

Part II A case study: catalytic car converter.

→ A pretext to speak about environmental catalysis (mobile sources)

Our nowadays mankind needs advanced technology BUT with less impact as possible on the environment : less spoiling, less wastes, heat less, etc.

emissions/formations of harmful byproducts/wastes cannot always be avoided

→ « Catalytic clean-up technologies » allow struggling against pollutions

Heterogeneous catalysis is a must to convert air pollutants in molecules not/less toxic for the environment $CO \rightarrow CO_2$ $NO_x \rightarrow N_2$ $SO_x \rightarrow H_2S \rightarrow S^\circ$ $O_3 \rightarrow O_2$ Hydrocarbons $\rightarrow CO_2 + H_2O$

Volatile Organic Compounds (VOC) \rightarrow CO₂ + H₂O

without producing NO_x (\rightarrow N₂) / SO_x (\rightarrow H₂S) / Cl₂ (\rightarrow HCl) for COV containing heteroatom (N, S, Cl)

Challenges for the catalysis

and water ???

 → Organic molecules : hydrocarbons + fatty esters (oils : industrial + eatable) + dyes + solvents
 = same approach as VOC and hydrocarbons in the air : total oxidation

 \rightarrow Nitrates :

= denitrification on (membrane) catalysts

Catalysis vs Trapping/Scrubbing

Washing (for ex : on CaO milk) or Adsorption on active carbon or other porous solids (for ex : zeolites)

Trapping / Scrubbing =

Not everything is trappable : (CO, $O_3 = No$) vs (NO_x, SO_x = Yes)

A^d/_bsorbing is not eliminating but only shifting a pollution !!!
 → What to do when the adsorbant is saturated ???
 (industrial dumping + risk of leaching /combustion + air pollution)

vs destruction of pollutants by catalysis (for ex : dioxins)

Replacement cost of adsorbants vs Starting investment for catalysis

Automotive catalysis

Composition of exhaust gases gasoline engine

Compound	Vol %	Compound	Vol %
СО	1.5 (0.1-6)	02	1.0 (0.2-2)
HC (eq. C1)	0.5 (0.2-1)	H ₂	0.4
NOx	0.15 (0.05-0.4)	H ₂ O	10-12
S02	15-20 ppm	CO ₂	11-13
Р	15-20 ppm	N ₂	qs

 \rightarrow 10 times more CO than NOx

!!!

Variations with tuning of the engine age of the vehicle and type of driving // age of driver !!!

Composition of exhaust gases gasoline engine vs diesel

UCL Université Catholique de Louvain Reactions

Université catholique de Louvain

Reactions to achieve $!!! \rightarrow 3$ -ways

Reactions to achieve $\parallel \mid \rightarrow$ 3-ways

Oxidation reactions : CO and hydrocarbons

$$CO + \frac{1}{2}O_2 \longrightarrow CO_2 \qquad Pt$$

$$HC + O_2 \longrightarrow CO_2 + H_2O$$

$$ex: C_2H_0 + 5O_2 \longrightarrow 3CO_2 + 4H_2O \qquad Pt$$

Reduction reaction	ns : NOx	
NO + CO	→ ¹ / ₂ N ₂ + CO ₂	Rh
NO + H ₂ —	$\rightarrow \frac{1}{2}N_2 + H_2O$	

Too much O_2 \rightarrow A lot of NO \rightarrow Complete oxidation of CO (not enough CO to reduce NO)

Not enough O₂

- \rightarrow complete reduction of NO
 - \rightarrow a lot of CO and
 - unburnt HC

Reactions to achieve $!!! \rightarrow 3$ -ways

Oxidation reactions : CO and hydrocarbons

$CO + \frac{1}{2}O_2 \longrightarrow CO_2$ Pt	
---	--

HC + $O_2 \longrightarrow CO_2 + H_2O$ ex: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ Pt

Reduction rea	ctions :	NOx	
NO + CO		¹ ∕₂N₂ + CO₂	Rh
NO + H ₂	>	½N ₂ + H ₂ O	

→ Way 1 // Way 3
Key of 3-ways = tuning the ratio residual O / reductants in the effluent

tuning the ratio air/fuel at the engine admission

Too much O_2 \rightarrow A lot of NO \rightarrow Complete oxidation of CO (not enough CO to reduce NO) Not enough O₂

- \rightarrow complete reduction of NO
 - ightarrow a lot of CO and

unburnt HC

Effect of air/fuel on TWC performances

Lamba / Richness / Schlater

Effect of λ on TWC performances

Same representation but expressed in emissions → reverse curves !

