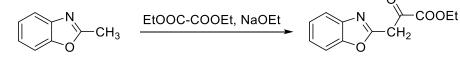
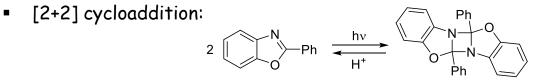

benzoxazole




reactivity:

- salt formation, quaternization: analogous to oxazoles.
- nitration: substitution of the benzene ring at the 5- or 6-position.
- nucleophiles attack: at position 2.

• relatively acidic alkyl group at position 2:

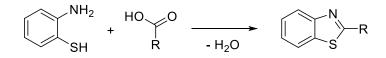
synthesis:

• cyclocondensation: of o-aminophenol with carboxylic acids or their derivatives.

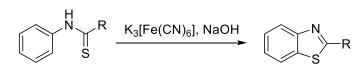
$$\begin{array}{c} & & \\ & &$$

benzothiazole

reactivity: benzothiazole is a weaker base than thiazole.

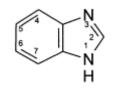

- **metallation**: *n*-BuLi, at position 2.
- electrophilic substitutions: only on the benzene ring.

nitration \rightarrow mixture of 4-, 5-, 6-, and 7-nitrobenzothiazole.


reactions with nucleophilic reagents: analogous to thiazoles.

synthesis:

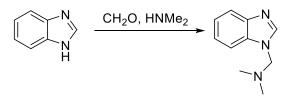
 cyclocondensation of o-aminothiophenols or their salts with carboxylic acids, their derivatives or with aldehydes.



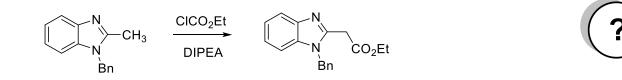
cyclization:

benzimidazole

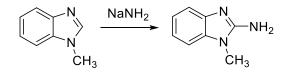
٠



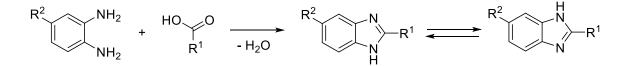
reactivity: benzimidazole is less basic than imidazole, but more NH-acidic.


tautomerism:

- reaction with *n*-BuLi: Benzimidazoles substituted at position $1 \rightarrow$ lititation at position 2.
- Mannich reaction:



• deprotonation of alkyl at position 2: relatively facile for N-protected benzimidazoles.


ParuchFused Five-Membered Heterocycles with 2 HeteroatomsMedicinal Chemistry C9115

- electrophilic substitutions: first at position 5, then at position 6 or 7.
- reactions with nucleophiles: attack of position 2 (e.g. the Chichibabin reaction).

synthesis:

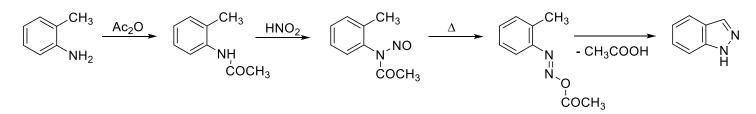
 cyclocondensation of o-phenylenediamine or substituted o-phenylenediamines with carboxylic acids or their derivatives.

indazole

reactivity: indazole is less basic than pyrazole but a stronger N-H acid ($pK_a = 13.9$).

• reaction with *n*-BuLi: 1-methylindazole \rightarrow 1-lithiomethylindazole

 $\texttt{2-methylindazole} \rightarrow \texttt{3-lithio-2-methylindazole}$


alkylation: in the presence of bases proceeds via the ambident indazolyl anion

 \rightarrow mixture of 1- and 2-alkylindazoles

- halogenation: preferentially at position 5
- **nitration**: with fuming nitric acid \rightarrow 5-nitroindazole
- sulfonation (with oleum) \rightarrow indazole-7-sulfonic acid
- **coupling** with diazonium salts: at position 3

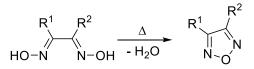
synthesis:

from o-substituted anilines:

Paruch

1,2,5-oxadiazole (furazan) $\sqrt[4]{*3}$ N⁵ 1² N

reactivity: ca. 100 times less basic than isoxazole; only slow (if any) reactions with electrophiles.

