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MetaRibo-Seq measures translation in
microbiomes
Brayon J. Fremin1, Hila Sberro1,2 & Ami S. Bhatt 1,2✉

No method exists to measure large-scale translation of genes in uncultured organisms in

microbiomes. To overcome this limitation, we develop MetaRibo-Seq, a method for simul-

taneous ribosome profiling of tens to hundreds of organisms in microbiome samples.

MetaRibo-Seq was benchmarked against gold-standard Ribo-Seq in a mock microbial com-

munity and applied to five different human fecal samples. Unlike RNA-Seq, Ribo-Seq signal of

a predicted gene suggests it encodes a translated protein. We demonstrate two applications

of this technique: First, MetaRibo-Seq identifies small genes, whose identification until now

has been challenging. For example, MetaRibo-Seq identifies 2,091 translated, previously

unannotated small protein families from five fecal samples, more than doubling the number of

small proteins predicted to exist in this niche. Second, the combined application of RNA-Seq

and MetaRibo-Seq identifies differences in the translation of transcripts. In summary,

MetaRibo-Seq enables comprehensive translational profiling in microbiomes and identifies

previously unannotated small proteins.
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The organisms within fecal microbiomes likely have myriad
biological functions, most of which are unknown. To date,
methods have excelled at describing the taxonomic com-

position of such communities; however, assigning and defining
functions of the individual organisms or communities of bacteria
has been challenging1. An ideal method to study biological
functions within a complex community would allow simulta-
neous enumeration of all of the proteins, lipids, and other mac-
romolecules within the mixture. Unfortunately, this is not feasible
with current technologies. For example, at present, only a small
subset of proteins present within a microbiome sample (~102

−104) can be simultaneously quantified with metaproteomics2;
thus, this presents a major challenge in attempting to obtain
accurate measurements of the full array of the estimated 107−108

bacterial proteins that likely exist in human fecal samples3. It is
especially challenging to detect small proteins as the likelihood of
detection of a protein is directly correlated to its length; because
of this, small proteins are less likely to be detected than large
proteins4. Thus, current proteomic methods lack the dynamic
range required to comprehensively study the human fecal
microbiota proteome5.

Given that proteomics is limited in both throughput and yield,
and it is also dependent on accurate databases of protein
sequences, some have focused on enumerating the gene content
of a community to determine its potential functions6. This has
been further enabled by improved gene annotation in metagen-
omes, to include previously overlooked genes, such as those that
are short in length (<150 nucleotides)4. Despite this progress, the
presence of a predicted gene or even its RNA transcript does not
confirm that the predicted gene encodes a protein.

In contrast to transcriptomic profiling, Ribo-Seq is a method
that quantifies protein synthesis7,8. Promisingly, Ribo-Seq gen-
erally correlates more strongly to protein abundance than tran-
scriptomics in eukaryotes9–11; however, this correlation has not
yet been described in bacteria. Furthermore, most bacterial
ribosome profiling studies published to date have been performed
in model organisms such as Escherichia coli and Bacillus subtilis.
These studies have been enabled by adapting eukaryotic Ribo-Seq
protocols with modifications such as using chloramphenicol to
inhibit translation and micrococcal nuclease (MNase) to enrich
for ribosome footprints11–15; these methodological modifications
enable a relatively high-throughput snapshot of bacterial trans-
lation9. While powerful, these studies have a major limitation—
nearly all studies of protein synthesis in bacteria have been
restricted to pure, liters-range cultures (requiring up to
milligram-level RNA input). This limitation has resulted in a
barrier to studying translation in microbiomes or in culture-free
contexts, and is the result of several methodological challenges
including low extraction yield, low purity, and the lack of infor-
matic frameworks to study organisms without reference genomes.

In this work, we overcome many of these limitations and
report a method that allows for simultaneous ribosome profiling
in microbiomes without the need for a large-scale, purified cul-
tures. We benchmark the performance of MetaRibo-Seq against
other technologies using mock communities, apply the method to
several human fecal samples, and report the utility of this method
in identifying small genes that were previously unannotated.

Results
The MetaRibo-Seq workflow. MetaRibo-Seq is an experimental
and computational approach that enables simultaneous, high-
throughput ribosome profiling on a fecal mixture of micro-
organisms (Fig. 1a). We found that ribosome profiling can be
performed on frozen fecal samples stored in RNAlater16,17

(Ambion), an RNA-preserving solution. Unlike some existing

protocols14,18, our ribosome profiling protocol first introduced
chloramphenicol during lysis. After lysis, we introduced an
ethanol precipitation step; this step filtered out fecal debris and
also concentrated RNA and any RNA-containing complexes such
as ribosomes19. MNase treatment was then performed on a crude
purification of nucleic acids and nucleic acid-bound complexes to
degrade any unprotected DNA or RNA. MetaRibo-Seq used
roughly an order of magnitude less RNA and MNase compared to
traditional bacterial isolate Ribo-Seq protocols (see “Methods”)
14,20. For the computational part of the workflow, a major chal-
lenge was determining how to deal with short reads and poor or
incomplete reference genomes, the latter of which is an inherent
challenge of working with fecal samples. To overcome these
challenges, we used a de novo approach to build reference gen-
omes or genome fragments, annotate genes, and map reads to
those references (see “Methods”, Fig. 1b). Sequences detected by
metatranscriptomics and MetaRibo-Seq were aligned to the
assemblies to determine which genes were being transcribed or
actively translated within the samples.

MetaRibo-Seq of a mock bacterial community strongly corre-
lates with standard Ribo-Seq. To benchmark the effectiveness of
our approach, we performed multi-omics (metagenomics, meta-
transcriptomics, Ribo-Seq, MetaRibo-Seq, and proteomics) on a
mock bacterial community of E. coli, B. subtilis, and Staphylo-
coccus aureus. The complexity of the mock community was
limited by the input requirement of traditional Ribo-Seq, which
requires large volumes of cultured organisms; thus, while it would
have been ideal to carry out the benchmarking experiment on a
more diverse mock community, the limitations of Ribo-Seq
preclude this, highlighting another strong need for a method such
as MetaRibo-Seq. All RNA-Seq experiments performed in this
work used an extended RNA fragmentation reaction followed by
sequencing of the resulting small mRNA fragments; extended
fragmentation is standard when performing both RNA-Seq and
Ribo-Seq7,21 as it controls for library preparation and size biases.
We found that the taxonomic distribution of sequencing reads
and detected peptides (Fig. 2a) were concordant between meth-
ods. As expected, we found that the Gram-positive bacteria within
the mock mixture (B. subtilis and S. aureus) were relatively
underrepresented compared to the Gram-negative bacterium E.
coli for all technologies, suggesting that the standard lysis
approaches in the field are likely biased to easily lysed Gram-
negative bacteria. The bias was, however, consistent across
sequencing technologies. We found that our standard proteomic
protocol, which has a different standard lysis protocol22

(including sodium dodecyl sulfate (SDS); see “Methods”) than
was used for the DNA and RNA sequencing protocols, resulted in
the most even detection of proteins between taxa (Fig. 2a).

