Heterogeneous catalysis (C9981)

Lecture 9
Zeolites in oil refinement

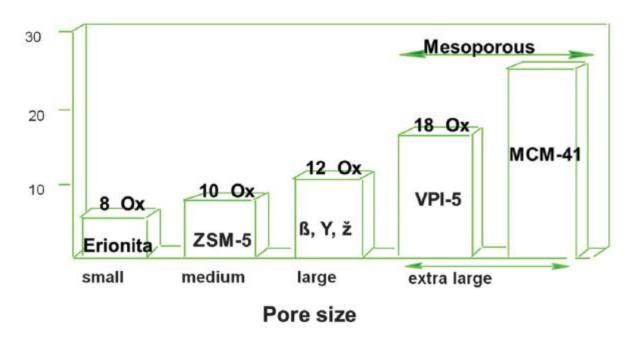
styskalik@chemi.muni.cz styskalik.sci.muni.cz

Zeolites - synthesis

Reaction mixture: ..., ..., ...

```
pH adjustment, (gelation)
```

- Hydrothermal treatment in an autoclave
- **—** ...
- **—** ...


Result: H-zeolite (Brønsted acidic with H⁺ ions)

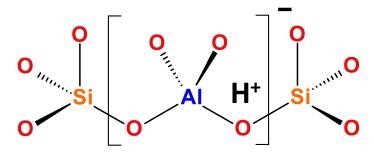
Zeolites - synthesis

- Reaction mixture: Na₂SiO₃, Al₂O₃, quarternary ammonium salt (=structure directing agent), water
 - pH adjustment, (gelation)
 - Hydrothermal treatment in an autoclave
 - Ion exchange (Na⁺ for NH_a⁺)
 - Calcination (= NH₃ removal)
- **Result:** Crystalline H-zeolite (Brønsted acidic with H⁺ ions)

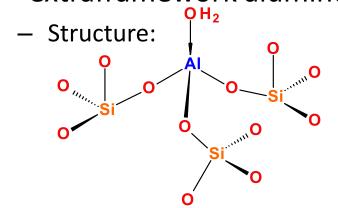
Zeolites - synthesis

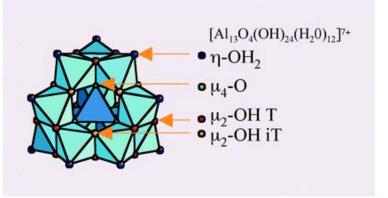
Pore size

Si/Al ratio ≥ 1

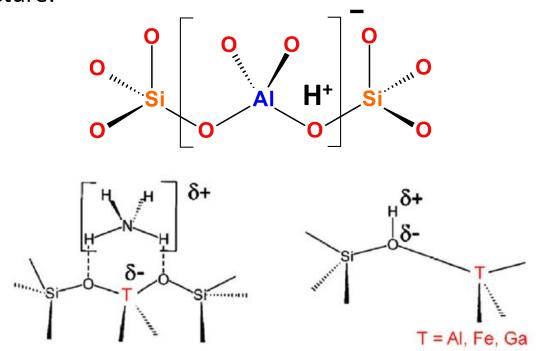

DOI: 10.1039/c3cs60394f

• Brønsted: ...


– Structure:

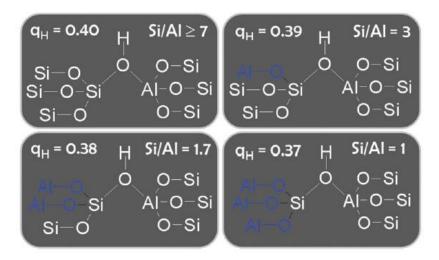

- Lewis: ...
 - Structure:

- **Brønsted:** negative charge of the aluminosilicate net balanced by strongly acidic protons
 - Structure:



 Lewis: Al atoms that are not embedded in the aluminosilicate net (e.g. surface species, amorphous stuff, alumina particles)
 = extraframework aluminum species (EFAL)

- **Brønsted:** negative charge of the aluminosilicate net balanced by strongly acidic protons
 - Structure:



Changes in local Al structure revealed by EXAFS

DOI: 10.1039/C8CS00887F

Brønsted: depends on the second coordination sphere (i.e.

