Heterogeneous catalysis (C9981)

Common Pitfalls of Catalysis Manuscripts Submitted to Chemistry of Materials

Editorial

pubs.acs.org/cm

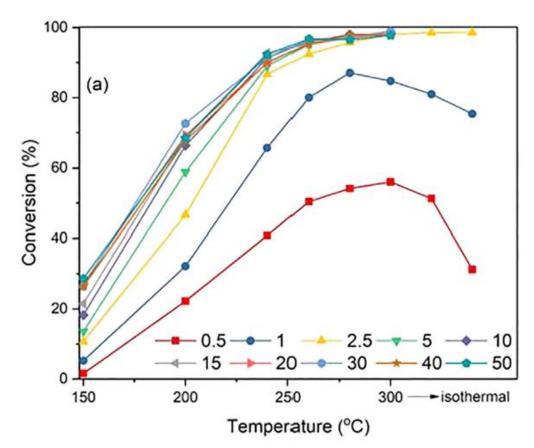
Common Pitfalls of Catalysis Manuscripts Submitted to Chemistry of Materials

Active site/catalyst evaluation

- Turn-over frequency (TOF; [s⁻¹])
 = number of catalytic cycles performed by 1 active site per time unit
- Precise numbers for homogeneous and enzymatic catalysis
- Numbers for heterogeneous catalysis???

	TOF [s ⁻¹]
Hetero:	~1–100 s ⁻¹
Homo:	~10–1000 s ⁻¹
Enzymes:	~10000–1000000 s ⁻¹

Catalysis: Concepts and Green Applications. Gadi Rothenberg Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, ISBN: 978-3-527-31824-7


Active site/catalyst evaluation

- Turn-over number (TON; [-])
 = number of catalytic cycles performed by 1 active site before deactivation (~lifetime)
- Precise numbers for homogeneous and enzymatic catalysis
- Numbers for heterogeneous catalysis???

- Improper calculation of turnover frequencies (TOFs)
 - Low conversion, early stage of the rxn
 - Valid only for specific reactant concetration
- Improper calculation of turnover numbers (TONs)
 - A measure of catalyst's stability
 - Accurate determination requires measurements until the catalyst's activity is completely lost

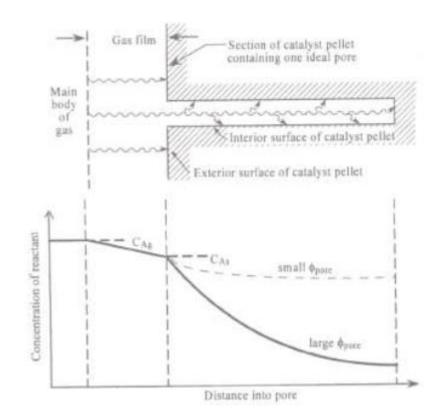
- Deactivation studies at full/equilibrium conversion
 - Batch vs. continuous flow
 - The available amount of reagents limit the conversion = the catalyst could be in fact more active
 - Deactivation should be studied at intermediate conversions

 Deactivation studies at full/equilibrium conversion

Active site/catalyst evaluation

• **Selectivity** is ability of catalyst to form one product from a pool of products (possibly many)

reactant R
$$\begin{cases} \times C \\ \rightarrow D \\ \times E \\ \times F \end{cases}$$

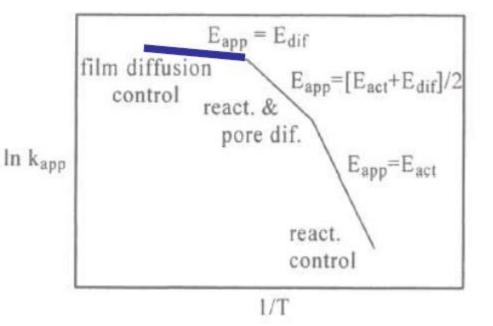

• **Selectivity** (S; [%])