The effect of the catalyst is clearly visible : 1° less emissions globally 2° transition around $\lambda = 1$ is more marked

Figure 10.1. Emissions of CO, NO_x and hydrocarbons along with the signal from the oxygen sensor as a function of the air/fuel composition; $\lambda = 1$ corresponds to the

air-to-fuel ratio of 14.7. Note that the three pollutants can only be converted simultaneously in a very narrow operating window of air-to-fuel ratios.

How to stay in the right lambda slot ?

How to stay in the right lambda slot ?

How to stay in the right lambda slot ?

Gaigneaux, UCL, Belgium ш Heterogeneous Catalysis,

- Variation of richness during driving = f(type of driving)
- short term (1Hz)

long term (0.1Hz)

The catalyst

as most dispersed (nano) as possible !!!

Figure 10.5. Monolith, washcoat and noble metal particles in an automotive exhaust catalyst.

A typical catalyst

Three-wa	y catalyst	Conditions	
Support:	Honeycomb Monolith 400 cpi (canals per sqi) Wall thickness: 0.15 mm	Temperature 300 to 500°C may reach 900°C	
Washcoat	20 wt-% of a porous support composed of CeO_2/Al_2O_3 La typically 12-20% CeO_2 (today: CeO_2 is replaced by $CeZrO_2$)	Volumic ratio:	1.000.000 h ⁻¹ considering on he wash-coat
Metals	Pt + Rh 1.2 to 1.4 g L ⁻¹ Today: Pd is always added		

1-2% wt of the wash-coat

reaction coordinate

Figure 10.6. Approximate energy diagram of CO oxidation on palladium. Note the largest energy barrier is the CO + O recombination. [Adapted from T. Engel and G. Ertl, *J. Chem. Phys.* **69** (1978) 1267.]

 \rightarrow CO + $\frac{1}{2}$ O₂ \rightarrow CO₂ Highly exothermic reaction (285 kJ/mole)

 \rightarrow On Pd :

Activation energy = 100 kJ/mole for the r° CO*+O* (rate limiting step)

VS

Homogeneous phase : Activation energy = 500 kJ/mole for the dissociation $\frac{1}{2} O_2 \rightarrow O$ (rate limiting step)

 \rightarrow The catalyst has modified

the rate limiting step !

 $(0.5\%CO + 0.5\%O_2)$

Turnover frequencies (second ⁻¹) @ 250°C on bulk metals and Alumina-supported metals (dispersions in parentheses)

Metal	Pd	Pt	Rh
unsupported	4.6	0.31	10.1
Al ₂ O ₃ - Supported	2.9 (41%) 0.9 (67%)	0.24 (7%) 0.10 (87%)	1.8 (57%) 0.4 (69%)

- → R° faster on big particles than on small ones : dispersion **7** → TOF **1** (mainly on Rh)
- \rightarrow Rh and Pd loose activity in presence of NO (not shown)

$$\rightarrow$$
 Best catalyst = Pt

NO = poison !!!

UCL

del ouvair

NO = poison $\parallel \parallel \rightarrow$ CO also (much more) $\parallel \parallel \parallel \parallel \parallel$

Figure 10.7. CO_2 formation rate from CO and O_2 over Rh(111) and Rh(110) surfaces [Adapted from M. Bowker, Q. Guo, and R.W. Joyner, *Catal. Lett.* **18** (1993) 119]. Note the similarity to the simple model used to describe the rate in Fig. 2.12.

According Arrhenius : We should have Temp **7** → Speed **7** Not the case:

 \rightarrow There is a speed maximum !!!