Si/Al ratio)

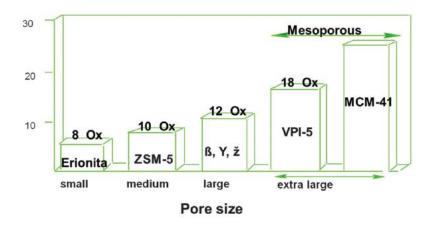
- Lewis: Extraframework aluminum species (EFAL) depends on
 - Si/Al ratio
 - Aging (time on stream, steaming)
 - Can be washed out (depending on pH acid washing)

High Si/Al ratio

- Strong Brønsted acid sites
- Weak Brønsted acid sites
- Strong Lewis acid sites
- Weak Lewis acid sites

Low Si/Al ratio

- Strong Brønsted acid sites
- Weak Brønsted acid sites
- Strong Lewis acid sites
- Weak Lewis acid sites


High Si/Al ratio

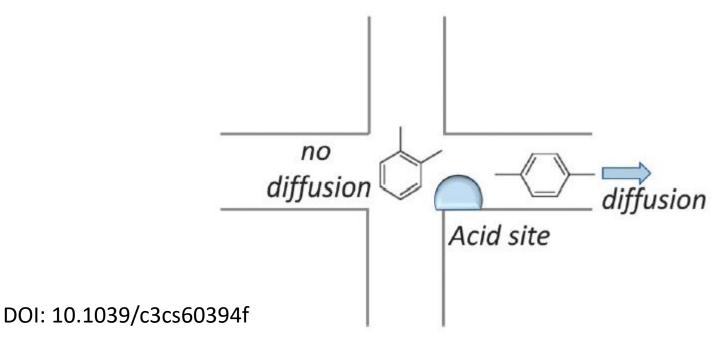
- Strong Brønsted acid sites
- Weak Brønsted acid sites
- Strong Lewis acid sites
- Weak Lewis acid sites

Low Si/Al ratio

- Strong Brønsted acid sites
- Weak Brønsted acid sites
- Strong Lewis acid sites
- Weak Lewis acid sites

Confinement effect

Superacidity


- Various probes at RT acid site strength similar to 70 % H₂SO₄ (=NO!)
- Ability to protonate hydrocarbons at working conditions (=YES!)
- **—** ?

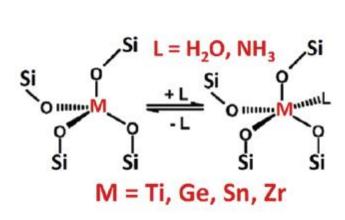
Zeolites – diffusion/shape selectivity

Diffusion

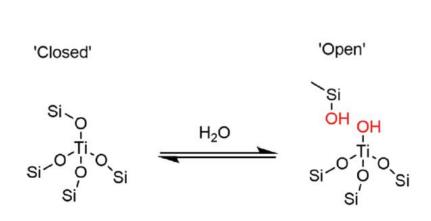
- Big difference between zeolites with 8 membered vs. 12 membered ring pore openings
- Big difference between zeolites with 1D, 2D, and 3D-connected pore structure

Shape selectivity

Other microporous frameworks


Non-Al zeolites

- $-Be^{2+}$, Zn^{2+} , B^{3+} , Ga^{3+} , Fe^{3+} , Ge^{4+} , Ti^{4+} , Sn^{4+}
- 15 % variation in radius (vs. Si⁴⁺)
- ±0.4 a.u. Pauling electronegativity
- Aluminophosphates (AlPOs)
 - SiO₂ and AlPO₄ and isoelectronic structures
 - No catalytic activity
- M(II) Aluminophosphates
 - Mild Brønsted acids and(or) redox catalysts
- Silicoaluminophosphates (SAPOs)
 - Mild Brønsted acids