= number of D molecules produced / R molecules converted

- Comparison of selectivities at different conversion levels
 - Selectivity does depend on conversion
 - $-A \rightarrow B \rightarrow C$
 - Always compare at isoconversion

Diffusional limitation

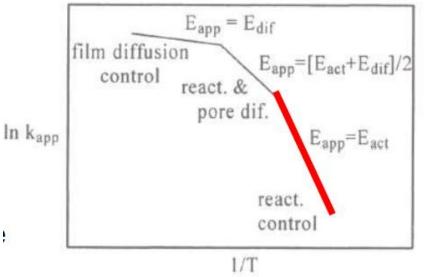
- Gradient of reactant concentration in
 - Fluid film of particle (External diffusion)
 - Inside the pore (Internal diffusion)



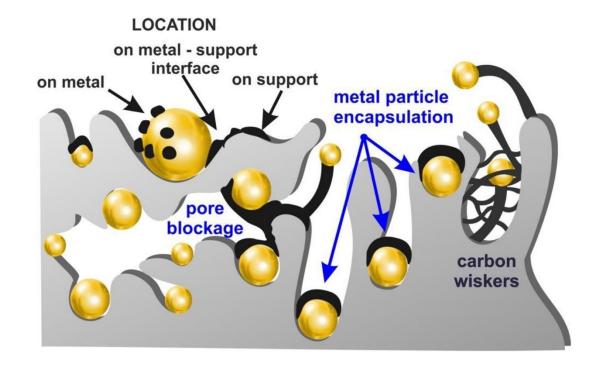
- Neglect of mass transfer (diffusional) limitations
 - External (film) + Internal (pore) diffusion

Rate determining step

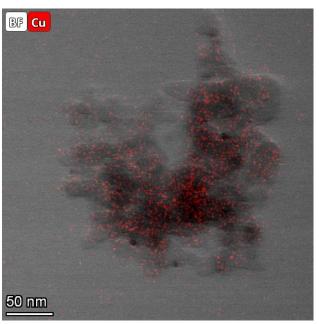
• High temperature


- The chemical reaction is fast
- There is no time for internal diffusion to take place, only external surface employed in catalysis
- Diffusional steps are limiting
- E_{app} = E_a of the diffusion in the fluid film (external diffusion)

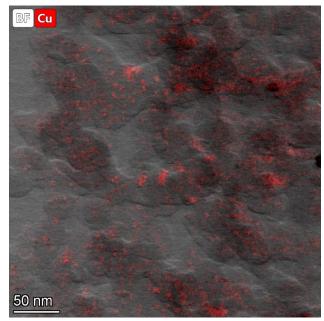
- Neglect of mass transfer (diffusional) limitations
 - Batch, both diffusions: stirring rates
 - Continuous flow, external diffusion:
 - Continuous flow, internal diffusion: particle size, pore volume, pore size


Diffusional limitations

- Internal diffusional limitations always present to some extent
 - We can diminish them at the time of catalyst preparation (pore volume, pore diameter, size of catalysts grains)
 - Good practice is to compare a series of catalysts with similar pore volume, pore diameter, and size of catalysts grains
- External can be avoided at the time of catalytic reaction
 - Linear velocity of vector gas,...


- Failure to study the catalysts after reaction
 - Catalysts can change dramatically during catalytic reactions
 - Sintering, coking, pore collapse, poisoning,...
 - It is not correct to justify the differences between the catalysts only based on the characterization of the starting material

- Failure to study the catalysts after reaction
 - Catalysts can change dramatically during catalytic reactions
 - Coking



- Failure to study the catalysts after reaction
 - Catalysts can change dramatically during catalytic reactions
 - Sintering

Before cata

- Failure to consider differences in surface area of catalysts
 - Catalytic activity scales with number of active sites
 - Common sense: Number of active sites scales with the surface area
 - Compare the activity of catalysts per m²