Selective Catalytic Reduction In Automotive

Zdeněk Král

Selective Catalytic Reduction ...in general

- Wide technique of NOx removal
- Used everywhere, where NOx is produced (and undesired)
- Used mainly for exhaust gases (chimneys, exhausts, ...)
- Selective
- We can select which molecule will be reduced ($\mathrm{NOx}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$)
- Catalytic
- Reaction needs to be catalysed.
- Reduction
- NOx to N_{2}

SCR in automotive

- Reduction of NOx using reduction agent on a surface of solid catalyst in presence of oxygen
- Summary equation:
- Other SCR reactions:
... plus many side reactions
- Reduction agent
- Needed for high conversion rates
- $\mathrm{NH}_{3}, \mathrm{HC}$ (hydrocarbons)

$$
4 \mathrm{NO}+4 \mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow 4 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

$$
8 \mathrm{NH}_{3}+6 \mathrm{NO}_{2} \rightarrow 7 \mathrm{~N}_{2}+12 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{NH}_{3}+\mathrm{NO}+\mathrm{NO}_{2} \rightarrow 2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \text { „fast SCR" }
$$

"Gasoline" exhaust
"Diesel" exhaust

... a bit of History

- SCR was developer for industrial applications
- 70s - applied in thermal power plants in Japan
- Since 80s - widespread to Europe and USA
- First mobile aplications (not powerplants)
- 90s Korean cargo ships (diesel engine = electric generator)
- Reason for this application - similar application as in powerplants, steady state of engine operation

How does SCR catalyst look like?

- Ceramics carrier with active substance
- SiC, Cordierite
- „Mate"
- Heat resisting dense fibers
- Spacer for thermal dilatation
- Metal housing
- Stainless steel

What is the active substance?

- Several substances are catalytically active enough to be used for SCR
- Cu and Fe zeolites (Cu-SSZ-13, Fe-ZSM5)
- Metal oxides $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$

What is the mechanism?

- Mechanism is strongly dependent on exact composition of the material

„State of the Art"

SCR in Automotive

SCR in Automotive

NH_{3}-SCR in Automotive

-Injection $\left(200^{\circ} \mathrm{C}\right)$:
-1. hydrolysis:
-2. acid w. water:
$\mathbf{H}_{\mathbf{2}} \mathrm{N}-\mathrm{CO}-\mathrm{NH}_{\mathbf{2}}+\mathrm{H}_{\mathbf{2}} \mathrm{O} \rightarrow \mathbf{2} \mathrm{NH}_{\mathbf{3}}+\mathbf{C O}_{\mathbf{2}}$
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{HNCO}$ $\mathrm{HNCO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{CO}_{2}$