Other microporous frameworks

Non-Al zeolites

- $-Be^{2+}$, Zn^{2+} , B^{3+} , Ga^{3+} , Fe^{3+} , Ge^{4+} , Ti^{4+} , Sn^{4+}
- 15 % variation in radius (vs. Si⁴⁺)
- ±0.4 a.u. Pauling electronegativity

Lewis acidity in non-Al zeolites

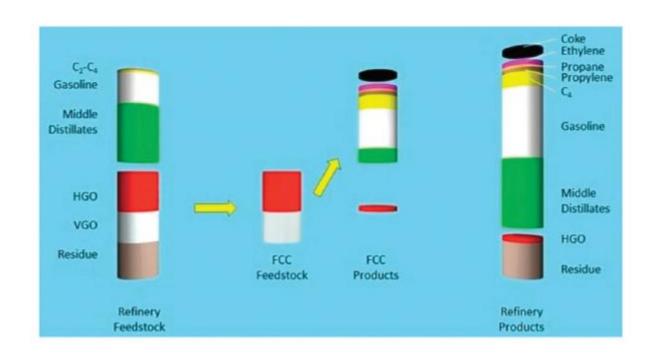
Open vs. Closed acid sites in non-Al zeolites

Other microporous frameworks

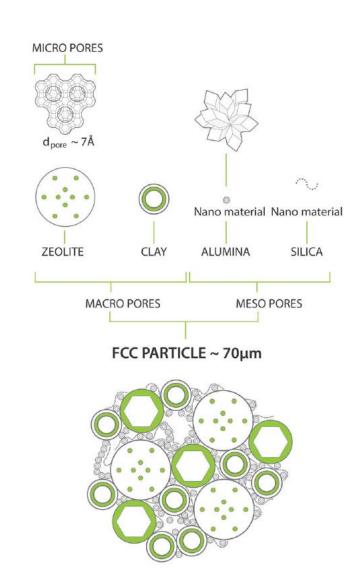
- Aluminophosphates (AIPOs)
 - M(II) Aluminophosphates
 - Silicoaluminophosphates (SAPOs) = milder acidity

Table 1
Methanol conversion and product selectivity of MTO over SAPO-34.

Pulse number	Conversion (%)	Selectivity (C%)							
	CH ₃ OH	C_{1}^{0}	C ₂ -	C_{2}^{0}	C ₃ -	C_{3}^{0}	C ₄	C ₅	C ₆ +
1	40.4	3.5	6.6	0.0	60.8	1.3	15.6	7.6	4.7
15	91.6	0.8	26.8	0.2	42.4	6.8	16.0	5.8	1.2
19	96.0	0.8	27.3	0.2	44.1	4.0	16.0	6.3	1.4

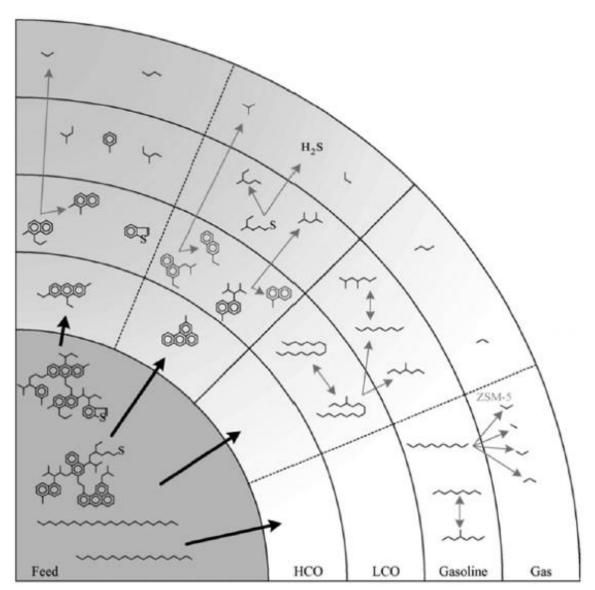

Table 2 Methanol conversion and product selectivity of MTO over ZSM-5.

