which identifies single-

stranded, non-B DNA, was performed in mouse B cells and combined with computational analysis

to discern the type and enrichment of different non-B DNA structures (Figure 3E) [58]. This approach

revealed around 20 000 hypersensitivity sites featuring G4 motifs and suggested a transcription-

dependent formation of the noncanonical DNA structures, when comparing resting and lipopolysac-

charide-interleukin 4 activated B cells.

The BG4 antibody that binds a wide range of G4 structural types with broad selectivity and high af-

finity was recently used to map endogenous G4 structures in fixed chromatin from human epidermal

keratinocytes (NHEKs) and from spontaneously immortalised HaCaT keratinocytes (G4 ChIP-seq, Fig-

ure 3F) [59]. In this study,�10 000 G4s were uncovered in precancerous HaCaT cells, while only�1000

were detected in the ‘normal’ counterpart NHEK cells. This represents only 1% of the sites with the

capability to form G4s as observed in G4-Seq [51], suggesting a strong influence of the local chro-

matin context and other associated proteins on G4 formation in cells. The majority of G4s were found

in nucleosome-depleted chromatin regions and were enriched in regulatory regions. In addition, G4s

were particularly enriched at promoters of highly transcribed genes [59]. Mapping G4 landscapes in

three other cancer cell lines revealed only moderate overlap, indicating a strong cell-type specificity

[60].

In an alternative ChIP-seq approach, the G4 antibody, D1, was directly expressed in human cer-

vical carcinoma cells as a GFP-fusion protein. In agreement with the BG4 study, a majority of the

G4 signals were found at transcription start sites, in introns and intergenic regions [44]. Notably,

ca. 15% of G4s were observed in exons, which were not found by BG4 ChIP-seq [59]. This may

reflect different specificities of both G4 antibodies, differences in cell-type specific G4 land-

scapes, or competition of the D1 antibody with endogenous G4-binding proteins to reveal

masked G4 structures.
Natural G4-Binding Proteins

The observation of G4s enriched at genome regulatory sites, and that G4 formation in cells is dynamic

and dependent on cell type and state, suggests that the G4 landscape can be regulated by cellular

proteins. Indeed, many natural proteins have been identified that interact with G4s (see G4 Interact-

ing Proteins Database, http://bsbe.iiti.ac.in/bsbe/ipdb/) [61]. The identification of G4 associated pro-

teins has mostly relied on affinity proteomics experiments employing RNA and DNA G4 oligomers as

baits to isolate G4 interactors from cellular extracts [62–65]. Other approaches involve computational

analysis of genomic protein binding sites to assess the enrichment of predicted G4 motifs within

these binding sites [54,66], or meta-analysis, in which shared structural features of G4-binding protein

domains were compared to predict new putative G4 interactors [67,68]. In a recent study, a series of

protein affinity pull-downs from nuclear lysates with oligonucleotide baits at different concentrations

was combined with isobaric tandem-mass-tag labelling and mass spectrometry. This revealed

apparent dissociation constants and binding profiles towards different G4 and transcription factor

consensus sequences for hundreds of nuclear proteins in parallel [69].

To date, over a dozen specialised helicases have been identified that target DNA G4s with up to pi-

comolar affinity (reviewed in [70]). Recent studies have provided structural and mechanistic insights

into G4 recognition and unwinding. Single-molecule imaging studies revealed a common repetitive

unfolding mechanism for the specialised helicases DHX36 (also known as RHAU), Blooms (BLM), and

Werner (WRN) helicases, albeit with different substrate specificity, and showed the capacity to

displace G4-stabilising ligands [71,72]. A cocrystal structure of bos taurus DHX36 helicase bound

to the MYC promoter G4 revealed a mode of binding in which the G4 makes contacts with a

DHX36-specificmotif (DSM) and the C terminal OB-fold domain (Figure 4) [73]. Strikingly, the residues

of the a-helical DSM create a nonplanar hydrophobic surface that stacks on the top of a mixed quartet

of the quadruplex, which forms after partial unfolding of the original G4 by the protein. The binding

mode is somewhat reminiscent of that suggested for most small molecule G4 ligands, but suggesting

that absolute planarity of the ligand may not be needed [73]. These findings are complemented by
128 Trends in Chemistry, February 2020, Vol. 2, No. 2
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Figure 4. Crystal Structure of DHX36 Bound to the c-Myc G4 (Protein Data Bank: 5VHE).

