Selective Catalytic Reduction In Automotive

Zdeněk Král

Selective Catalytic Reduction ...in general

Wide technique of NOx removal

- Used everywhere, where NOx is produced (and undesired)
- Used mainly for exhaust gases (chimneys, exhausts, ...)

Selective

• We can select which molecule will be reduced (NOx, CO, CO₂, SO₂)

Catalytic

Reaction needs to be catalysed.

Reduction

NOx to N₂

SCR in automotive

Reduction of NOx using reduction agent on a surface of solid catalyst in presence of oxygen

- Summary equation:
- Other SCR reactions:

- ... plus many side reactions
- Reduction agent
 - Needed for high conversion rates
 - NH₃, HC (hydrocarbons)

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$

$$8NH_3 + 6NO_2 \rightarrow 7N_2 + 12H_2O$$

 $2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$ "fast SCR"

... a bit of History

- SCR was developer for industrial applications
 - 70s applied in thermal power plants in Japan
 - Since 80s widespread to Europe and USA
- First mobile aplications (not powerplants)
 - 90s Korean cargo ships (diesel engine = electric generator)
 - Reason for this application similar application as in powerplants, steady state of engine operation

How does SCR catalyst look like?

- Ceramics carrier with active substance
 - SiC, Cordierite
- "Mate"
 - Heat resisting dense fibers
 - Spacer for thermal dilatation
- Metal housing
 - Stainless steel

What is the active substance?

- Several substances are catalytically active enough to be used for SCR
- Cu and Fe zeolites (Cu-SSZ-13, Fe-ZSM5)
- Metal oxides (V₂O₅)

What is the mechanism?

Mechanism is strongly dependent on exact composition of the material

"State of the Art"

SCR in Automotive

SCR in Automotive

NH₃-SCR in Automotive

Injection of AdBlue (32,5 % solution of urea in distilled water)

AdBlue[®]

•Injection (200°C):

•1. hydrolysis:

•2. acid w. water:

 $H_2N-CO-NH_2 + H_2O \rightarrow 2NH_3 + CO_2$ $H_2N-CO-NH_2 + H_2O \rightarrow NH_3 + HNCO$ $HNCO + H_2O \rightarrow NH_3 + CO_2$