Pulse number	Conversion (%)	Sele	ctivity	(C%)					
	CH ₃ OH	C_{1}^{0}	C ₂ -	C_{2}^{0}	C ₃ -	C_{3}^{0}	C ₄	C ₅	C ₆ +
1	76.0	1.8	8.4	0.0	37.3	1.4	15.4	11.1	24.6
15	82.5	2.2	10.8	0.1	36.2	1.2	14.9	8.6	26.0
19	78.5	2.0	9.1	0.1	37.1	1.1	14.5	10.6	25.5

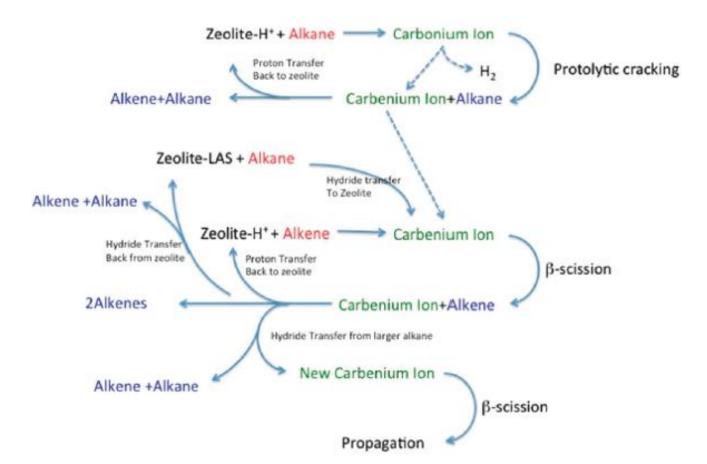

DOI: 10.1016/j.cattod.2011.02.027

- Fluid catalytic cracking
- Isobutane-butene alkylation
- Reforming (+ steam reforming)
- Hydrocracking
- Linear paraffin isomerization

DOI: 10.1039/c3cs60394f

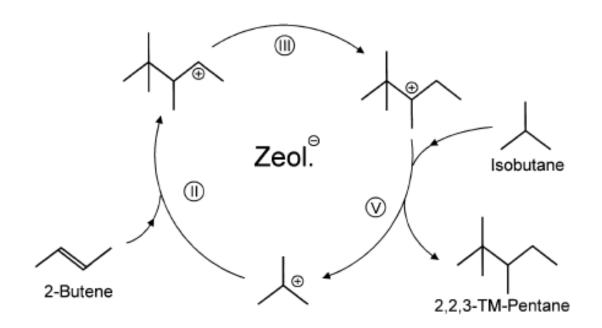


- Zeolite Y 10-50 wt%
- Binders 50-90 wt%
- At the beginning AICl₃
- Addition of HZSM-5


Fluid c

- Sho
- Ison
- "Arc
- HZS

- Protonation + protolytic cracking
- H⁻ abstraction + β scission


- Protonation + protolytic cracking
- H⁻ abstraction + β scission

- Protonation + protolytic cracking
 - We need strong Brøsted acid sites (zeolite Y)
- H⁻ abstraction + β scission
 - We need strong Lewis acid sites (steamed/(acid washed) zeolite Y)
- Long linear hydrocarbons diffusion
 - Precracking on alumina and silica-alumina (non-innocent binders)
 - Hierarchical porosity in zeolites (steamed/(acid washed) zeolite Y)

Isobutane-butene alkylation

- We want highly branched C8 hydrocarbons (high octane number)
- HF and H₂SO₄ catalyzed alkylation still running in industry
- Large pore zeolites as a substitution

Isobutane-butene alkylation

- Large pore zeolites as a substitution
- BUT! 2-butene dimerization...oligomerization...coking...deactivation