NO = poison $\parallel \parallel \rightarrow$ CO also (much more) $\parallel \parallel \parallel \parallel \parallel$

Figure 10.7. CO_2 formation rate from CO and O_2 over Rh(111) and Rh(110) surfaces [Adapted from M. Bowker, Q. Guo, and R.W. Joyner, *Catal. Lett.* **18** (1993) 119]. Note the similarity to the simple model used to describe the rate in Fig. 2.12.

According Arrhenius : We should have Temp **7** → Speed **7** Not the case:

 \rightarrow There is a speed maximum !!!

Low Temp : surface mostly covered by CO \rightarrow no place for O* $\rightarrow \rightarrow$ no r° CO* + O*

High Temp (> desorption temp of CO): surface covered by O* \rightarrow not enough CO* at the surface $\rightarrow \rightarrow$ no r° CO* + O*

NO = poison $\parallel \parallel \rightarrow$ CO also (much more) $\parallel \parallel \parallel \parallel \parallel$

Figure 10.7. CO_2 formation rate from CO and O_2 over Rh(111) and Rh(110) surfaces [Adapted from M. Bowker, Q. Guo, and R.W. Joyner, *Catal. Lett.* **18** (1993) 119]. Note the similarity to the simple model used to describe the rate in Fig. 2.12.

According Arrhénius : We should have Temp **7** → Speed **7** Not the case:

 \rightarrow There is a speed maximum !!!

Necessity to work at intermediate temperature at which coverage of the surface by CO and by O are comparable !!!

Mechanism of Langmuir-Hinshelwood (cf Part Ib – Section 6)

Metal or Metal/alumine

order –1 for the CO \rightarrow CO = inhibitor

= CO adsorbs stronger on the metal and does not allow oxygen to adsorb

UCL

catholique de Louvain

Metal	I Pd			Pt			Rh		
Support	none	Al ₂ O ₃ ^a	CeO ₂ -Al ₂ O ₃	none	$Al_2O_3^a$	CeO ₂ -Al ₂ O ₃	none	$Al_2O_3^a$	CeO ₂ -Al ₂ O ₃
m (O ₂)	+1.0	+0.9	0	+1.0	+1.0	+0.5	+1.0	+1.0	0
n (CO)	-1.0	-0.9	+1.0	-1.0	- 0.9	+0.3	-1.0	-0.8	+0.2
E _a (kJ mol ⁻¹)	125	108-133	50	125	104-125	84	117	92 - 113	104

- Metal/ceria+alumina
- order +1 for the CO \rightarrow CO \neq inhibitor
- → ceria brings new sites for the adsorption of oxygen !!!

UCL

catholique de Louvain

Effect of the addition of ceria

A mixture « rich » in CO inhibits less Rh/Ce-Alumina than Rh/Alumina

Effect of the addition of ceria

- CO adsorption on metal (site #)
- O₂ adsortion on O vacancies of ceria (site *)
- CO reaction with O species at the metal/support interface

→ The adsorptions of CO and O₂ are no more competitive because there are 2 distinct sites of adsorption for them

Effect of the addition of ceria

- → The oxidation of CO happens thanks to O atoms from ceria (and not from the gas phase)
- →→ Does it work without O_2 in the reaction gas ?

- CO adsorption on metal (site #)
- O₂ adsortion on O vacancies of ceria (site *)
- CO reaction with O species at the metal/support interface

Metal	Pd			Pt			Rh		
Support	none	$Al_2O_3^a$	CeO ₂ -Al ₂ O ₃	none	$Al_2O_3^a$	CeO ₂ -Al ₂ O ₃	none	$Al_2O_3^a$	CeO ₂ -Al ₂ O ₃
m (O ₂)	+1.0	+0.9	0	+1.0	+1.0	+0.5	+1.0	+1.0	0
n (CO)	-1.0	-0.9	+1.0	-1.0	- 0.9	+0.3	-1.0	-0.8	+0.2
E_a (kJ mol ⁻¹)	125	108-133	50	125	104-125	84	117	92 - 113	104

With ceria, order 0 for O_2 !!! = it works even without O_2 in the gas !!! \rightarrow With ceria : it works more as MVK !!!