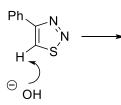

- quaternization: slow, even with dimethyl sulfate.
- reactions with nucleophiles: do not react at all or only slowly.

A billine e	Contaction of

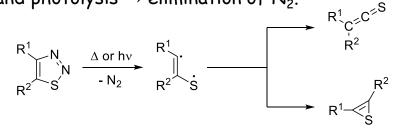
find at least one drug with the 1,2,5-oxadiazole motif & its mode of action

synthesis:

cyclodehydration of dioximes of 1,2-dicarbonyl compounds



Heterocycles 1984, 22, 1571.


1,2,3-thiadiazole

reactivity:

- weak base.
- electrophiles preferentially attack the heteroatoms.
- nucleophiles attack position 5.
- quaternization with dimethyl sulfate \rightarrow mixture of 2- and 3-methylated isomers
- reaction with nucleophiles \rightarrow ring-opening.

• thermolysis and photolysis \rightarrow elimination of N₂.

synthesis:

Hurd-Mori reaction: cyclocondensation of tosylhydrazones.

$$\begin{array}{c} R^{1} \quad HN-Ts \\ \searrow \\ R^{2} \end{array} \xrightarrow{ \begin{array}{c} \text{SOCl}_{2} \\ - \text{HCl}, - \text{TsOH} \end{array}} \begin{array}{c} R^{1} \\ R^{2} \end{array} \xrightarrow{ \begin{array}{c} \text{N} \\ \text{R}^{2} \end{array}} \begin{array}{c} N \\ R^{2} \end{array} \xrightarrow{ \begin{array}{c} \text{SOCl}_{2} \end{array}}$$

find the mechanism of the Hurd-Mori reaction

1,2,4-thiadiazole

reactivity:

- weak base.
- electrophilic substitution at the C-atoms practically impossible.
- methylation: with CH₃I occurs at N-4, with trimethyloxonium tetrafluoroborate at both Ns.
- reaction with hydroxides \rightarrow ring-opening.
- reaction with $HCI \rightarrow ring$ -opening occurs via the 1,2,4-thiadiazolium ion.
- nucleophiles attack the position 5 and/or 3.

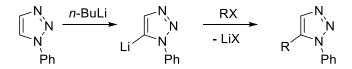
synthesis:

• oxidation of thioamides: with H_2O_2 or by the action of $SOCI_2$, SO_2CI_2 or PCI_5 .

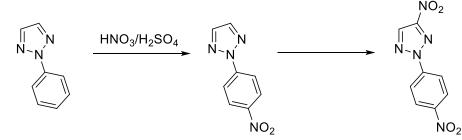
• cyclocondensation of amidines: with trichloromethylsulfenyl chloride.

$$CI^{-S}CCI_{3} + NH \rightarrow CI^{-HCI} S^{-N}$$

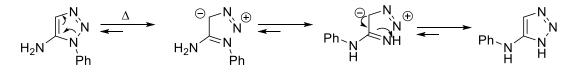
Paruch


1,2,3-triazole

^{4 3} 5 1 ² N N


reactivity:

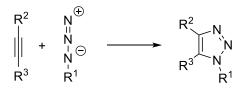
- acid-base reactions:
 - 1,2,3-triazole is a weak base, less basic than pyrazole.
 - triazoles unsubstituted on the N-atom are NH-acidic.
 (1,2,3-triazole pK_a value is 9.3; comparable to HCN)
 - tautomerism:


• metalation: N-substituted 1,2,3-triazoles are metalated by n-BuLi at low temperature.

- reactions with electrophiles:
 - acetylation, tosylation \rightarrow usually mixtures of 1- and 2-isomers
 - bromination $(Br_2) \rightarrow 4,5$ -dibromo-1,2,3-triazole
 - nitration: note: 2-phenyl-1,2,3-triazole undergoes nitration first on the benzene ring and then on the 1,2,3-triazole ring.