Table 1 Activity and selectivity of some acid zeolites as alkylation catalysts

Zeolite	USY	Beta	Mordenite	ZSM-5	MCM-22
2-Butene conv. (%)	100	97	94	100	95
C ₈ (wt%)	40.9	50.6	70.2	83.5	33.0
Trimethylpentanes	74.1	76.9	76.9	20.9	36.9
2,2,4-Trimethylpentane	37.7	52.4	57.2	27.3	4.1

Linear paraffin hydroisomerization

- Linear C8 (C7) \rightarrow branched C8 (C7)
- Requires strong Brønsted acidity and hydrogenation/dehydrogenation activity (Pt(Ni) on mordenite)
- Mordenite large pore, monodirectional pores
- Mordenite dealuminated (strong H⁺), acid washed (low EFAL)
- Protonation = carbocations
- Stability of carbocations? Branched hydrocarbons?

Linear paraffin hydroisomerization

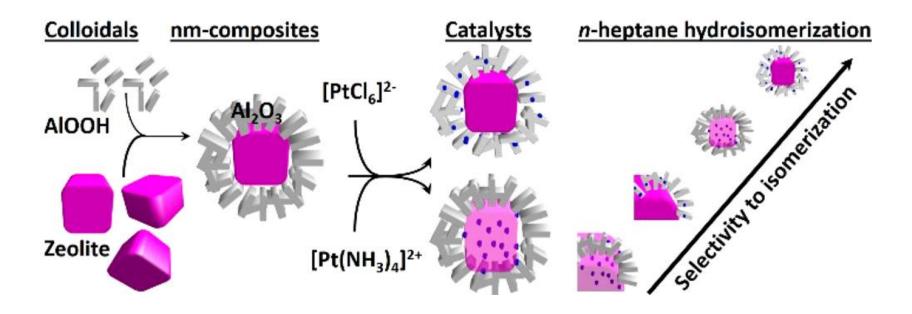
- Linear C8 (C7) \rightarrow branched C8 (C7)
- Requires strong Brønsted acidity and hydrogenation/dehydrogenation activity (Pt(Ni) on mordenite)
- Mechanism???
 - Dehydrogenation of n-alkane to n-alkene on Pt
 - Diffusion???
 - Protonation of n-alkene to secondary carbenium ion on H⁺ zeolite
 - Secondary carbenium ion rearranges to tertiary (more stable) carbenium ion
 - Desorption from acid site produces iso-alkene, H⁺ is restored
 - Diffusion???
 - Hydrogenation of iso-alkene to iso-alkane on Pt

Linear paraffin hydroisomerization

- Researchers interested in the effect of "intimacy" (Pt-acid site)
- Affects mainly selectivity, activity to some extent
- An optimum between "too close" and "too far"

Heteroaggregation and Selective Deposition for the Fine Design of Nanoarchitectured Bifunctional Catalysts: Application to Hydroisomerization

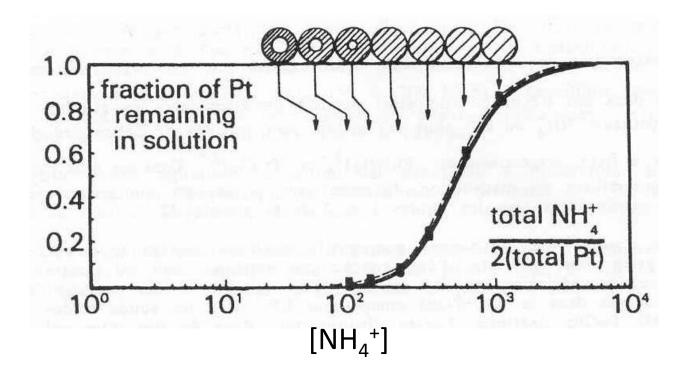
Olfa Ben Moussa,^{†,‡} Lionel Tinat,^{†,‡} Xiaojing Jin,[†] Walid Baaziz,[§] Olivier Durupthy,*^{,‡} Céline Sayag,[†] and Juliette Blanchard*^{,†}


n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites

N. Batalha^a, L. Pinard^{a,*}, C. Bouchy^b, E. Guillon^b, M. Guisnet^{c,d,*}

Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

Linear paraffin hydroisomerization


- Researchers interested in the effect of "intimacy" (Pt-acid site)
- Affects mainly selectivity, activity to some extent
- An optimum between "too close" and "too far"