Ribo-Seq experiments classically show peak signal at the start
codon of genes. MetaRibo-Seq signal exhibited this expected
property with strong signal detected at predicted start codons
(Fig. 2b). Ribo-Seq and MetaRibo-Seq were strongly correlated
(Pearson’s r= 0.9), suggesting that MetaRibo-Seq was compar-
able to the gold-standard approach, Ribo-Seq (Fig. 2c). In E.
coli, we found similar signal distribution across the start of
genes for Ribo-Seq and MetaRibo-Seq (Fig. 2d). In general, we
found that metatranscriptomics, MetaRibo-Seq and Ribo-Seq
signal all correlate to protein abundance as measured by
metaproteomics (Supplementary Figs. 1–3). MetaRibo-Seq
correlated more strongly to protein levels than metatranscrip-
tomics in the aerobically grown mock community (Supple-
mentary Fig. 1), as well as an anaerobic mock community
(Supplementary Fig. 2) and low diversity fecal sample
(Supplementary Fig. S3).
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MetaRibo-Seq enables simultaneous measurement of transla-
tion in fecal microbiome samples. To evaluate the feasibility of
performing MetaRibo-Seq on complex samples, such as human
fecal samples, we performed MetaRibo-Seq, metagenomics and
metatranscriptomics on four taxonomically diverse fecal samples
from four different human subjects (A—healthy adult, B—patient
with hematological disorder undergoing treatment, C—patient with
cancer undergoing treatment, D—patient with Alzheimer’s disease).
We also performed multi-omics on a fifth, low diversity fecal
sample from a patient with a hematological disorder who was
undergoing antibiotic treatment with metronidazole—Sample E.
The percentage of classified reads across samples and technologies
varied, ranging from 33 to 91% (Supplementary Data 1). Taxo-
nomic differences at the genus level existed between technologies
across samples, with replicates displayed, where applicable (see
“Methods”, Fig. 3a). Replicates were strongly correlated, ranging
from Pearson’s r of 0.86−0.93 (Supplementary Data 2).

We next tested if MetaRibo-Seq more strongly correlates to
protein abundance than metatranscriptomics in these fecal
samples. While we found that MetaRibo-Seq correlates more
strongly to metaproteomics than metatranscriptomics in Sample
E (Supplementary Fig. 3), MetaRibo-Seq did not reproducibly
correlate more strongly to proteomics than metatranscriptomics
in diverse samples (Supplementary Fig. 4). In diverse samples,
metatranscriptomics and MetaRibo-Seq were significantly
enriched (p value < 2−16) in signal for proteomically detected
proteins (Supplementary Fig. 4). This suggests that metaproteo-
mics on diverse samples is only capturing proteins that are highly
abundant, as is expected, and thus does not sensitively
recapitulate the diversity present in proteomes from highly
diverse microbiome samples. In summary, metaproteomic
limitations made it difficult to conclude if MetaRibo-Seq
correlates more strongly to protein levels than metatranscrip-
tomics in diverse fecal samples.

MetaRibo-Seq of diverse fecal samples displays expected Ribo-
Seq signal characteristics. A standard test of Ribo-Seq signal
validity is whether signal is locally enriched within coding regions
and especially enriched for start and stop regions. As expected, we
observed strong MetaRibo-Seq signal corresponding to predicted
open reading frames (ORFs) with pronounced signal drop off
outside of the start and stop codons for Samples A through D
(Fig. 4a–d). Start and stop codons had the strongest signal
(Fig. 4a–d). This signal distribution was not observed in RNA-Seq
(Supplementary Fig. 5). We required perfect, unique matches of
these ribosome footprints to de novo references to ensure proper
mapping (see “Methods”, Supplementary Data 3). Surprisingly,
MetaRibo-Seq also displayed some weak signs of overall codon
resolution (Supplementary Fig. 6), although this does appear to
vary by taxon (Supplementary Fig. 7). Based purely on raw signal,
these findings collectively suggest that MetaRibo-Seq is capturing
ribosome-bound footprints, as expected.

MetaRibo-Seq identifies gene-wide differences in translation
efficiencies and regulation. MetaRibo-Seq and metatran-
scriptomics can be used together to identify genes that are
translated at significantly different levels than transcribed in fecal
microbiomes. From the 866,832 genes encoded by the four
metagenomes (samples A−D) analyzed, 42,267 (4.9 %) genes
displayed transcriptional data that was significantly different than
MetaRibo-Seq data (see “Methods”, Supplementary Data 4,
Supplementary Fig. 8). We clustered the 42,267 genes based on
70% amino acid similarity to create 32,277 clusters of homologs
(see “Methods”, Supplementary Fig. 8, Supplementary Data 4).
There were 607 clusters that contained at least five homologs
(Supplementary Fig. 8). Notably, 96 of these 607 gene clusters
(15.8%) were ribosomal proteins23, which are known to be
regulated translationally by feedback mechanisms.
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MetaRibo-Seq can also be used to measure translational
regulation over time in the fecal microbiome. We performed
RNA-sequencing on small mRNA fragments and MetaRibo-Seq
on a second fecal sample (sample E2) collected 6 days after the
initial collection of sample E from the same patient. In comparing
gene expression in the E. coli strain between these two time
points, 1,018 genes were significantly differentially transcribed,
and 628 genes were significantly differentially translated (Supple-
mentary Data 5, Supplementary Fig. 9). We found that 455 genes
are regulated at a translational level, controlling for transcrip-
tional changes (Supplementary Data 5, Supplementary Fig. 9).

MetaRibo-Seq identifies thousands of small genes that are
actively translated. As small proteins are difficult to detect in
metaproteomic experiments, one of our motivations in develop-
ing MetaRibo-Seq was to enable the detection of actively syn-
thesized small proteins directly in fecal samples. Previous
comparative genomic analyses on human associated metagen-
omes proposed 4,539 high confidence small gene families from a
larger set of ~444,000 potential small gene families4. We first
asked which of these 4,539 families (hereafter referred to as “4k
families”) could be supported by the MetaRibo-Seq data. We
identified homologs of 1,337 of the 4539 families in the fecal
metagenome samples A−E. Using an RPKM (reads per kilobase,
per million) threshold of 10, we found that 623 of these 1,337

homologs (~47%) were synthesized into proteins (Fig. 5a, Sup-
plementary Data 6).