UCL

Université catholique de Louvain

Effect of the addition of ceria

TWC → Oxidation of HC and alcools

Light-off temperatures (50% conversion) Catalyst: commercial Pt-Rh/CeO₂-Al₂O₃

n-alkanes	T50		Alkenes, alkyne	T50
Methane	515°C		Ethylene	205°C
Ethane	435°C		Propene	185°C
Propane	290°C		Acethylene	285°C
Hexane	195°C			

Aromatics	T50	Alcohols	T50
Benzene	205°C	Methanol	195°C
Toluene	220°C	Ethanol	200°C
O-Xylene	225°C	Propanol	205°C
		Butanol	210°C

\rightarrow Light-off and T50

TWC → Oxidation of HC and alcools

→ Light-off and T50

T50 : temperature at which catalyst has 50% of conversion T10, T90, etc ...

UCL Université catholique

de Louvain

TWC → Oxidation of HC and alcools

Light-off temperatures (50% conversion) Catalyst: commercial Pt-Rh/CeO₂-Al₂O₃

n-alkanes	T50	Alkenes, alkyne	T50
Methane	515°C	Ethylene	205°C
Ethane	435°C	Propene	185°C
Propane	290°C	Acethylene	285°C
Hexane	195°C		

Aromatics	T50	Alcohols	T50
Benzene	205°C	Methanol	195°C
Toluene	220°C	Ethanol	200°C
O-Xylene	225°C	Propanol	205°C
		Butanol	210°C

In general :

Alcohols easier to oxidize than alkanes

- \rightarrow alkanes more difficult than olefins
- → Lighter alkanes → more difficult (not true for alcohols)

Université catholique de Louvain

TWC → Oxidation of HC and alcools

Turnover frequencies (second ⁻¹) on unsupported and alumina-supported metals. Gas composition : 0.1%HC + 1%O₂ +N₂

НС		CH_4	C_2H_6	C ₃ H ₈	C_4H_{10}
T°C	Disp.%	400	350	250	225
Pd	65	0.012	0.030	0.0045	0.0014
(s ⁻¹)	16	0.31	0.093	0.0072	0.0042
	foil	5.4	3.6	0.25	0.19
Pt	87			0.16	1.75
(s ⁻¹)	6	0.0095	0.31	1.5	5.2
	foil	0.017	0.93	10.0	10.4
Rh	57	0.0085	0.0095	0.0004	0.0004
(s ⁻¹)	7	0.017	0.011	0.0006	0.0004
	foil	0.050	0.16	0.010	0.0076

- → Pt : best metal for C2-C4
- \rightarrow but Pd : best for CH₄
- \rightarrow Rh always bad !
- \rightarrow Dispersion **7** \rightarrow Activity **2** (big particles more active)

TWC \rightarrow Oxidation of HC and alcools

Effect of addition of ceria

« Activity ratio » = activity of metal on CeO_2 - Al_2O_3 / activity of metal on Al_2O_3

Reaction	Pd (0.15%)	Pt (0.22%)	Rh (0.15%)
$CH_4 + O_2$	0.3 (400°C)	0.05 (500°C)	1 (500°C)
$C_{3}H_{8} + O_{2}$	0.2 (350°C)	0.5 (250°C)	3 (400°C)

→ Negative effect for Pd and Pt (ratio < 1) → → mainly true for Pt

 \rightarrow « Positive effect » for Rh (ratio > 1)

TWC → Oxidation of HC and alcools

Effect of addition of ceria

Metal	Pd		Pt			Rh			
Support	none	Al ₂ O ₃	CeO ₂ -Al ₂ O ₃	none	Al ₂ O ₃	CeO2-Al2O3	none	Al ₂ O ₃	CeO2-Al2O3
m (O ₂)	0	+ 0.1	+0.1	- 1		- 1	+ 0.1	0	+ 0.1
n (C ₃ H ₈)	+ 0.4	+ 0.6	+ 0.6	+ 1.2	$\left(+ 2 \right)$	+ 2	+ 0.5	+ 0.5	+ 0.4
E _a (kJ mol ⁻¹)	96	66-96	63	92	84-105	96	92	100	84

→ Pt : order for $O_2 = -1$ vs order for $C_3H_8 = +2$ → adsorption $O_2 >>>$ adsorption C_3H_8

→ → opposite situation as for CO
 The surface is spontaneously more covered by O₂
 → adding oxygen (via CeO₂) diminishes further the place for C₃H₈

Consequence : activity of Pt 🏼 🐿 in presence of ceria.