DOI: 10.1021/acscatal.8b01461

- Linear paraffin hydroisomerization
 - Pt(Ni) on mordenite
 - How do we deposit Pt on a zeolite? (Lecture 3)

- Linear paraffin hydroisomerization
 - Pt, Pd, Ni on mordenite
 - Electrostatic interaction = lon exchange
 - Competitive ion exchange

Linear paraffin hydroisomerization

- Pt, Pd, Ni on mordenite
- Electrostatic interaction = Ion exchange
 - Competitive ion exchange

ISOMERIZATION OF N-HEXANE ON Pt/HUSY

	10 ⁴ v _i (mole h ⁻¹		
magina hi majara pagara guntunggi d	G.D.	P.D.	
T (°C)			V I GD V
230 250	39 180	70	2.6
260	317	140	2.3
270 280	613	280 540	2.2

G.D.: good distribution P.D.: poor distribution

- Hydrocracking (i.e. cracking in the presence of H₂)
 - Shortening of long hydrocarbons
 - From linear to branched (alkylation, carbocations,...)
 - Hydrogenation/dehydrogenation
 - Pt, Pd on mordenite (also zeolite Y and β)

Reforming and steam reforming

- Cyclization, isomerization of cyclic compounds to cyclohexene,
 cyclohexene and its derivatives dehydrogenation to benzene, toluene,
 xylene (BTX), and other aromatics
- H₂ as a useful "by-product"
- Pt on high surface area support, non-acidic
- Reforming in the presence of $H_2O = H_2$ production

- Regular structure
- High stability
- Shape selectivity
- Confinement effect

- Diffusion limitations
- Coking
- Fast deactivation

Solution?

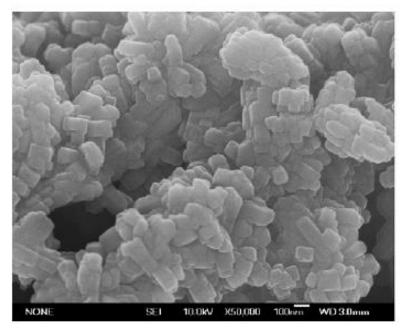
- Extra-large pore zeolites
- Nanocrystalline zeolites
- Hierarchical zeolites
- Two-dimensional zeolites
- MCM-41, SBA-15 and other mesoporous silica???

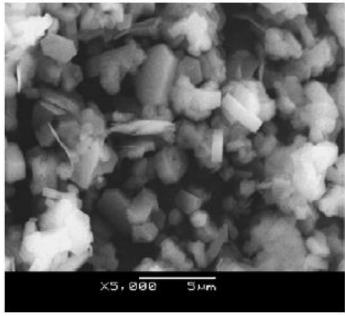
- Regular structure
- High stability
- Shape selectivity
- Confinement effect

- Diffusion limitations
- Coking
- Fast deactivation

Solution?

- Extra-large pore zeolites
- Nanocrystalline zeolites
- Hierarchical zeolites
- Two-dimensional zeolites
- MCM-41, SBA-15 and other mesoporous silica???

