

Přehled

- Detekce jediné molekuly/atomu
- · Spojení separačních technik s luminiscenční detekcí
- Sekvenování DNA
- Fluorescenční mikroskop

2

Detekce jednotlivých atomů a molekul

Stanovení Na(g) laserovou rezonanční fluorimetrií Fairbank, W. M. et al. *J. Opt. Soc. Amer.* 1975, 65, 199 - 204.

- Rezonanční fluoroscence silná absorbce a fluorescence
 Výsledný detekční limit ~ desítky Na atomů/cm²
- (v detekčním prostoru: < 1 atom)

Zvýšení S/N

- 1. Modulace λ barvivového laseru a detekce při modulační frekvenci
- Vstupní štěrbiny omezení rozptýleného záření (+ laserový paprsek)
- 3. Výstupní štěrbiny omezení rozptýleného záření
- 4. Nakloněné výstupní okénko odklonění světla (přirozený odraz)
- 5. Woodův roh černé pozadí (neodráží zpět světlo)
- 6. Vymezení detekčního prostoru fokálním prostorem čočky
- 7. Čočka s dobrou kolekcí světla (velký prostorový úhel)
- Citlivý detektor: fotonásobič, lavinová fotodioda detekce v režimu počítání fotonů (photon counting)

5

3

Fluorescenční detekce v kapiláře

Detekce jediné molekuly

- malé množství, ale objem též malý (c = n/V)
- prostorová filtrace: štěrbiny (excitace i emise)
- filtrace světla (λ): fitry, hranoly, mřížky (excitace i emise)
- silný excitační zdroj s vhodnými směrovými vlastnostmi: laser
- kolekční optika s dobrou světelností
- citlivý detektor fotonásobič, lavinová fotodioda
- silně fluoreskující molekula analytu např. rhodamin G, mnohanásobně derivatizovaná biomolekula analytu
- chemická amplifikace molekuly před detekcí

Analýza obsahu jednotlivých buněk Proč analyzovat jednu buňku? Výsledkem klasické analýzy mililitrů krve (mnoho erytrocytů) je průměrné složení. Analýza každé z buněk zvlášť může odhalit např. 1 pozměněný erytrocyt z 1000 (např. jiný poměr forem laktátdehydrogenásy) ... včasná detekce chorob (histogram). Separaci + citlivá detekce 1. Vpravení buňky do kapiláry pod mikroskopem. 2. Uvolnění buněčného obsahu do pufru (destrukce buněčné membrány) 3. Separace (př: elektrolyt = laktosa + NAD + pH pufr). Separace zastavena dříve než analyty opustí kapiláru. 4. Chemická amplifikace v přít. analytu: NAD+ + SubH « NADH+ + Sub po delší dobu (~hodina). 5. Zapnutí elektr. pole, migrace produktů k detektoru. 6. Detekce NADH+ 14

Sdružování pixelů CCD (Binning)

Účel: dosažení vyššího S/N

- Definována podmnožina celého pole, např. 2 x 32 pixelů.
- Náboj naakumulovaný pod 64 sdruženými pixely přečten najednou.

Zvýšení S/N 1 8 64	Zdroj a zpracování dat	1 pixel	64 pixelů (měřených zvlášť)	64 sdružených pixelů (měřených najednou)
	Zvýšení S/N	1	8	64

Typické parametry CTD

Počet pixelů: 1000 x 1000, (1 000 000, "megapixel") Rozměry pole: 1 x 1 cm², (tj. velikost pixelu: 10 x 10 mm) Max. kvant. účinnost: 90% při určité vlnové délce Rozsah vlnových délek: 200 - 1000 nm (kdy kvant. účinnost > 10 %) Šum převodníku: 1 - 10 elektronů Max. náboj: 10⁶ elektronů Zbytkový proud: < 10 elektronů/s (s chlazením)

20

22

- + velmi citlivý detektor (porovnatelný s fotonásobičem)
- + multikanálový detektor, náhrada fotografické desky
- obvykle relativně pomalý (množství dat)

· Stanovení sekvence bazí v DNA

Aplikace CTD

Spektroskopie

- absorpční, emisní
- plošný detektor za monochromátorem (pořadí pixelu = f(l))

Zobrazení (imaging)

- vzorku (mikroskop)
- paralelních vzorků (čip)

DNA ↔ protein. DNA: dědičnost.
Lidská buňka: 46 chromozómů (22 párů + X/Y).
6 miliard bazí (haploid, poloviční sada - 3x10⁹)
1953 Watson & Creek: model DNA.
1977 Sanger: enzymatická metoda Maxam a Gilbert: chemická degradace