TWC → Oxidation of HC and alcools

Effect of addition of ceria

Metal	Pd		Pt			Rh			
Support	none	Al ₂ O ₃	CeO2-Al2O3	none	Al ₂ O ₃	CeO2-Al2O3	none	Al ₂ O ₃	CeO2-Al2O3
m (O ₂)	0	+ 0.1	+0.1	- 1	-1	- 1	+ 0.1	0	+ 0.1
n (C ₃ H ₈)	+ 0.4	+ 0.6	+ 0.6	+ 1.2	$\left(+2\right)$	+ 2	+ 0.5	+ 0.5	+ 0.4
E _a (kJ mol ⁻¹)	96	66-96	63	92	84-105	96	92	100	84

\rightarrow Pt : adsorption O₂ >>> adsorption C₃H₈

→ Pd and Rh : smaller difference between orders for O₂ and C₃H₈
 → → effect of CeO₂ less negative (or positive) via adsorption but additional activating effect via E_{act}

TWC \rightarrow Oxidation of HC and alcools

Constants of relative adsorption

 \rightarrow Useful to predict the effect of ceria !!!

Three main reactions:

- 1-Reduction by CO NO+CO $\rightarrow \frac{1}{2}N_2 + CO_2$
- 2-Reduction by H_2 NO+ $H_2 \rightarrow \frac{1}{2}N_2 + H_2O$
- 3-Reduction by an hydrocarbon $4 \operatorname{NO} + \operatorname{CH}_4 \rightarrow 2 \operatorname{N}_2 + \operatorname{CO}_2 + 2 \operatorname{H}_2 \operatorname{O}$

Side reactions (undesired)

4-Nitrous oxide formation $2 \text{ NO} + \text{CO} \rightarrow \text{N}_2\text{O} + \text{CO}_2$

5-Ammonia formation

$$NO + \frac{5}{2}H_2 \rightarrow NH_3 + H_2O$$

Reaction CO + NO

Activity of Metal/Al₂O₃ catalysts 0.5 % NO + 2% CO Temperatures for a 50% conversion (T_{1/2})

Ru, 205°C > Rh, 296 °C >> Pd, 431 °C > Pt, 471°C

 $E \approx 100 \text{ kJ mol}^{-1}$

Relative activity (TOF)Ru, 5500Rh, 100Pd, 1.7Pt, 0.7

Kinetic orders 0 to – 0.4 in NO 0 to + 0.1 in CO Ru by far the best ! but !!! in presence of O₂ → formation of RuO₄ VOLATILE !!!

One puts Rh in converter for its ability to activate CO+NO (Reminder: Rh is not efficient in oxidizing CO in the presence of NO)

Reaction NO + H_2

T_{1/2} (°C) : comparison with NO + CO Catalysts: M/Al₂O₃

Catalyst	NO + H ₂	NO + CO	
Pd	106	431	
Pt	121	471	
Rh	163	296	
Ru	237	205	

Reduction of NO easier with H_2 !

 \rightarrow Normal !? H₂ more reducing

Mainly on Pt and Pd → Normal !? Pt and Pd activate easily H₂

Pd and Pt: very active in NO reduction by H₂ Rh and Ru: very active in NO reduction by CO

 \rightarrow reverse order of reactivity BUT ... (in the real system) ?