One of the limitations of our previous efforts to identify small
protein families was that we required a very high level of
conservation across species and diverse representation across taxa
(filtering out families with <8 different underlying sequences) in
order to predict a family. Thus, our previous list4 was enriched for
true positives at the cost of a high false-negative rate. To
overcome this limitation, we tested if MetaRibo-Seq could
identify additional small gene families in the fecal microbiome.
Using MetaRibo-Seq, we found evidence of translation for 2,091
additional small protein families (Fig. 5a, Supplementary Data 6),
demonstrating utility of this method for small gene discovery.
Because these 2,091 additional families were held to a relatively
high RPKM threshold of 10, ~40% of these proteins contained a
MetaRibo-Seq RPKM over tenfold higher than RNA-Seq RPKM
(Supplementary Data 6). In our previous work, only 1,965 small
proteins were predicted to be encoded in fecal microbiomes,
based on an analysis of data from the Human Microbiome
Project24. Thus, MetaRibo-Seq data more than doubled the
number of small protein families predicted to exist in the fecal
microbiome. We found that MetaRibo-Seq signal was enriched at
the start codon compared to the gene body of these additional
small gene families, as is expected for ribosome profiling across
known genes (Fig. 5b). Relative to the 440,000 potential small
gene families, these 2,091 small protein families were also
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enriched in known protein domains (~0.5% in the 440,000 versus
~6% in the 2,091 families, hypergeometric distribution test p
value= 8.69e−90) (Fig. 5c).

Next, we tested if we could build a less stringent comparative
genomics argument for these additional 2,091 small protein
families using RNAcode25, this time allowing for as little as two
different DNA sequences per family (see “Methods”). Using a p
value threshold of ≤0.05, 420 (20%) of these additional small
protein families were also supported by comparative genomics
(see “Methods”, Fig. 5a). Upon comparing E. coli in sample E
across two time points (E1 and E2), we found that 11 small
protein families are translationally regulated, controlling for
transcriptional changes (Supplementary Fig. 9, Supplementary
Data 5). This demonstrated that these small protein families were
likely translationally regulated in the fecal microbiome.

Although most of these 420 families were represented by a
small number of homologs (Fig. 6a), some families were
represented by a relatively large number of homologs (Fig. 6a).
For example, family 29768 was a small protein family that
escaped detection in our previous analysis due to the small
number of unique DNA sequences; only six unique DNA
sequences encoded the 337 different instances of this gene
(Fig. 6b). Interestingly, 93% (314/337) of these homologs within
family 29768 were coded for by a single unique DNA sequence
(Fig. 6b). This conserved family was restricted to the genus
Bacteroides but was found in 23 different species (Supplementary
Data 6, 7). In 115/337 of the cases, family 29768 was encoded in
the vicinity of a two-component system (Supplementary Data 6),
suggesting that this small protein plays a role in signal
transduction.

While highly conserved DNA sequences may be falsely rejected
in predictions based on comparative genomic analyses, protein
families that were undergoing rapid evolution may separate into
multiple smaller clusters, and hence were less likely to appear in
the previously predicted 4,539 set. Within the 420 small protein
family set, 31 of the 60 families with known domains were
assigned to the quorum sensing domain, AgrD, documented to be
rapidly evolving26. Families 10356, 33628, 61327, and 7588 were
collectively an example of four distinct families in the 420 set that
share sequence homology with each other but were too divergent
to be clustered together at 50% amino acid identity (Fig. 6c).
Their genomic localization next to phage genes suggested that
they were encoded on a prophage (Fig. 6c). The classification of
the underlying contigs to diverse Clostridia clades (Supplemen-
tary Data 6, 7) suggested that this rapidly evolving protein was
common to phages that infect Clostridia.

Unlike our previous comparative genomics approach, our
current approach was able to identify additional small proteins
that were less prevalent, as well as those that were encoded in less
prevalent microbes. For example, family 333520 was a predicted
transmembrane protein that is unique to Prevotella (Supplemen-
tary Data 6, 7), a relatively rare constituent of westernized gut
microbiomes24. It shared sequence homology with family 357465,
which was also a predicted transmembrane protein exclusive to
Prevotella (Supplementary Data 6, 7).

Finally, families 386917 (55 members) and 386898 (68
members) were notable as they were the most highly translated
proteins in our data, with RPKM values ranging between 5,090
and 310,648 (Supplementary Data 6). These families were part of
the 2,091 additional small protein families predicted in this study,
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but not the 420 set that was supported by a comparative genomics
approach. We displayed the genomic context of the most highly
translated homolog of family 386917 (MetaRibo-Seq RPKM=
310,648; Fig. 6d). These two Clostridiales-specific families
(386898 and 386917) both encoded proteins that were 29 amino
acids in length (Supplementary Data 6); family 386917 was
predicted to be secreted. Even though we could not support these
families with comparative genomics using RNAcode25, their
reproducible and exceptionally high translation rate suggested
that these small proteins were genuine protein-coding genes.

Discussion
To date, it has been challenging to comprehensively study fecal
bacterial communities, or any complex system of bacteria, at the
level of protein synthesis. Ribo-Seq of isolated and cultured
bacterial strains has provided an understanding of the dynamic
regulation of translation15 and gene prediction, and has been
especially useful in annotating small genes. However, the stan-
dard Ribo-Seq protocol cannot be applied to microbiome samples
due to the high purity and cellular input required. Beyond bac-
teria, ribosome profiling has also been used to reveal the trans-
lational landscape and discover microproteins in the human
heart27. Here, we developed MetaRibo-Seq to enable studies of
gene translation within a natural microbiome setting in a way that
is not restricted to culturable species. In addition, we demonstrate

that MetaRibo-Seq is a valuable method for detecting and vali-
dating small proteins, an area of increasing interest. Using
MetaRibo-Seq, we validate 623 previously predicted small protein
families4 and also reveal thousands of additional small protein
families in the fecal microbiome.

In the validation experiments we performed on mock com-
munities, we observed a stronger correlation between MetaRibo-
Seq signal and protein abundance compared to signal from RNA-
Seq on small fragmented RNA and protein abundance. We did
not formally compare standard RNA-Seq with longer RNA
fragments to MetaRibo-Seq signal; thus, we cannot conclude that
MetaRibo-Seq will always be a better predictor of protein abun-
dance than RNA-Seq approaches. Our inability to observe a
consistent improvement in MetaRibo-Seq correlation to pro-
teomics in more complex fecal samples may be the consequence
of equivalence of MetaRibo-Seq and RNA-Seq on small frag-
mented RNA as surrogate measures of protein level. Alternatively,
this may be explained by the fact that only highly abundant
proteins are detected by proteomics—and the genes encoding
these highly abundant and thus detect proteins may not be
subject to translational regulation. Future experiments that
include standard RNA-Seq and that provide more comprehensive
proteomic characterization of complex samples may enable a
more robust comparison of MetaRibo-Seq vs. RNA-Seq as a
surrogate for high-resolution, deep proteomics. Given that
MetaRibo-Seq is a closer biological surrogate of protein synthesis
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and the fact that the method is comparable in time and cost to
standard RNA-Seq, it is possible that MetaRibo-Seq may be
preferable to standard RNA-Seq when studying the coding moiety
of the metagenome.