Sekvenování DNA

21

Analýza lidské DNA 1990 Human Genome Project (USA) Cíl = kompletní analýza lidskeho genomu do roku 2003 (2005). Znalost souvislosti mezi chorobou a geny ⇒ léčba a prevence chorob. Podpora nových technologií pro ultrarychlé a levné sekvenování. 3x10⁹ bazí při rychlosti 1báze/s ... 100 let 26. červen 2000 Craig Venter, Celera Genomics ukončení základní analýzy lidského genomu shotgun genomics

Amplifikace DNA

PCR (Polymerase Chain Reaction)

Sangerova metoda: Analyzovaná DNA = předloha pro syntézu směsi fragmenů DNA se stejným počátkem ale různou délkou. Separace fragmentů pomocí gelové elektroforézy. Detekce radioaktivního záření nebo fluorescence.

předloha: 3'ATACGCATT5' fragmenty: PT PTA PTAT

PTATGCGTAA

Základní techniky pro sekvenování DNA

- 1. Sangerovo sekvenování (PCR) gelová elektroforéza (vrstva, kapilára)
- ~ 1000 nukleotidů
- 2. Hybridizace čip
- Exonukleásová reakce postupné odštěpování koncové báze
- MS: fragmentace pro krátké řetězce, < 50 nukleotidů

25

Elektroforéza v kapilárních polích pro sevenování DNA

Analýza fragmentů DNA připravených Sangerovou metodou

Klasický postup

- elektroforéza na vrstvě polyakrylamidového gelu
- + mnoho vzorků na jedné desce gelu (paralelní dráhy)
- časová náročnost (hodiny den)

Kapilární elektroforéza

- + vyšší poměr povrchu substrátu k objemu gelu (kapilára versus deska) ⇒ dokonalejší chlazení Þ vyšši elektrické pole Þ kratší doba analýzy (hodina)
- Gel: síťovaný polyakrylamidový gel
- lineární nahraditelné gely (polyakrylamid, polyethylenoxid atd.)
- 1 kapilára = analýza pouze jednoho vzorku \Rightarrow kapilární pole

26

Uspořádání pro detekci fluorescence z kapilárních polí

- A. Skenovací
- B. Zobrazovací (imaging)

A. Skenovací detekce

(R. A. Mathies et al. Electrophoresis 1994, 17, 1852 - 59)

Konfokální excitace a emise: zaostření pomocí mikroskopického objektivu. Objektiv se pohybuje nad kapilárním polem napříč; frekvence ~ 2 Hz. Uspořádání kapilár lineární nebo na obvodu válce.

- + účinná kolekce fluorescence
- + nízké nároky na výkon laseru (pouze jedna kapilára ozářena v čase)
- pouze zlomek času se stráví excitací a detekcí dané kapiláry (duty cycle)
 pohyblivé součásti

27

Zobrazovací detekce (Imaging)

a) Excitace: laser zaostřen zvrchu na pole kapilár jako čára

Detekce: CCD kamera s filtry nad polem kapilár.

(E. S. Yeung et al. Anal. Chem. 1994, 66, 1424-31) + excitace a detekce současně pro všechny kapiláry

- + žádné pohyblivé součásti
- neúčinná kolekce fluorescence
- vysoké nároky na výkon laseru (výkon rozdělen mezi celé pole)

b) Excitace: optickými vlákny

Detekce: kolekce fluorescence optickými vlákny, monochromátor, CCD (A. Zhang et al. Electrophoresis 1996, 17, 1841 - 51)

- + účinná excitace a kolekce fluorescence
- + žádné pohyblivé součásti
- vysoké nároky na výkon laseru (výkon rozdělen mezi celé pole)

problémy pro mnnoho kapilár

29

- + vhodné pro 2-rozměrná pole kapilár, vyšší počty kapilár
- problémy s nahrazováním gelu v kapilárách

MODE	MECHANISM OF CONTRAST
Brightfield	Absorption of light
Phase contrast	Optical path length (index, density)
DIC	Rate of change of optical path
Widefield fluorescence	Absorption of light, quantum yield of fluorophore
Confocal fluorescence	same as fluorescence
Darkfield	light scattering by edges in specimen
Interference reflection contrast	interference between reflections from ventral cell surface and substratum
Polarization	Extinction between crossed polars caused by specimen birefringence