Overall structure is shown in cartoon representation with the domain organisation of DHX36 colour-coded (top).

The a-helical DHX36-specific motif (DSM) stacks on the 50-quartet. The residues Ile65, Tyr69, and Ala70 form a

nonpolar surface similar to the proposed binding mode of most small molecule G-quadruplex (G4) ligands

(bottom).
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the crystal structure of Drosophila melanogaster DHX36, revealing a positively charged pocket that

binds and destabilises the G4 [74].

In accordance with the G4 forming potential of the telomere repeat sequence, many telomere-asso-

ciated proteins have been shown to interact with G4 structures [63]. For instance, POT1 [75] and RPA

[76], two components of the shelterin complex, as well as the human CST complex [77], are able to

bind and unwind telomeric G4 structures and assist the action of telomerase.

As G4s are strongly enriched at promoters, it is unsurprising that several transcription factors and

transcriptional coactivators bind sites containing predicted G4 motifs, many of which show potential

to bind or unwind G4 structures in vitro. In particular, G4 structures at promoter regions of oncogenes

represent the most closely studied G4 sites. The nonmetastatic factor NM23-H2 has been reported to
Trends in Chemistry, February 2020, Vol. 2, No. 2 129
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recognise and unwind the MYC promoter G4 [78]. Conversely, binding by nucleolin was reported to

stabilise the G4 structure resulting in reduced transcription at this site [65]. Similarly, pull-down and

chromatin immunoprecipitation experiments showed that Myc-associated zinc finger (MAZ) and pol-

y(ADP-ribose) polymerase 1 (PARP-1) proteins bind the G4 structure found upstream of the KRAS

transcription start site [79]. However, hnRNP A1 and MAZ were shown to bind and unfold the KRAS

and HRAS promoter G4 in vitro, respectively [80,81]. Chromatin binding sites of the transcriptional

helicases XPB and XPD are enriched in predicted G4 motifs. Both helicases associate with G4s

in vitro, while XPD can also resolve G4 structures, suggesting that these proteins may affect transcrip-

tion via a G4-associated mechanism [54].

Furthermore, various epigenetic and chromatin remodelling enzymes selectively bind DNA G4

oligomers [69]. Genomic binding sites of the chromatin remodelling protein ATR-X are enriched

at GC-rich tandem repeats and CpG islands with the potential to fold G4 structures, and ATR-X

loss is implicated with G4-dependent replication stress, DNA damage, and copy number alter-

ations [53,82]. The DNA methyltransferase enzymes (DNMTs), which catalyse the formation of

5-methylcytosine at CpG dinucleotides in mammalian cells, bind to G4 structures with subnano-

molar affinity in vitro [83,84]. DNMT1 shows stronger interaction with G4s compared with duplex

DNA and loses enzyme activity upon G4 binding. Maps of DNMT1 chromatin binding sites and

endogenous G4s in human K562 leukaemia cells identified using ChIP-seq and G4 ChIP-seq,

respectively, revealed that at CpG islands most G4s occur where DNMT1 is bound, leading to

a proposal that G4s regulate DNA methylation by sequestering DNMTs [84]. Conversely, DNA

methylation can influence G4 topology [85] and may modulate binding by other G4-associated

proteins. For instance, CpG methylation at the hTERT gene promoter was suggested to induce

G4 formation, resulting in displacement of the CCCTC-binding factor (CTCF) and elevated tran-

scription [86].