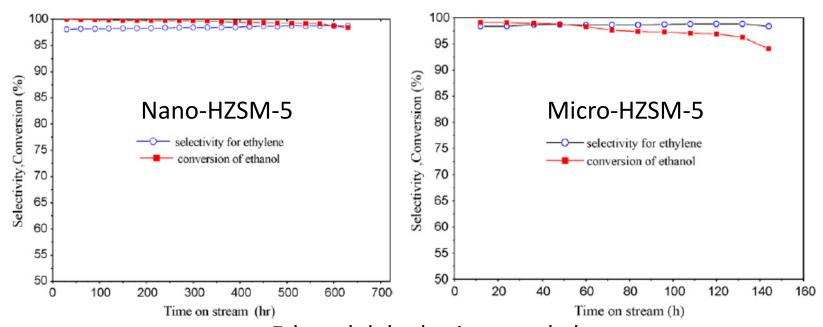

Extra-large pore zeolites


- Germanosilicates
- New organic structure-directing agents
- Ge for Al substitution
- Assembly-disassembly-organization-reassembly (prof. Čejka, Prague)

DOI: 10.1039/C8CS00887F

Nanocrystalline zeolites

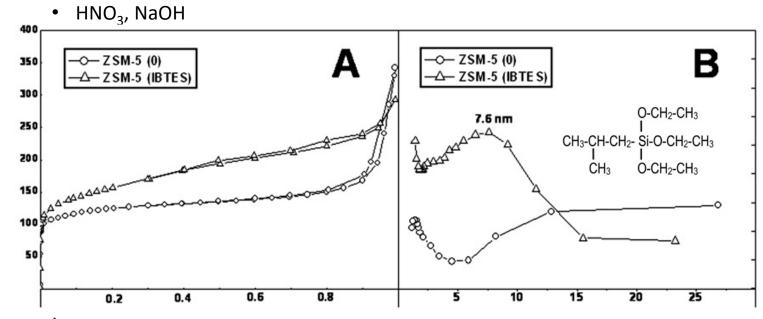
- Classic hydrothermal synthesis
- But! Part of Si source = MeSi(OEt)₃



DOI: 10.1016/j.cattod.2009.04.016

Nanocrystalline zeolites

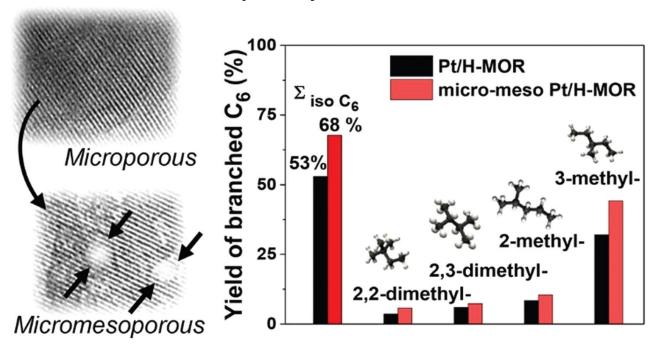
- Classic hydrothermal synthesis
- But! Part of Si source = MeSi(OEt)₃



Ethanol dehydration to ethylene

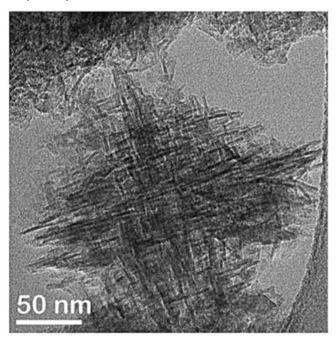
DOI: 10.1016/j.cattod.2009.04.016

Hierarchical zeolites


- Add something into the rxn mixture in order to create large pores
 - Hard templates (carbon,...)
 - Soft templates (alkoxysilanes with a long aliphatic chain)
- Dealumination, desilication

DOI: 10.1039/B805502E

Hierarchical zeolites


- Add something into the rxn mixture in order to create large pores
- Dealumination, desilication: alkaline-acid, acid-alkaline, and fluorination-alkaline post-synthesis treatments of H-MOR (below)

DOI: 10.1039/B805502E

Two-dimensional zeolites

- Pillaring
 - CTMA⁺, sonication, surfactant removal = stacked layers
- Delamination
 - CTMA⁺, sonication, TEOS hydrolysis, calcination = layered zeolites with permanently expanded interlayer spaces

