GENEROVÁNÍ TĚKAVÝCH SLOUČENIN PRO STOPOVOU PRVKOVOU A SPECIAČNÍ ANALÝZU: VÝHODY A OMEZENÍ

Ústav analytické chemie AVČR, v. v. i.

Oddělení stopové prvkové analýzy

Jan Kratzer

24.11.2022

GENERATION OF VOLATILE SPECIES

- volatile compounds generation (VCG) / volatile species (VSG)
- selective conversion of analyte to volatile compound
- VSG compatible with all spectrometric techniques
- VSG independent of the detector used
- most commonly used for hydride forming elements (HG)

GENERATION OF VOLATILE SPECIES

- selective conversion of analyte to volatile species
 - analyte separation from the matrix (interferences minimized)
 - high transport efficiency of analyte into the detector \rightarrow lower LOD
- analyte preconcentration in gaseous phase \rightarrow further LOD improvement
- speciation analysis without chromatography feasible

APPROACHES TO VSG

Chemical generation (CVG)

- analyte reduction by chemical reaction (HCI/NaBH₄)
- high generation efficiency (~ 100 %)
- Electrochemical generation (EcVG)
 - analyte reduction by current
 - low generation efficiency
 - potential to reach low LOD
- Photochemical generation (PVG)
 - analyte reduction by UV radiation

- Plasma mediated vapor generation (PMVG)
 - interaction with plasma radicals, excited/metastable species, ions

OUTLINE

- VSG of non-hydride forming element Cd
- Novel hydride atomizers for AAS based on DBD plasma
- VSG-based speciation analysis (Hg, Te, Ge, As)
- VSG of mercury based on PMVG of Hg

VSG of non-hydride forming element – Cd

- Novel hydride atomizers for AAS based on DBD plasma
- VSG-based speciation analysis
- VSG of mercury based on PMVG

L. Sagapova et al., Anal. Chim. Acta 1168 (2021) 338601

- generation efficiency quantified (with additives)
 - by ^{115m}Cd radioactive indicator 66 ± 4 %
 - by comparison of PN-ICP-MS and VSG-ICP-MS $55 \pm 2\%$

• HCI/NaBH₄ without additives < 5%

- Cd free atoms (dominant species) + molecular/aerosol-associated
- VSG-AAS LOD 60 pg mL⁻¹ Cd
- VSG-AFS

LOD 0.42 pg mL⁻¹ Cd

VSG-AFS of Cd – METHOD VALIDATION

CRM	certified value (ng mL ⁻¹)	found value (ng mL ⁻¹)
NIST 1643 f	5.85 ± 0.13	5.90 ± 0.44
ERM-CA 713	5.00 ± 0.05	5.09 ± 0.20

VSG of non-hydride forming element – Cd

- Novel hydride atomizers for AAS based on DBD plasma
- VSG-based speciation analysis
- VSG of mercury based on PMVG of Hg

B. Baranová et al., Spectrochim. Acta B, accepted.

HYDRIDE ATOMIZATION - AAS

- externally heated quartz tube atomizers (QTA)
 - heated to 900 °C
 - advanced construction (MMQTA) supplied by air/O₂
 - most common hydride atomizer

dielectric barrier discharge (DBD) plasmas

- low temperature, ambient pressure plasmas
- AC high voltage
- novel atomizer

ANALYTICAL FIGURES OF MERIT - SENSITIVITY

Sensitivity, s ng ⁻¹						
Atomizer	Pb	Bi	Sn	Se	Те	As
(MM)QTA	0.29 ± 0.01	0.40 ± 0.02	0.33 ± 0.01	0.53 ± 0.03	0.32 ± 0.01	0.48 ± 0.01
DBD	0.09 ± 0.01	0.15 ± 0.01	0.05 ± 0.01	0.60 ± 0.04	0.32 ± 0.01	0.54 ± 0.04

- As, Se, Te sensitivity reached in DBD comparable to (MM)QTA
- Pb, Bi, Sn (MM)QTA performs much better (3-7 times higher sensitivity)
- (MM)QTA sensitivity difference among elements: factor of 2
- DBD sensitivity difference among elements: factor of 12