G4-protein interactions may provide a means to recruit machinery to specific parts of the genome to

influence a wide range of cellular processes. Given that the G4 landscape is dynamic and dependent

on the functional state of cells, proteins may be responsible for regulating G4 structural dynamics

throughout the genome [60]. Approaches that can reveal the composition and dynamics of chro-

matin-associated protein complexes [87,88] will be needed to uncover details of the proteins that

constitute the G4 interactome, which in turn may present opportunities for small molecule modula-

tion of these interactions.
Biological Role of G4s

The localisation of G4s at regions that regulate genome function have implicated G4s in a range of

biological processes. The finding that G4-rich telomeric repeats form G4 structures [6] suggested a

mechanistic link with telomerase-mediated extension of telomeres, prompting an exploration of

G4 stabilising ligands that may inhibit the growth of cancer cells by interfering with telomere main-

tenance (reviewed in [89]). For instance, the mouse regulator of telomere elongation helicase 1

(RTEL1) was shown to maintain telomere integrity by unwinding telomeric G4s [90]. Telomeric G4s

had originally been suggested to impair telomerase function [91], but might also be important for

telomerase recruitment [43].

G4 structures are strongly associated with genomic and epigenetic instability, particularly when they

are not efficiently regulated. The yeast Pif1 helicase was shown to prevent G4-mediated genomic

instability and prevent DNA strand breaks [92,93]. Human Pif1 is recruited to DNA double-strand

breaks sites to promote homologous recombination (HR) at sequences predicted to form G4s. Treat-

ment with G4 stabilising ligands can impair Pif1 functionality, which can be rescued by PIF1 overex-

pression [94]. G4s have also been suggested to function as potential sensor or trapping sites of

oxidative DNA damage caused by reactive oxygen species. Incorporation of 8-oxoG can affect sta-

bility of promoter G4 structures, which resulted in altered expression levels in reporter gene assays

[95–97]. Moreover, 8-oxoG modification was shown to disrupt the formation of telomeric DNA G4s

[98] and to promote telomerase activity [99].
130 Trends in Chemistry, February 2020, Vol. 2, No. 2



Figure 5. G-Quadruplex (G4) Can Induce Epigenetic Reprogramming.

Unresolved G4 structures (e.g., G4 ligand treatment, impaired helicases) on the leading strand may promote uncoupling of DNA synthesis from opening of

the replication fork and disrupt histone recycling. Original histone modifications (blue) are lost and replaced with new histones (brown), resulting in

epigenetic reprogramming upstream of G4 sites.
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Various models have been postulated for the biological role of G4 structures during DNA replication

[100,101]. G4 structures can act as an obstacle to replication fork progression when helicases are

disrupted [93,102]. Introduction of G4 forming sequences at the BU-1 locus of DT40 chicken cells,

resulted in pausing at the G4 sites (Figure 5). Additional replication stress due to nucleotide pool

depletion decoupled the replication machinery from restoration of the parental histones, ultimately

leading to altered gene expression [103]. Based on the samemechanism, small molecule stabilisation

of G4 structures induced replication-dependent loss of epigenetic information showing that G4s can

serve as obstacles to the replicationmachinery [104]. Conversely, mapping the genome-wide location

of replication origins using deep-sequencing of short nascent strands in four different human cell

lines uncovered enrichment of predicted G4s sequences, suggesting G4s may support initiation of

DNA replication [105].