Beyond being a potential surrogate measure of protein levels,
one uniquely valuable feature of Ribo-Seq experiments is the
ability to test for differences in the abundance of transcripts alone
vs. those that are being translated. MetaRibo-Seq answers similar
questions but at a larger scale, and in a natural setting. This is
interesting because in bacteria, many genes are regulated at the
translational level. For example, genes involved in the process of
translation itself are known to be translationally regulated via
feedback mechanisms23,28–31. Most bacteria have not yet been
studied at the translational level—and MetaRibo-Seq allows a
view into translation of tens to hundreds of organisms simulta-
neously. For example, in our experiments, we found 96 clusters of
genes encoding ribosomal proteins that are among the most
different in terms of MetaRibo-Seq vs. RNA-Seq signal. This
pattern is conserved across many different taxa and in organisms
where Ribo-Seq has never been performed. This finding
demonstrates that certain types of genes in microbiomes are being
translated at different levels than transcribed in a reproducible
and generalizable manner, and suggests that there may be com-
mon underlying mechanisms that regulate this phenomenon.
Beyond the study of these housekeeping-type genes, we anticipate

that MetaRibo-Seq may provide valuable insights in studying
regulation that occurs through post-transcriptional mechanisms
like riboswitches, which have fascinating activities such as
induction of the translation of antibiotic resistance genes32. Taken
together, MetaRibo-Seq enables the measurement of post-
transcriptional activities directly in microbiomes and may dee-
pen our understanding of the relevance of these activities in
clinically relevant phenotypes.

Finally, one of the major and perhaps most obvious applications
of MetaRibo-Seq is in identifying coding regions, especially small
coding regions, in microbiomes18. In previous work from our lab4,
we predicted 4,539 small gene families but were unable to validate
the majority of them using evidence of translation of these genes.
Because proteomic and Ribo-Seq support is a common way to
validate predictions in the field of small protein research, we sought
to apply MetaRibo-Seq to help validate some of our previous in
silico predictions33,34. This resulted in validation of 623 of the
previously proposed small gene families4 and the prediction of an
additional 2,091 small protein families that could not be detected
using our comparative genomics approach. Though this work
already more than doubles the number of small proteins predicted
to exist in the human gut, MetaRibo-Seq will likely identify thou-
sands more upon application to additional samples. In the future, it
will likely prove useful in refining gene boundaries, especially with
further benchmarking using other antibiotics.
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Despite the utility of MetaRibo-Seq in measuring protein
synthesis in microbiomes and in detecting small protein-
coding genes, there are several limitations to this method.
While MetaRibo-Seq signal does correlate with protein abun-
dances, it does not perform as well as standard Ribo-Seq in
terms of correlation to protein abundance in the mock com-
munity. Thus, in simple culturable communities, Ribo-Seq
would be favored. MetaRibo-Seq also does not include steps to
degrade RNAs with secondary structure, and this results in
retention of structured RNAs. Of note, structured RNA con-
tamination is a common issue in ribosome profiling
protocols7,11. Though targeted approaches for specific bacteria
have been successful in depleting tRNAs26, an untargeted
approach, which would be necessary here, has yet to be
implemented in the literature. As this method is used and
adapted, additional experimental modifications will likely help
to address these limitations.

Overall, we show that translation can be comprehensively
studied in microbiomes in a culture-free manner and that
this method can shed light on translational regulation of genes.
MetaRibo-Seq allows us to study protein synthesis across
many bacterial taxa in feces at an unprecedented level of
resolution and scale. By illuminating this facet of post-
transcriptional regulation, we anticipate that future applica-
tions of MetaRibo-Seq will result in the discovery of thousands
of additional small protein families and enable high-
throughput study of how processes ranging from stress
response to antibiotic resistance are regulated at the
translational level.

Methods
Mock community culturing. NR-2653 E. coli K-12 MG1655, NR-607 B. subtilis
168, and NR-45946 S. aureus RN4220 were obtained from BEI Resources. Bac-
teroides thetaiotaomicron VPI 5482 was obtained from ATCC (ATCC 29148). E.
coli, B. subtilis, and S. aureus were grown individually in Luria-Bertani (LB) broth
to an OD600 of 0.4 at 37 °C. Equal volumes of the bacteria were mixed thoroughly
to create the three-member mock community. Metagenomics, metatran-
scriptomics, Ribo-Seq, MetaRibo-Seq, and proteomics were performed on this
mixture. A second mock community was also created in which E. coli and B.
thetaiotaomicron were grown anaerobically, both individually in Brain Heart
Infusion (BHI) broth to an OD600 of 0.5 at 37 °C. Equal volumes of these bacteria
were mixed to create a two-member mock community. Metatranscriptomics,
MetaRibo-Seq, and proteomics were performed on this mixture.

Mock community metagenomics. Aliquots (25 mL) of the two mock communities
were centrifuged in 50 mL tubes at 4000 × g at room temperature for 30 min. DNA
was extracted from cellular pellets with DNA Stool Mini Kit (Qiagen) using the
manufacturer’s protocols. Samples were then exposed to bead beating for 3 min at
room temperature. One nanogram of DNA was used to create Nextera XT libraries
according to the manufacturer’s instructions (Illumina).

Mock community MetaRibo-Seq. Aliquots (50 mL) of the community were
centrifuged in 50 mL tubes at 4000 × g at room temperature for 30 min. Cell pellets
were resuspended in 700 μL of RNAlater and stored at −80 °C for 1 week. These
cells (150 mg) were suspended in 600 μL Qiagen RLT lysis buffer supplemented
with 1% beta-mercaptoethanol, 0.3 U/μL Superase-In (Invitrogen), and 1.55 mM of
chloramphenicol. This mixture was incubated at room temperature for 5 min. The
suspension was subjected to bead beating for 3 min using 1.0 mm Zirconia/Silica
beads. This was performed with a MiniBeadBeater-16, Model 607. The lysed
solution was centrifuged at room temperature for 3 min at 21,000 × g to pellet
cellular debris, and the supernatant was extracted to 2 mL tubes. The lysis super-
natant was subjected to ethanol precipitation with 0.1% volume of 3M sodium
acetate and 2.5 M volumes of 100% ethanol. To precipitate, samples were incubated
at −80 °C for 30 min, then centrifuged at 21,000 × g for 30 min at 4 °C. The pellet
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of RNA and RNA-protein complexes was resuspended in MNase buffer. The buffer
contained 25 mM Tris pH 8.0, 25 mM NH4Cl, 10 mM MgOAc, and 1.55 mM
chloramphenicol. One microliter of solution was diluted 20-fold and quantified
with Qubit dsDNA HS Assay Kit (Invitrogen). MNase reaction mix was prepared
as described20, except this was scaled down to an input of 80 μg of RNA and 1 μL of
NEB MNase 500 U/μL in a total reaction volume of 200 μL. The MNase reaction
was incubated at room temperature for 2 h. All following steps were performed
identically20, except the tRNA removal steps were excluded. Briefly, 500 mL of
polysome binding buffer was used to wash the Sephacryl S400 MicroSpin columns
(GE Healthcare Life Sciences) three times—spinning the column for 3 min at 4 °C
at 600 r.p.m. Polysome binding buffer consisted of 100 μL Igepal CA-630, 500 μL
magnesium chloride at 1 M, 500 μL egtazic acid (EGTA) at 0.5 M, 500 μL of NaCl
at 5 M, 500 μL Tris-HCl pH 8.0. at 1 M, and 7.9 mL of RNase-free water. The
MNase reaction was applied to the column and centrifuged for 5 min at 4 °C. The
flow-through was purified further with miRNAeasy Mini Kit (Qiagen) using the
manufacturer’s protocols. Elution was performed at 15 μL volume. rRNA was
depleted using RiboZero-rRNA Removal Kit for Bacteria (Illumina) using the
manufacturer’s protocol, except all reaction volumes and amounts were reduced by
50%. This was purified with RNAeasy MinElute Cleanup Kit (Qiagen), eluting in
20 μL of water. The reaction, in 18 μL volume, was subjected to T4 PNK Reaction
(NEB M0201S) with the addition of 1 μL Superase-In (Invitrogen), 2.2 μL 10× T4
PNK Buffer, and 1 μL T4 PNK (10 U/μL). This reaction was purified again with
RNAeasy MinElute Cleanup (Qiagen). The concentration was determined with
Qubit RNA HS Assay Kit (Illumina). With 100 ng of RNA as input, libraries were
prepared using NEBNext Small RNA Library Prep Set for Illumina (NEB, E7330),
using the manufacturer’s protocols. DNA was purified using Minelute PCR Pur-
ification Kit (Qiagen). Libraries were sequenced with 1 × 75 bp reads on a NextSeq
500.