 Dimroth rearrangement: with nucleophiles, 1,2,3-triazoles do not react at all or react only slowly with ring opening.

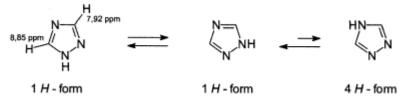
ring cleavage by pyrolysis or photolysis with loss of nitrogen.


$$\begin{array}{c} \mathsf{R} \\ & &$$

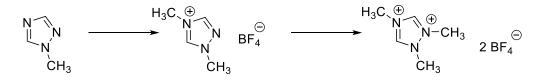
synthesis:

• oxidation: of bishydrazones of 1,2-dicarbonyl compounds.

• dipolar cycloaddition: azides react with alkynes.



find at least 3 applications of the "click reaction" in cells 1,2,4-triazole


reactivity:

- acid-base reactions: 1,2,4-triazole is a weak base; protonation on N4 (pK_a = 2.19);
 1,2,4-triazoles unsubstituted on nitrogen are NH-acidic.
- tautomerism: two 1H-tautomers and one 4H-.

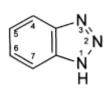
- reactions with electrophiles:
 - the N-atoms are preferentially attacked.
 - benzylation, methoxycarbonylation, trimethylsilylation, acylation \rightarrow mainly 1-substituted compounds.
 - nitration, sulfonation: very slow
 - bromination, chlorination (Br₂ or Cl₂) \rightarrow (3)5-chloro- or 3(5)-bromo-1,2,4-triazole.

quaternization of 1-methyl-1,2,4-triazole with trimethyloxonium tetrafluoroborate:

synthesis:

• Einhorn-Brunner synthesis: hydrazines condense with diacylamines.

$$H_{R^{2}} \rightarrow 0 + R_{1}^{H_{R^{2}}} H_{R^{2}} \rightarrow H_{2}^{H_{R^{2}}} H_{R^{2}} \rightarrow H_{R^{2}} \rightarrow$$

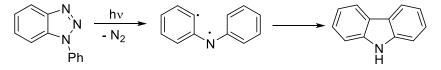

• Pellizzari synthesis: acid hydrazides cyclize with acid amides or thioamides.

$$\begin{array}{c} \mathsf{NH}_2\\ \mathsf{R}^2 \\ \mathsf{S} \\ \mathsf{H}_2\mathsf{N}^{-\mathsf{NH}} \end{array} + \begin{array}{c} \mathsf{R}^1 \\ \mathsf{H}_2\mathsf{S} \\ \mathsf{H}_2\mathsf{N}^{-\mathsf{NH}} \end{array} \xrightarrow{\mathsf{A}} \begin{array}{c} \mathsf{NH}_2\\ \mathsf{H}_2\mathsf{S} \\ \mathsf{R}^2 \\ \mathsf{N}^{-\mathsf{N}} \\ \mathsf{R}^2 \end{array} \xrightarrow{\mathsf{NH}_2} \overset{\mathsf{A}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{A}} \begin{array}{c} \mathsf{N} \\ \mathsf{H}_2\mathsf{O} \\ \mathsf{H}_2\mathsf{O} \end{array} \xrightarrow{\mathsf{A}} \begin{array}{c} \mathsf{N} \\ \mathsf{N} \\ \mathsf{H}_2\mathsf{O} \\ \mathsf{R}^2 \\ \mathsf{N}^{-\mathsf{N}} \end{array} \xrightarrow{\mathsf{NH}_2} \overset{\mathsf{A}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{A}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{A}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \overset{\mathsf{A}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{N}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{N}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{N}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{N}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{N}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \xrightarrow{\mathsf{N}} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \overset{\mathsf{N}}{\mathsf{H}_2} \overset{\mathsf{N}}{\mathsf{H}_2\mathsf{O}} \overset{\mathsf{N}}{\mathsf{H}_2} \overset{\mathsf{N$$

cyclocondensation:

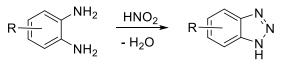
 R^1

benzotriazole



reactivity:

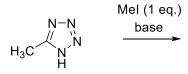
• benzotriazole is a very weak base;


but a stronger NH-acid than benzimidazole or 1,2,3-triazole (pK_a = 8.2).