Treatment with G4-stabilising small molecules resulted in reducedmRNA levels at genes that contain

G4 sequences in their respective promoters, such as the proto-oncogenes MYC [28] and KRAS [106],

supporting the hypothesis that G4s constitute an impediment to the progression of transcription ma-

chinery. However, G4-stabilising ligands can also lead to DNA damage and recruit associated

response mechanisms [47,57]. Transcriptional changes at G4s may therefore be a result of either

direct G4 stabilisation or DNA damage-mediated transcriptional repression. Aberrant function of

the G4-resolving helicasesWRN and BLM result in altered transcription of genes containingG4motifs

in their promoter region, corroborating a link between G4s and transcription [107,108]. Moreover,

BLM-mutated cells derived from Bloom syndrome patients show high rates of sister chromatid ex-

change at sites of G4 motifs in transcribed genes [109]. Notably, these helicases also process duplex

DNA, so not all the observed changes may be linked to G4 structures.

Where G4 structures form, the opposite DNA strand cannot form Watson-Crick base pairing. The C-

rich opposite strand may be single stranded and potentially complexed with single-stranded binding

proteins [110,111]. It has also been postulated that secondary structures might form on the opposite

C-rich strand. Intercalatedmotif (i-motif) structures can be formed via stacks of intercalating hemipro-

tonated C-neutral C base pairs (C+:C), and are generally stabilised in slightly acidic pH [112]. Recent

experiments have used an i-motif-specific antibody to image i-motifs in the nuclei of fixed human cells

[113]. Furthermore, i-motif formation is cell cycle dependent, peaking at late G1 phase, whereas G4

formation was maximal during S phase [41], suggesting i-motifs and G4s may have different depen-

dencies or even be mutually exclusive [114]. Indeed, a previously proposed model for the MYC
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Outstanding Questions

G4 ligands: can we develop small

molecule G4 ligands with better

pharmacokinetic properties that

more effectively target G4s in cells?

Is it possible to selectively target in-

dividual G4s or subclasses of G4s

based on the molecular topology

and sequence composition of the

loops of G4s? Is it necessary, or
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promoter region suggested that negative superhelicity initiated at the proximal promoter travels

upstream to mechanically perturb DNA structure [115] and it was suggested that a G4 and an i-motif

can each be bound and stabilised by different specialised proteins to play opposite roles in the con-

trol of MYC gene transcription [116].

Approaches to map endogenous G4 structures such as permanganate footprinting, G4 ChIP-seq,

and immunofluorescence with G4 antibodies have been consistent with G4 structures marking

actively transcribing genes in human cells [58,59]. In addition, G4s can contribute to hypomethylation

of CpG islands in promoter regions, which also contributes to elevated gene expression [84]. Further

work is needed to unravel the mechanistic and molecular details of how G4s influence transcription.

desirable, to selectively target indi-

vidual G4s to achieve therapeutic

effects? How do we design suitable

functional assays to screen for and

validate direct G4 on-target effects

in cells?

Detection and mapping: can we

develop mapping approaches to

detect G4s genome-wide in native

chromatin with stranded informa-

tion and at single G4 resolution?

Do current antibody-based ap-

proaches provide an incomplete

picture due to limited accessibility

and competition with endogenous

proteins? Can we develop detec-

tion methods to monitor dynamic

G4-associated processes at high-

resolution in living cells?

G4 landscape: under which condi-

tions do G4s form in cells? What is

the chromatin context? What are

the key protein regulators that

mediate G4 formation and deple-

tion? What is the crosstalk with

other epigenetic features? What

happens on the opposing strand

and what is the interplay with other

structural phenomena (e.g., i-mo-

tifs, Z-DNA, R-loops)?

G4s and transcription: what is the

exactmechanism bywhichG4s affect

transcription? Can we control tran-

scription efficiently by manipulating

particular G4s or by interfering with

particular G4 interactors?

G4s and cancer: why are G4s en-

riched at certain cancer genes?