Mock community Ribo-Seq. Before harvesting mock community 1, it was treated
with 0.1 mg of chloramphenicol per mL of culture. After 2 min, 50 mL aliquots of
the community were centrifuged in 50 mL tubes at 4000 × g at room temperature
for 30 min. Cell pellets were resuspended in 500 μL Ribo-Seq lysis buffer20 (25 mM
Tris pH 8.0, 25 mM NH4Cl, 10 mMMgOAc, 0.8% Triton X-100, 100 U/mL RNase-
free DNase I, 0.3 U/μL Superase-In, 1.55 mM Chloramphenicol, and 17 μΜ 5′-
guanylyl imidodiphosphate). Lysis was performed using bead beating for 3 min in
this lysis buffer. Twenty-five A260 units of RNA, measured using Nanodrop 2000,
were treated with 6000U of MNase for 2 h at room temperature using MNase
buffer to dilute as necessary. Five hundred milliliters of polysome binding buffer
(100 μL Igepal CA-630, 500 μL magnesium chloride at 1 M, 500 μL EGTA at 0.5 M,
500 μL of NaCl at 5 M, 500 μL Tris-HCl pH 8.0. at 1 M, and 7.9 mL of RNase-free
water) was used to wash a Sephacryl S400 MicroSpin column (GE Healthcare Life
Sciences) three times—spinning the column for 3 min at 4 °C at 600 × g. The
MNase reaction was applied to the column and centrifuged for 5 min at 4 °C. The
flow-through was collected and was then purified further with miRNAeasy Mini
Kit (Qiagen) according to the manufacturer’s protocols, and the final sample was
eluted from the miRNAeasy column in a volume of 15 μL in water. The sample was
then taken forward for rRNA depletion using the MICROBExpress™ Bacterial
mRNA Enrichment Kit (Invitrogen) according to the manufacturer’s protocols.
This reaction was purified with RNAeasy MinElute Cleanup Kit (Qiagen) using the
manufacturer’s protocols, eluting in 20 μL of water. The reaction, in 18 μL volume,
was subjected to T4 PNK Reaction (NEB M0201S) with the addition of 1 μL
Superase-In (Invitrogen), 2.2 μL 10× T4 PNK Buffer, and 1 μL T4 PNK (10 U/μL)
for 1 h at 37 °C. This reaction was purified again with RNAeasy MinElute Cleanup
(Qiagen) according to the manufacturer’s protocols and the final sample was eluted
in 10 μL of water. The final concentration of RNA was determined with Qubit RNA
HS Assay Kit (Illumina). With 100 ng of RNA as input, libraries were prepared
using NEBNext Small RNA Library Prep for Illumina (NEB, E7330), according to
the manufacturer’s protocols. DNA libraries were purified using Minelute PCR
Purification Kit (Qiagen) using the manufacturer’s protocols. Libraries were
sequenced with 1 × 75 bp reads on a NextSeq 550.

Mock community metatranscriptomics. Aliquots (50 mL) of the community were
centrifuged in 50 mL tubes at 4000 × g for 30 min at room temperature. Cell pellets
were resuspended in RNA-Seq lysis buffer (25 mM Tris pH 8.0, 25 mM NH4Cl, 10
mM MgOAc, 0.8% Triton X-100, 100 U/mL RNase-free DNase I, and 0.3 U/μL
Superase-In). Lysis was performed using bead beating for 3 min in this lysis buffer.
The mixture was centrifuged at 21,000 × g for 3 min at room temperature and the
supernatant was collected. An equal volume of Phenol/Chloroform/Isoamyl
Alcohol 25:24:1 (pH. 5.2) was applied and the sample was vortexed for 3 min. The
mixture was centrifuged at 21,000 × g for 3 min at room temperature. The aqueous
phase was extracted. This Phenol/Chloroform/Isoamyl Alcohol step was repeated
once more. The final aqueous phase was ethanol precipitated using 2.5 volumes
ethanol and 0.1 volumes sodium acetate. The resulting pellet was resuspended in
100 μL of water. The RNA was further purified using the RNAeasy Mini plus Kit
(Qiagen) according to the manufacturer’s protocols. Any remaining DNA was
degraded via Baseline-ZERO-DNase (Epicentre) according to the manufacturer’s
protocols. RNA was fragmented for 15 min at 70 °C using RNA Fragmentation
Reagent (Ambion) according to the manufacturer’s protocols. At this point, the
MetaRibo-Seq and small metatranscriptomics protocol completely converge. The

fragmented RNA was purified with miRNAeasy Mini Kit (Qiagen) according to the
manufacturer’s protocols and rRNA was eluted in a final volume of 15 μL of water.
The resultant RNA was taken forward for rRNA depletion using the
MICROBExpress™ Bacterial mRNA Enrichment Kit (Invitrogen), which was used
according to the manufacturer’s protocols. The resultant rRNA-depleted RNA was
purified with an RNAeasy MinElute Cleanup Kit (Qiagen), eluting in 20 μL of
water. The resulting RNA fragments, in 18 μL volume, were subjected to T4 PNK
Reaction (NEB M0201S) with the addition of 1 μL Superase-In (Invitrogen), 2.2 μL
10× T4 PNK Buffer, and 1 μL T4 PNK (10U/μL) for 1 h at 37 °C. This reaction was
purified again with RNAeasy MinElute Cleanup (Qiagen) according to the man-
ufacturer’s protocols. The final concentration of purified RNA was determined with
Qubit RNA HS Assay Kit (Invitrogen). With 100 ng as input, libraries were pre-
pared using NEBNext Small RNA Library Prep Set for Illumina (NEB, E7330),
using the manufacturer’s protocols. DNA was purified using MinElute PCR Pur-
ification Kit (Qiagen) according to the manufacturer’s protocols. Libraries were
sequenced with 1 × 75 bp reads on a NextSeq 500.