- forms complexes with metals \rightarrow frequently used as a ligand.
- alkylation: \rightarrow mixtures of 1- and 2-alkylbenzotriazoles.
- acylation, sulfonation: occur at N-1.
- reactions with electrophiles: only the benzene ring carbon atoms are available. chlorination (mixture of concentrated HCl and HNO₃) → 4,5,6,7 tetrachlorobenzotriazole, nitration → 4-nitrobenzotriazole)
- Graebe-Ullmann reaction (dediazoniation of 1-phenylbenzotriazole).

synthesis:

cyclocondensation of o-phenylenediamines with sodium nitrite under H⁺ conditions.

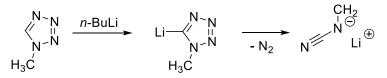


tetrazole

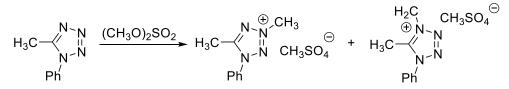
N–N ↓ 3 \\ 5 1 2 N H

reactivity:

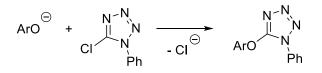
- acid-base reactions:
 - tetrazole is a very weak base; protonation occurs at position 4 ($pK_a = -3.0$).
 - of all azoles, tetrazole has the strongest NH-acidity ($pK_a = 4.9$); comparable to acetic acid.
 - tautomerism: 1H-form predominates over the 2H-form in solution.


ring-chain tautomerism: 1,5-disubstituted tetrazoles can isomerize to give azidoimines.

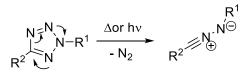
J. Am. Chem. Soc. 1998, 120, 4723.


reactivity:

• metalation: 1-methyltetrazole is lithiated by *n*-BuLi in THF at -60 °C at position 5.

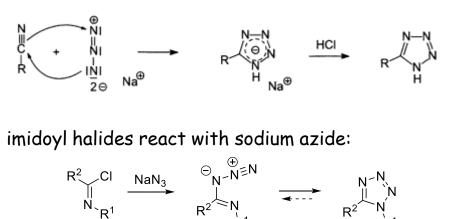

(5-alkyltetrazoles substituted at position 1 undergo metalation of the alkyl substituent as a result of the acceptor action of the tetrazolyl moiety.)

- reactions with electrophiles:
 - quaternization \rightarrow mixture of 1- and 2-methyltetrazole

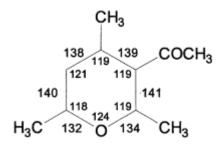


- acylation (acyl halides) \rightarrow at position 2 (but the products are not stable)
- nitration \rightarrow substitution e.g. of the benzene ring, when available

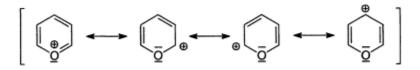
• reactions with nucleophiles: 5-halotetrazoles react with nucleophiles \rightarrow substitution.



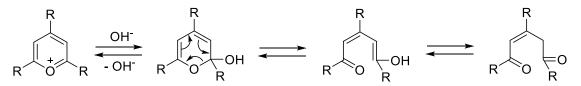
thermal of photochemical extrusion of N₂:


synthesis:

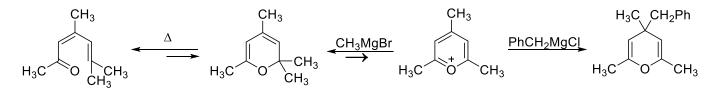
• [3+2] cycloaddition: azide + nitriles:



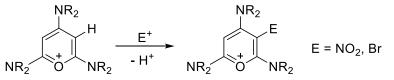
• planar, slightly distorted hexagon with C-C and C-O bonds of approximately equal length


reactivity:

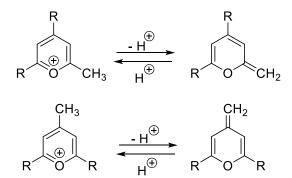
- pyrylium ion is an aromatic system.
- the distribution of the π -electron density can be represented by mesomeric structures.