Reaction NO + H_2

T_{1/2} (°C) : comparison with NO + CO Catalysts: M/Al₂O₃

Catalyst	NO + H ₂	NO + CO	NO + CO + H ₂	temperature
Pd	106	431	330	and order of
Pt	121	471	398	reactivity close
Rh	163	296	275	to those of NO+CO
Ru	237	205	210	

Pd and Pt: very active in NO reduction by H₂ Rh and Ru: very active in NO reduction by CO

 \rightarrow reverse order of reactivity BUT 1° inhibition NO+H₂ by CO

UCL

Université catholique de Louvain

Catalyst	NO + H ₂	NO + CO	NO + CO + H ₂
Pd	106	431	330
Pt	121	471	398
Rh	163	296	275
Ru	237	205	210

T₁₁ (°C) : comparison with NO + CO Catalysts: M/Al₂O₃

Pd and Pt: very active in NO reduction by H₂ Rh and Ru: very active in NO reduction by CO Reaction NO + H₂ strongly inhibited by CO

Reaction NO + H_2

→ BUT 2° reduction of NO not to N₂ in presence of H₂ = NO+H₂→NH₃ (mainly on Pt and Pd)

Selectivity at high conversion @480°C Gas composition: 1.5%NO + 4.5%CO + 4.5%H₂

Catalyst	Conv. NO		Selectivities %						
	%	$NO \rightarrow N_2$	$\rm NO \rightarrow NH_3$	NO + CO	$NO + H_2$				
Pd	94	26	74	9	91				
Pt	94	23	77	8	92				
Rh	100	67	33	20	80				
Ru	100	92	8	29	71				

Rh remains the best most active most selective to N₂ most stable

UCL

Université catholique de Louvain

TWC→ Further challenges !

1° Improvement of engines conditions

→ In order to diminish HC and CO_2 emissions , one must better burn the fuel (→ less unburnt)

one must work at A/F = 20

= with too much oxygen !!!

Figure 10.1. Emissions of CO, NO₄ and hydrocarbons along with the signal from the oxygen sensor as a function of the air/fuel composition; $\lambda = 1$ corresponds to the air-to-fuel ratio of 14.7. Note that the three pollutants can only be converted simultaneously in a very narrow operating window of air-to-fuel ratios.

→ at LAMBDA (20/14.7) = 1.36 the reduction of NO does not proceed on the TWC !

 \rightarrow a lot of NO in the exhaust gas

TWC→ Further challenges !

1° Improvement of engines conditions
= one must work at A/F = 20
= with too much oxygen !!!
→ a lot of NO in the exhaust gas

2° Diesel cars

Better yield of diesel engines (less CO₂ formed)

d_{gasoline} < d_{diesel} = less C (thus less energy) in 1 litre of gasoline

BUT there is 6 to 10% of O₂ at the exhaust !!!

= price to pay to have less unburnt (better yield) \rightarrow as a counterpart, there is more NO_x than for gasoline engines

TWC→ Further challenges !

 $\frac{\text{Concept}}{(\text{developed by Toyota} \rightarrow \text{ « Toyota Process »})}$

process in 2 steps during which the engine shifts successively from periods at lean regime (A/F ~ 20, 1 minute) to periods at rich regime (A/F ~ 10, 2 s).

 $\frac{\text{Concept}}{(\text{developed by Toyota} \rightarrow \text{ « Toyota Process »})}$

$\frac{\text{Concept}}{(\text{developed by Toyota} \rightarrow \text{ « Toyota Process »})}$

Why is working in cycles needed ?

Figure 10.10. Principle of operation of NOx storage catalyst. During lean combustion, NO is oxidized to NO₂ and stored by BaO as barium nitrates. Once the getter is saturated, a short rich excursion of the air-fuel mixture

reduces the nitrates and the cycle starts anew. (Adapted from S. Matsumoto, *Cattech* 4 (2000) 2). Note that in an operating system the cycle time from lean to rich conditions will be much shorter than indicated in this figure.

Gaigneaux, UCL, Belgium ш Heterogeneous Catalysis, |

What else???

Automotive catalysis is also :

things about poisoning of catalysts :
 S, P, Si, Pb, etc
 (solution = heterogeneous catalytic HDS)

things about soots

 in diesel engines
 (solution = heterogeneous catalysis)

- things about secondary catalytic reactions Between co-reactants present in exhaust gas

= many other things to address !!!