Mock community metaproteomics. Aliquots of the community (50 mL) were
centrifuged in 50 mL tubes at 4000 × g at room temperature for 30 min. The cell
pellet was resuspended in 2% SDS, 100 mM dithiothreitol (DTT), and 20 mM Tris
HCl, pH 8.8 with protease inhibitor. These cells were subjected to bead beating for
3 min. The samples were then centrifuged for 3 min and the clarified lysate
supernatant was collected. Lysate was prepared using Filter aided Sample Pre-
paration (FASP)35 with the same minor modifications previously documented22.
Every following step involved a centrifugation step for 15 min at 14,000 × g. Protein
concentrations were measured using Nanodrop 2000. Samples were diluted tenfold
in 8M urea and loaded into Microcon Ultracel YM-30 filtration devices (Milli-
pore). They were washed in 8M urea, reduced for 30 min in 10 mM DTT, and
alkylated in 50 mM iodoacetamide for 20 min. Samples were washed three times in
8 M urea and two times in 50 mM ammonium bicarbonate. Trypsin (Pierce 90057)
(1:100 enzyme-to-protein ratio) was added and incubated overnight at 37 °C. Into a
new collection tube, samples were centrifuged and further eluded in 50 μL of 70%
acetonitrile and 1% formic acid. The mixture was brought to dryness for 1 h using a
Savant SPD121P SpeedVac concentrator at 30 °C, then resuspended in 0.2% formic
acid22.

Metaproteomics. These methods apply to all metaproteomics performed in this
work (including mock communities and fecal communities). LC-MS/MS analysis
was performed by the Stanford University Mass Spectrometry Facility using the
Thermo Orbitrap Fusion Tribrid. A Thermo Scientific Orbitrap Fusion coupled to
a nanoAcquity UPLC system (Waters, M Class) was used to collect mass spectra
(MS). Samples were loaded on a 25-cm sub 100-μm C18 reverse phase column
packed in-house with a 80-min gradient at a flow rate of 0.45 µL/min. The mobile
phase consisted of: A (water containing 0.2% formic acid) and B (acetonitrile
containing 0.2% formic acid). A linear gradient elution program was used: 0–45
min, 6–20% (B); 45−60 min, 35% (B); 60−70 min, 45% (B); 70−71 min, 70% (B);
71−77 min, 95% (B); 77−80 min, 2% (B). Ions were generated using electrospray
ionization in positive mode at 1.6 kV. MS/MS spectra were obtained using
collision-induced fragmentation (CID) at a setting of 35 of arbitrary energy. Ions
were selected for MS/MS in a data-dependent, top 15 format with a 30-s exclusion
time. Scan range was set to 400–1500 m/z. Typical orbitrap mass accuracy was
below 2 p.p.m., for analysis. A 12-p.p.m. window was allowed for precursor ions
and 0.4 Da for the fragment ions for CID fragmentation detected in the ion trap.
Prokka-predicted36 proteins were used as a reference database for protein detection
using the Byonic proteomics search pipeline v 2.10.5 37. Byonic parameters include:
spectrum-level FDR auto, digest cutter C-terminal cutter, peptide termini semi-
specific, maximum number of missed cleavages 2, fragmentation type CID low
energy, precursor tolerance 12.0 p.p.m., fragment tolerance 0.4 p.p.m., protein FDR
cutoff 1%. These methods were performed by the Stanford Mass Spectrometry
Facility (SUMS). Using spectral count output, normalized spectral abundance
factor was calculated by in-house scripts.

Subject recruitment. MetaRibo-Seq was performed on fecal samples from indi-
viduals from a variety of health states. Informed consent was obtained for all
participants. None of the participants received bacterial translation inhibitors. All
subjects were recruited at Stanford University as a part of one of three IRB-
approved protocols for tissue biobanking and clinical metadata collection (PIs: Dr.
Ami Bhatt, Dr. Victor Henderson, Dr. David Miklos).

Fecal sample storage. Stool was immediately stored in 2 mL cryovials and frozen
at −80 °C. Stool was not thawed until lysis. For RNA extraction applications, 1.3 g
of fecal samples were preserved in 700 μL of RNALater (Ambion) at −80 °C.

Cell lysis for Ribo-Seq, metatranscriptomics, and MetaRibo-Seq. Stool (150
mg) was suspended in 600 μL Qiagen RLT lysis buffer supplemented with 1% beta-
mercaptoethanol and 0.3 U/μL Superase-In (Invitrogen). For MetaRibo-Seq lysis,
1.55 mM of chloramphenicol was also added to this lysis solution, and the solution
was incubated at room temperature for 5 min. The suspension was subjected to
bead beating for 3 min using 1.0 mm Zirconia/Silica beads. This was performed
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with a MiniBeadBeater-16, Model 607. The lysed solution was centrifuged at room
temperature for 3 min at 21,000 × g to pellet cellular debris, and the supernatant
was extracted to 2 mL tubes.

Metagenomics. DNA was extracted from fecal samples with DNA Stool Mini Kit
(Qiagen) using the manufacturer’s protocols. Samples were exposed to bead beating
for 3 min. One nanogram of DNA was used to create Nextera XT libraries
according to the manufacturer’s instructions (Illumina). Metagenomic libraries
were sequenced with 2 × 101 bp reads on an Illumina HiSeq 4000 instrument.