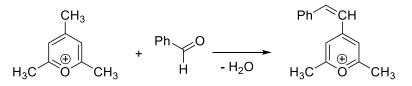
• typical reactions: attack of nucleophiles onto the positions 2/6 and 4; and subsequent reactions.


reactions with aqueous hydroxides:

• reactions with organometallic compounds: \rightarrow predominantly form 2*H*-pyrans. benzylmagnesium chloride is an exception \rightarrow 4*H*-pyrans.

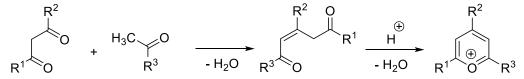


- this reactivity of pyrylium ions can be reversed by donor substituents at positions 2, 4 and 6.
- for instance, 2,4,6-tris(dialkylamino)pyrylium ions are stable towards nucleophilic attack, but are easily substituted by electrophiles (e.g. HNO₃/H₂SO₄ or BrCN/AlCl₃).

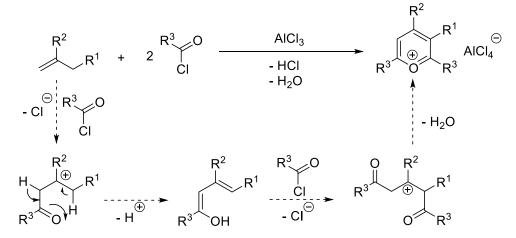


• this behavior may be due to the fact that the donor-substituted pyrylium ion does not possess the structure of cyclic delocalized 6π -systems, but rather that of a localized trimethine cyanine.

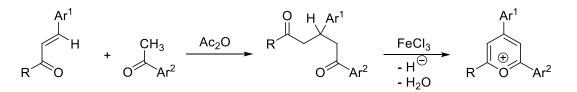
• reactions with nucleophilic reagents: alkyl groups at positions 2, 4 and 6 display marked CH-acidity. action of bases \rightarrow deprotonation on CH groups attached to the ring forming 2- or 4-methylenepyrans.


aldol condensation: regioselective

synthesis:

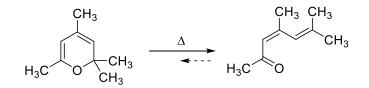

 condensation: 1,3-dicarbonyl compounds and aryl methyl ketones in acetic anhydride in the presence of strong acids.

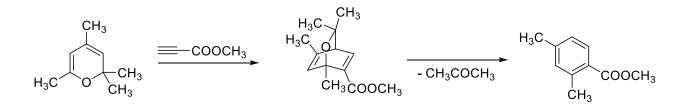
(chlorovinyl ketones or chlorovinyl immonium salts also condense with aryl methyl ketones.)



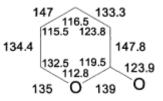
synthesis:

 Balaban synthesis: double acylation of propene derivatives with acid chlorides or anhydrides in the presence of Lewis acids, e.g. AlCl₃.

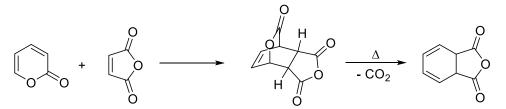

 Dilthey synthesis: in the presence of a hydride akceptor (e.g. FeCl₃) chalcones afford trisubstituted pyrylium salts.



• the parent compound has not yet been isolated; 2,2-disubstituted derivatives have been prepared. reactivity: 2*H*-pyrans behave like oxacyclohexadienes.

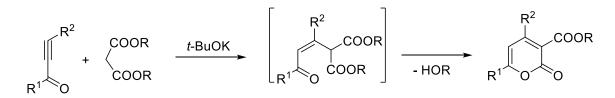

• thermal ring opening: process is reversible \rightarrow dienones can be used to prepare 2*H*-pyrans.