L. Juhászová et al., Spectrochim. Acta B 158 (2019), 105630.

B. Baranová et al., Spectrochim. Acta B, accepted. P. Novák et al., Anal. Chem. 88 (2016), 6064-6070.

MECHANISTIC STUDIES - LIF

M. Albrecht et al., Spectrochim. Acta B 166 (2020) 105819.

K. Bufková et al., Spectrochim. Acta B 171 (2020) 105947.

Mechanistic studies – DEPOSITED FRACTION

leaching experiments, ICP-MS detection

	Analyte fraction (%) de	Analyte fraction (%) deposited in the atomizer		
Analyte	DBD	(MM)QTA		
Pb	91 ± 5	107 ± 4		
Bi	94 ± 1	92 ± 3		
Se	26 - 43	15 ± 2		
Те	62 ± 2	37 ± 2		

- fast decay of Pb and Bi free atoms \rightarrow deposit formation \rightarrow low sensitivity (DBD)
- spatial distribution of deposits differ between DBD and (MM)QTA
 - \rightarrow DBD homogeneous distribution even in the discharge area
 - \rightarrow MMQTA in the colder atomizer zones

J. Kratzer et al., Anal. Chim. Acta 1028 (2018) 11-21.

J. Kratzer et al., Anal. Chem. 88 (2016) 1804-1811.

B. Baranová et al., Spectrochim. Acta B, accepted.

Spatial distribution of ⁷⁵Se in DBD and MMQTA after atomization of 3 replicates of a ⁷⁵Se tracer sample solution (exposure time of 68 hours).

J. Kratzer et al., Anal. Chim. Acta 1028 (2018) 11-21.

PRECONCENTRATION *IN-SITU* IN DBD

1) ANALYTE TRAPPING Ar + O₂

2) ANALYTE RELEASE Ar + H₂ (blank)

No change in DBD HV / power settings

P. Novák et al., Anal. Chem. 88 (2016), 6064-6070.

IN-SITU PRECONCENTRATION IN DBD

P. Novák et al., Anal. Chem. 88 (2016), 6064-6070.

IN-SITU PRECONCENTRATION IN DBD

element	Preconcentration	LOD,
	efficiency, %	ng mL ⁻¹
As	100	0.01
Se	70	0.01
Sb	100	0.02
Те	51	-
Bi	60	-

P. Novák et al., Anal. Chem. 88 (2016), 6064-6070.

J. Kratzer et al., J. Anal. Atom. Spectrom. 34 (2019), 193-202 P. Zurynková et al., Anal. Chim. Acta 1010 (2018) 11-29. K. Bufková et al., Spectrochim. Acta B 171 (2020) 105947. J. Kratzer et al., Anal. Chem. 86 (2014), 9620-9625.

- VSG of non-hydride forming element Cd
- Novel hydride atomizers for AAS based on DBD plasma
- VSG-based speciation analysis (Hg, Te, Ge, As)
- VSG of mercury based on PMVG of Hg

A) selective VSG

 $VSG \rightarrow detection$

Te(IV) and Te(VI)

B) post-column VSG

separation \rightarrow VSG \rightarrow detection HPLC-VSG-ICP/MS

C) Generation of substituted volatile species VSG → separation → detection VSG-CT-ICP/MS

selective VSG

$VSG \rightarrow detection$

Te(IV) and Te(VI)

A. García-Figueroa et al., Anal. Chem. 94 (2022), 13995-14003.

A) selective VSG

 $VSG \rightarrow detection$

Te(IV) and Te(VI)

B) post-column VSG

separation \rightarrow VSG \rightarrow detection

HPLC-VSG-ICP/MS

C) Generation of substituted volatile species VSG → separation → detection VSG-CT-ICP/MS

A) selective VSG

 $VSG \rightarrow detection$

Te(IV) and Te(VI)

B) post-column VSG

separation \rightarrow VSG \rightarrow detection HPLC-VSG-ICP/MS

C) Generation of substituted volatile species $VSG \rightarrow separation \rightarrow detection$ VSG-CT-ICP/MS

trapping

release/separation

Speciation analysis of Ge – method development

• VSG \rightarrow separation \rightarrow detection

A. García-Figueroa et al., Talanta 225 (2021), 121972.

Speciation analysis of Ge – applications

• VSG \rightarrow separation \rightarrow detection

M. Filella, T. Matoušek, Appl. Geochem. 143 (2022), 105352.

Speciation analysis of As – applications

• VSG \rightarrow separation \rightarrow detection

• in whole blood/plasma without extraction

- 50-100 µl samples
- LOD ~ pg ml⁻¹
- normal levels of exposure

T. Matoušek et al., Anal. Chem. 89 (2017), 9633-9637.

Generation of alkyl-/aryl-substituted volatile species

- VSG \rightarrow separation \rightarrow detection
- VSG from HCI and TRIS buffer media
- cryogenic trap (CT) used for separation