MetaRibo-Seq. The lysis supernatant was subjected to ethanol precipitation with
0.1% volume of 3M sodium acetate and 2.5 M volumes of 100% ethanol. To
precipitate, samples were incubated at −80 °C for 30 min, then centrifuged at
21,000 × g for 30 min at 4 °C. This was a rough purification specifically imple-
mented to enable suspension of concentrated RNA from reasonable input of fecal
sample. The pellet of RNA and RNA−protein complexes was resuspended in
MNase buffer. The buffer contained 25 mM Tris pH 8.0, 25 mM NH4Cl, 10 mM
MgOAc, and 1.55 mM chloramphenicol. To resuspend, we quickly broke the pellet
apart with a pipette tip and vortexed for 15 s. One microliter of solution was diluted
20-fold and quantified with Qubit dsDNA HS Assay Kit (Invitrogen). MNase
reaction mix was prepared as described20, except this was scaled down to an input
of 80 μg of RNA and 1 μL of NEB MNase 500 U/μL in a total reaction volume of
200 μL. The MNase reaction was incubated at room temperature for 2 h. All fol-
lowing steps were performed identically20, except the tRNA removal steps were
excluded. Briefly, 500 mL of polysome binding buffer was used to wash the
Sephacryl S400 MicroSpin columns (GE Healthcare Life Sciences) three times—
spinning the column for 3 min at 4 °C at 600 r.p.m. Polysome binding buffer
consisted of 100 μL Igepal CA-630, 500 μL magnesium chloride at 1 M, 500 μL
EGTA at 0.5 M, 500 μL of NaCl at 5 M, 500 μL Tris-HCl pH 8.0. at 1 M, and 7.9 mL
of RNase-free water. The MNase reaction was applied to the column and cen-
trifuged for 5 min at 4 °C. The flow-through was purified further with the miR-
NAeasy Mini Kit (Qiagen) using the manufacturer’s protocols. Elution was
performed at 15 μL volume of water. rRNA was depleted using RiboZero-rRNA
Removal Kit for Bacteria (Illumina) using the manufacturer’s protocol, except all
reaction volumes and amounts were reduced by 50%. This was purified with
RNAeasy MinElute Cleanup Kit (Qiagen), eluting in 20 μL of water. The reaction,
in 18 μL volume, was subjected to T4 PNK Reaction (NEB M0201S) with the
addition of 1 μL Superase-In (Invitrogen), 2.2 μL 10× T4 PNK Buffer, and 1 μL T4
PNK (10U/μL). This reaction was purified again with RNAeasy MinElute Cleanup
(Qiagen). The concentration was determined with Qubit RNA HS Assay Kit
(Illumina). With 100 ng as input, libraries were prepared using NEBNext Small
RNA Library Prep Set for Illumina (NEB, E7330), using the manufacturer’s pro-
tocols. DNA was purified using Minelute PCR Purification Kit (Qiagen). Libraries
were sequenced with 1 × 75 bp reads on a NextSeq 500.

Small metatranscriptomics of fecal samples. We performed metatran-
scriptomics as follows: 15 μL of proteinase K (Ambion, 20 mg/mL) was added to
600 μL of lysate. After incubation for 10 min at room temperature, samples were
centrifuged at 21,000 × g for 3 min and the supernatant was collected. An equal
volume of Phenol/Chloroform/Isoamyl Alcohol 25:24:1 (pH. 5.2) was applied and
vortexed for 3 min. The mixture was centrifuged at 21,000 × g for 3 min. The
aqueous phase was extracted. This phenol chloroform step was repeated once more
and the aqueous phase was extracted. This final aqueous phase was ethanol pre-
cipitated with 0.1% volume of 3M sodium acetate and 2.5 M volumes of 100%
ethanol. The resulting pellet was resuspended in 100 μL of water. The RNA was
further purified using the RNAeasy Mini plus Kit (Qiagen) using the manu-
facturer’s protocols. Any remaining DNA was degraded via Baseline-ZERO-DNase
(Epicentre) using the manufacturer’s protocols. RNA was fragmented for 15 min at
70 °C using RNA Fragmentation Reagent (Ambion) using the manufacturer’s
protocols. At this point, the MetaRibo-Seq and small metatranscriptomics protocol
completely converge. The fragmented RNA was purified with the miRNAeasy Mini
Kit (Qiagen) using the manufacturer’s protocols. Elution was performed at 15 μL of
water. rRNA was depleted using RiboZero-rRNA Removal Kit for Bacteria (Illu-
mina) using half reactions of the manufacturer’s protocol. This was purified with
the RNAeasy MinElute Cleanup Kit (Qiagen), eluting in 20 μL of water. The
fragments, in 18 μL volume, were subjected to T4 PNK Reaction (NEB M0201S)
with the addition of 1 μL Superase-In (Invitrogen), 2.2 μL 10× T4 PNK Buffer, and
1 μL T4 PNK (10 U/μL). This reaction was purified again with RNAeasy MinElute
Cleanup (Qiagen) using the manufacturer’s protocols. The concentration was
determined with Qubit RNA HS Assay Kit (Invitrogen). With 100 ng as input,
libraries were prepared using NEBNext Small RNA Library Prep Set for Illumina
(NEB, E7330), using the manufacturer’s protocols. DNA was purified using the
MinElute PCR Purification Kit (Qiagen) using the manufacturer’s protocols.
Libraries were sequenced with 1 × 75 bp reads on a NextSeq 500.

Differential centrifugation and FASP for metaproteomics. To remove human
proteins, fecal samples were subjected to differential centrifugation. One hundred
milligrams of fecal sample was suspended in 1× phosphate-buffered saline (PBS) in
1.7 mL Eppendorf tubes. The tubes were centrifuged at 600 × g for 1 minute at

room temperature. The supernatant was collected in a clean Eppendorf tube and
centrifuged at 10,000 × g for 1 minute at room temperature. The supernatant was
decanted and the pellet was resuspended in 1 mL of PBS. The process was repeated
once more. The final pellet was resuspended in 2% SDS, 100 mM DTT, and 20 mM
Tris HCl, pH 8.8 with protease inhibitor. These cells were subjected to bead beating
for 3 min with a MiniBeadBeater-16, Model 607. Zirconia/silica beads (1 mM) were
used. Tubes were centrifuged for 3 min and clarified lysate in the supernatant was
collected. Lysate was prepared using FASP35 with the same minor modifications
previously documented22. Every step involved a centrifugation step for 15 min at
14,000 × g. Samples were diluted tenfold in 8M urea and loaded into Microcon
Ultracel YM-30 filtration devices (Millipore). They were washed in 8 M urea,
reduced for 30 min in 10 mM DTT, and alkylated in 50 mM iodoacetamide for 20
min. Samples were washed three times in 8M urea and two times in 50 mM
ammonium bicarbonate. Trypsin (Pierce 90057) (1:100 enzyme-to-protein ratio)
was added and incubated overnight at 37 °C. Into a new collection tube, samples
were centrifuged and further eluded in 50 μL of 70% acetonitrile and 1% formic
acid. The mixture was brought to dryness for 1 h using a Savant SPD121P
SpeedVac concentrator at 30 °C, then resuspended in 0.2% formic acid22.

De novo assembly. Quality-trimmed metagenomic reads were assembled using
metaSPAdes 3.7.0 38. For all samples, a maximum of 60 million metagenomic reads
were used to generate assemblies. Samples sequenced to higher depth were ran-
domly subsetted to 60 million for assembly purposes to both ensure relatively
similar numbers of gene predictions and limit computational requirements in
assembly and downstream predictions.

Read mapping, gene prediction and annotation. Reads were trimmed with trim
galore version 0.4.0 using cutadapt 1.8.1 39 with flags –q 30 and –illumina. Reads
were mapped to the annotated assembly using bowtie version 1.1.1 40. To avoid all
possible conservation conflicts in downstream differential analysis, only perfect,
unique short read alignments were considered. IGV41 was used to visualize cov-
erage. Prokka v1.12 36 was used to predict genes from the metagenomics assemblies
using the –meta option. Annotations were facilitated by many dependencies42–45.
For small protein predictions, Prodigal42 was performed after lowering the size
threshold from 90 bases to 15 bases.