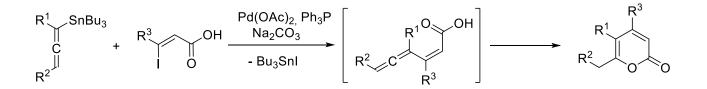
• [4+2] cycloadditions: with activated double/triple bonds.



• it possesses the bond parameters of an enol-lactone system with localized C-C double and single bonds

reactivity: behaves as 1,3-diene and also as a lactone.

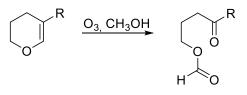

• Diels-Alder reaction: with activated alkenes or alkynes.


- reactions with nucleophiles: attack on the C-atom of the carbonyl group.
- reactions with electrophiles:
 - bromination \rightarrow position 3 (higher temp.),
 - \rightarrow trans-5,6-dibromide (lower temp.)

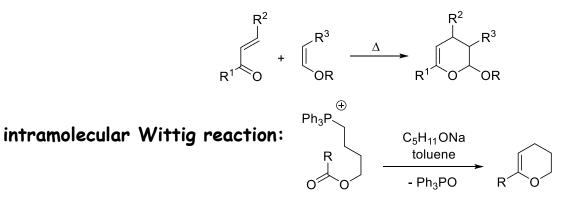
synthesis:

base-catalyzed cyclocondensation of alkynones with malonic esters

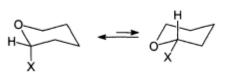
Pd-catalyzed reaction: of allenyl stannanes with β-iodo acrylic acids.



• oxa-analog of cyclohexene derived from 2H-pyran.


reactivity: reactions of electron-rich double-bonded systems.

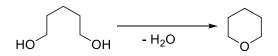
- electrophilic addition: HX, HOX (X = halogen) or hydroboration.
- [2+1], [2+2] and [4+2] cycloadditions
- nucleophilic additions: e.g. with alcohols or phenols.
- ozonolysis:


synthesis:

[4+2] cycloaddition: a,β-unsaturated carbonyl compounds + vinyl ethers.

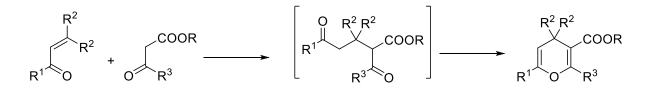
tetrahydropyran

- chair conformation
- electronegative substituents (alkoxy groups, halogens) at position 2(6) prefer to adopt the axial position (anomenic effect)

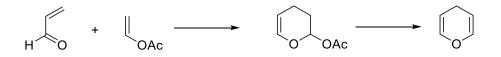


synthesis:

cyclodehydration of 1,5-diols:


- acid-catalyzed cyclization of 4-hydroxybutyloxiranes
- cyclization of hex-5-en-l-ol with electrophilic halogen reagents
 - \rightarrow 2-substituted tetrahydropyrans

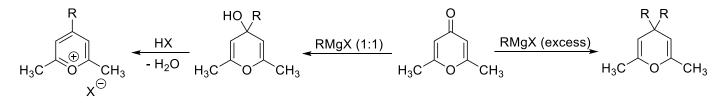
pyran


• in contrast to 2H-pyran, the parent compound 4H-pyran is known and spectroscopically characterized.

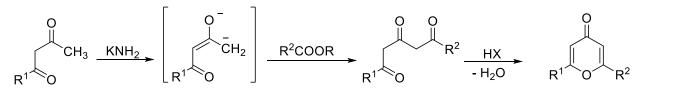
synthesis:

 cyclocondensation of B-disbustituted enone systems with B-keto esters (via 1,5-dicarbonyl compounds):

Diels-Alder reaction:



cross-conjugated, localized cycloenone system.


reactivity:

- irradiation \rightarrow 4*H*-pyran-4-one isomerizes to 2*H*-pyran-2-one.
- O-alkylation: with strong electrophiles.
- electrophilic substitution: typically not regioselective.
- nucleophiles attack C-2 or C-4.
- reaction with Grignard reagents:

synthesis:

• y-acylation of 1,3-diketones with carboxylic esters.