M. Migašová et al., Anal. Chim. Acta 1119 (2020), 68-76.

- decomposition of substituted species during VSG step !!!
- more pronounced in HCI than TRIS buffer media

quantification of fraction decomposed to Hg⁰ (%)

	HCI	TRIS
MeHgH	41	6
EtHgH	77	28
PhHgH	94	99

M. Migašová et al., Anal. Chim. Acta 1119 (2020), 68-76.

A) selective VSG

 $VSG \rightarrow detection$

Te(IV) and Te(VI)

B) post-column VSG

separation \rightarrow VSG \rightarrow detection

HPLC-VSG-ICP/MS

C) Generation of substituted volatile species VSG → separation → detection VSG-CT-ICP/MS

Fig. 3. Chromatograms of mercury species (²⁰²Hg) mixed standard solution of Hg²⁺, MeHg⁺, EtHg⁺ and PhHg⁺ containing 1 µg L⁻¹ (as Hg) of each species, obtained without (A) and with postcolumn VSG step (B). The IS signal (¹²⁵Te signal) obtained without (C) and with postcolumn VSG step (D).

I. Petry-Podgórska et al., Microchem. J. 170 (2021), 106606.

Post-column VSG:

separation \rightarrow VSG \rightarrow detection

Analytical figures of merit found for HPLC-ICP/MS and HPLC-VSG-ICP/MS

Species	Slope Cts L µg ⁻¹	LOD (ng L ⁻¹)	
HPLC-ICP-MS			
Hg ²⁺	10 213	15	
MeHg ⁺	9 957	15	
EtHg ⁺	10 120	17	HPLC-VSG-ICP/MS
PhHg ⁺	3 499	26	
HPLC-VSG-ICP-MS			Sensitivity increased 30-40 times
Hg ²⁺	398 430	3	
MeHg ⁺	351 989	2	LOD improved 3-7 times
EtHg ⁺	336 402	4	
PhHg ⁺	178 399	6	

I. Petry-Podgórska et al., Microchem. J. 170 (2021), 106606.

VSG-based speciation analysis of Hg

I. Petry-Podgórska et al., Microchem. J. 170 (2021), 106606.

- VSG of non-hydride forming element Cd
- Novel hydride atomizers for AAS based on DBD plasma
- VSG-based speciation analysis
- VSG of mercury based on PMVG of Hg

G. da Silva Coelho Junior et al., Spectrochim. Acta B, submitted.

laboratory made DBD reactor

AAS detector QTA atomizer @ ambient temperature 150 mL min⁻¹ He

Samples – droplets (2 μL) Hg²⁺ MeHg⁺

38 kV, 23 W, 40 kHz, 60% duty cycle

laboratory made power supply source

- PMVG efficiency quantified
 - Hg²⁺ 87 ± 8 %
 - MeHg⁺ 91 ± 10 %

- both Hg species volatilized and atomized in the DBD reactor
- sensitivity of PMVG comparable with CVG
- LOD 200 pg Hg

CONCLUSIONS

VSG of Cd

promising approach, 60% efficiency

novel DBD hydride atomizers

- can compete with QTAs (As, Se, Te)
- *in-situ* preconcentration feasible

VSG for speciation analysis

- postcolumn VSG reliable approach
- generation of substituted VS artifacts due to species decomposition (Hg)
 - reliable approach for As and Ge

PMVG of Hg

- high introduction efficiency
- good choice for volume-limited samples

ACKNOWLEDGMENTS

FACULTY OF SCIENCE Charles University

Barbora Baranová (Kodríková) Zuzana Kráľová Linda Sagapova Věra Schrenková Michaela Migašová

Milan Svoboda Jiří Dědina Gilberto da Silva Coelho Junior Tomáš Matoušek Inga Petry-Podgórska

1Sas Leibniz-Institut für Analytische Wissenschaften

Joachim Franzke Sebastian Burhenn Sebastian Brandt MUNI Masaryk University Faculty of Science SCI Pavel Dvořák Martina Mrkvičková

Jan Voráč

Institute of Analytical Chemistry of the CAS Department of Trace Element Analysis

ACKNOWLEDGMENTS