Read density as a function of position. MetaRibo-Seq reads were mapped to their
metagenomic assemblies. The assembly and aligned reads were analyzed with
RiboSeqR46. Ribosome profiling counts for predicted coding sequences (CDSs)
were determined with the sliceCounts function. CDSs were filtered to contain at
least ten reads.

Taxonomic classification of technologies. Reads mapping specifically to Prokka-
predicted36 coding regions were counted. We classified every predicted gene in
these metagenomes using One Codex47. We determined the classification of reads
based on the classification of the gene it mapped to. This enabled fair comparisons
between technologies, as the small metatranscriptomics and MetaRibo-Seq reads
can be too small to classify individually with k-mer-based approaches. Though
metagenomic reads were long enough to be classified directly, they were also
subject to the same analysis. Thus, all taxonomy plots represent entire gene clas-
sifications and are dependent on the assembly.

Differential analysis. The number of reads mapping to a given region was cal-
culated with BEDtools multicov version 2.27.1 48. Strandedness was enforced for
metatranscriptomics and MetaRibo-Seq. All differential analyses were performed
using these counts with all conditions performed in duplicate via DESeq249. A gene
was considered differential if it had log2fold change above 1 or below −1, while
also reaching an FDR < 0.05. Results were reported as tables. In the case of
translational regulation (sample E compared to sample E2), we modified the model
to control for RNA levels (design= ~samplegroups+ samplegroups:type,). Heat-
maps were created using gplots50. Reads per kilobase million calculations were
performed using in-house scripts.

Statistical analysis. All Pearson correlations were calculated in R using the Hmisc
package51. Scatterplots were created with ggplot2 52. For all scatterplots and his-
tograms shown, replicates reads were combined and treated as a single sample.
Significance between Pearson’s r was assigned via cocor53. Significant differences
between RPKM values were assigned using the Kolmogorov−Smirnov test. Sig-
nificance was assigned as *p value < 0.05, ***p value < 0.001. Zou’s54 95% con-
fidence intervals were considered significant (assigned as ***) if there is no overlap
with 0 in the interval.

Protein clustering analysis for MetaRibo-Seq vs. transcriptomics. For analyses
independent of gene annotation, proteins that were translated at different levels
than transcribed, discussed in the differential analyses methods, were clustered
using Cd-hit55 with 70% amino acid identity. Representative sequences were input
into Blast2GO56 using the nr database.
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Triplet periodicity analysis. Using the same default parameters as read density as
a function of position, triplet periodicity was called using RiboSeqR46. To analyze
triplet periodicity of specific genera, assembled contigs were classified using One
Codex47. Contigs that classified into a specific genus were binned together. Only
reads mapping specifically to these bins were considered.

Clustering of small proteins from HMP-I-II. Contigs from the 1773 HMPI-II
metagenomes containing at least 5 Mbp of total contig sequence were downloaded
from https://www.hmpdacc.org/hmasm2. MetaProdigal42, using a cutoff length of
15 bp, was used to predict genes. Small ORFs, encoding potential proteins 5−50
amino acids including start and stop codons, were considered. These small proteins
were clustered using CD-Hit55 with parameters: -n 2, -p 1, -c 0.5, -d 200, -M 50000,
-l 5, -s 0.95, -aL 0.95, -g 1. This resulted in 444,054 clusters, which were identical to
those previously generated.

Identifying homologs of the ~444,054 clusters in samples A−E. For samples A
−E, MetaProdigal42, using a cutoff length of 15 bp, was used to predict genes. Small
ORFs, encoding potential proteins 5−50 amino acids including start and stop
codons, were considered. Small proteins predicted in samples A−E were queried
against representatives of each of the ~444,000 clusters, using BLASTp43 with
word-size of 2. Hits were considered significant if: e value ≤ 0.05 and the length of
the hit was between 90 and 110% of the length of the small protein.

Demonstrating protein synthesis of small gene families. For each sample (A
−E), we considered all predicted genes, including these small genes. The total
number of MetaRibo-Seq reads mapping to all of these genes was calculated. As
previously described in the “Methods” section, bowtie 1.1.1 40 was used to map
reads. The number of reads mapping to a given region was calculated with
BEDtools multicov version 2.27.1 48. Strandedness was enforced. We calculated
RPKM for all of these genes for each sample (A−E). If a given small protein
demonstrates translation (MetaRibo-Seq RPKM > 10) and is homologous to one of
the ~444,000 potential small gene families, we considered this evidence of protein
synthesis of these small gene families.

Small protein statistical analysis. To test for enrichment in proportion of pre-
dictions with protein domains across our assigned confidence levels, hypergeo-
metric distribution tests were performed.

Assessment of homology between small protein families. Using BLASTp43, we
blasted the 2091 small protein families containing homologs with MetaRibo-Seq
signal (RPKM > 10) against the initial 4000 gene families proposed previously. We
defined rapid evolution as instances in which any homolog of the 2091 small
protein clusters significantly hit (e value ≤ 0.05) representative protein sequences
for the initially proposed 4000 small gene families.

Taxonomic classification of small protein families. Contigs containing any
homolog of the 2091 small protein families were classified using Kraken2 v2.0.8 57

with a custom database constructed from RefSeq58 and GenBank59. To visualize
the classifications within each small protein family, Krona60 was utilized.

Genomic neighborhood analysis of small protein families. MetaProdigal42 was
used to annotate genes on contigs containing any homologs of the 2091 small
protein families. Amino acid sequences of genes that are at maximum ten genes
away from the small protein along these contigs were searched against the Con-
served Domain Database (CDD)61, using RPS-blast43. A hit was considered sig-
nificant if: e value ≤ 0.05 and the protein aligns to at least 80% of the PSSM’s length.

Cellular localization of small protein families. This was performed on all pro-
teins within the 2091 small protein families proposed. To predict if these proteins
are secreted, SignalP-5.0 62 was run with default parameters both with “gram+”
and “gram−”. To predict if these proteins are transmembrane, TMHMM63 was run
on the same set of proteins with default parameters. A small protein family was
considered transmembrane/secreted if ≥80% of the members were predicted to
be such.

Antimicrobial peptide identification. AmPEP64 was applied (default parameters)
on representatives of the 2091 small protein families.

Guidelines for extraction of all contigs associated with a specific family of
interest. We provide these small protein families at a DNA and amino acid level in
Supplementary Data 2. If you would like to extract the contigs these regions are
predicted from, please follow instructions previously presented under “Guidelines
for extraction of all contigs associated with a specific family of interest”4. Addi-
tionally, we provide krona plots for each family (2091 .html files in total) in which
all contigs for the family were taxonomically classified and can be interactively
viewed.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data generated in this study are available on Sequencing Read Archive (SRA) and can be
downloaded under the bioproject accession PRJNA510123. Data underlying Figs. 2a and
5c and Supplementary Figs. 1b, 1c, 1d, 2a, 2b, 2d, 2f, 3a, 4c, 4d, 4e, 4f, and 8a are
provided as Source Data files. Other data are available from the corresponding author
upon reasonable request.
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