Are G4 signatures suitable bio-

markers for diagnostic applica-

tions? What pathways are G4s

involved in and are there pheno-

types that make patients more trac-

table to G4 ligand therapies? What

synthetic lethalities can potentially

be exploited for combination
Intervention and Therapeutics

G4s are associated with processes and control mechanisms that are important for the biology and

growth of cancer cells, including telomere biology, transcriptional regulation of cancer-related

genes, replication, and genome instability. Furthermore, G4 motifs are generally over-represented

in cancer-promoting genes [51,59] and experimental data has shown a higher presence of G4

structures in cancer states compared with normal states, which may favour G4s as molecular targets

for cancer. For example, antibody staining of stomach and liver cancer tissues showed higher levels of

G4 foci compared with normal tissue [45]. Also, G4 ChIP-seq detected tenfold more G4 sites in

cancer-like, immortalised HaCaT cells as compared with their normal human keratinocyte counter-

part [59,60].

G4 ligands such as pyridostatin and RHPS4 cause DNA double-strand breaks in cancer cells and acti-

vate DNA repair pathways [47,117]. Cancer cells with impaired repair pathways are sensitive to G4

ligands. For example, cancer cells deficient in BRCA2, a vital component of the homologous recom-

bination (HR) repair pathway, are sensitive to pyridostatin derivatives and RHPS4 [118,119]. Similarly,

knockdown of PARP1, a key regulator of the nonhomologous end joining (NHEJ) repair pathway

resulted in cancer growth inhibition by RHPS4 both in cellular and xenograft models [117]. Notably,

pyridostatin was also toxic to HR-deficient cells resistant to olaparib, a PARP inhibitor [119]. This result

suggests that G4 ligands may be an effective therapeutic approach in HR-deficient cancers resistant

to PARP inhibitors. Indeed G4 ligand, CX-5461 is currently in human clinical trials for breast cancer

patients with BRCA1/2 germline aberrations [57]. Moreover, G4 ligands have also shown synergy

with DNA damaging therapies in ATR-X-deficient glioma cell models [82]. G4 ligands have also

been successfully used in combination with inhibitors of key proteins involved in the DNA repair

pathway. Pyridostatin synergises with NU7441, an inhibitor of DNA-PK, which is an important kinase

in the NHEJ pathway [118]. The combination of RHPS4 and PARP1 inhibitor GPI 15427 showed 50%

reduction in growth of HT29 colon tumour-bearing mice xenografts compared with 2% and 30%

with GPI 15427 and RHPS4 alone, respectively [117].

Another approach described above is to target G4-containing genes involved in cancer progression

and manipulate their transcription. While the concept of regulating expression of individual genes

has been explored using several small molecules [28,106], it is rational to assume that most G4 ligands

will bind to other G4s and potentially regulate expression of many genes. This multigene targeting

approach can result in poly-pharmacology, affecting several pathways important for cancer

progression. In support of this view, global transcriptional profiling revealed that treatment of human

pancreatic ductal adenocarcinoma (PDAC) cell lines with the G4 ligand CM03 could induce global

downregulation of many G4-containing genes [29]. Analysis of the downregulated genes identified

G4-containing genes involved in pathways important for PDAC progression. CM03 reduced tumour

growth in PDAC xenografts as well as KPC mouse models at doses that do not cause any observable

toxicity. It is possible that a particular G4 ligand may result in a distinct profile of affected genes for

proteins involved in several pathways, suitable for targeting certain cancers. Global transcriptional

profiling of the cancer cells/tissues treated with G4 ligand may identify the affected pathways and

suggest cancers best suited for efficacy studies. A better understanding of the pathways affected

therapies?
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by G4 ligands may ultimately provide a rationale to consider combination therapy opportunities with

other drugs.

Concluding Remarks

During the past two to three decades, the study of DNA G4 structures has extended from biophysical

and structural work to studies in biological models and systems of increasing sophistication. Collec-

tively, these studies have advanced the hypothesis that the G4 DNA structure is intimately linked to a

number of biological functions. While there is more work to be done to unravel the mechanistic de-

tails of how and why G4 structures influence biological function (see Outstanding Questions), there

appears to be rationale and merit in considering G4s as promising molecular targets for future

therapeutics.
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