CG020 Genomika Přednáška 11 Systémová biologie Jan Hejátko Funkční genomika a proteomika rostlin, Středoevropský technologický institut (CEITEC) a Národní centrum pro výzkum biomolekul, Přírodovědecká fakulta, Masarykova univerzita, Brno hejatko@sci.muni.cz, www.ceitec.eu 2 2  Literární zdroje ke kapitole 11:  Wilt, F.H., and Hake, S. (2004). Principles of Developmental Biology. (New York ; London: W. W. Norton)  Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48.  The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.  Benitez, M. and Hejatko, J. Dynamics of cell-fate determination and patterning in the vascular bundles of Arabidopsis thaliana (submitted)  de Luis Balaguer MA, Fisher AP, Clark NM, Fernandez-Espinosa MG, Moller BK, Weijers D, Lohmann JU, Williams C, Lorenzo O, Sozzani R. 2017. Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells. Proc Natl Acad Sci U S A 114(36): E7632-E7640. Literatura 3 3  Definice Systémové biologie  Nástroje  Genová ontologie  Bayesovské sítě  Modelování molekulárních/genových regulačních sítí  Odvození genových regulačních sítí z velkých omických datových sad Osnova 4 4 Systémová biologie je vědecký směr v biologii využívající přístupy dalších věd, především biochemie, chemie, informatiky a matematiky. Zabývá se studiem biologických funkcí a mechanizmů vzniklých následkem komplexních interakcí v biologických systémech. Základní myšlenkou je komplexní pohled, opak redukcionismu (který je převládajícím paradigmatem například v molekulární biologii), tedy předpoklad, že systém je víc než součet jeho částí. Systémová biologie často pracuje s modely, které jsou vytvářeny matematickými a informatickými přístupy na základě biologických dat, jejichž vlastnosti jsou posléze porovnávány s vlastnostmi živých systémů (Wikipedia). Definice 5 5 Systémová biologie se zabývá studiem biologických systémů, jejichž chování nelze redukovat na lineární součet funkcí jejich částí. Systémová biologie nemusí nutně zahrnovat velké množství komponent nebo rozsáhlých datových souborů, jako je tomu v genomice nebo konektomice, ale často vyžaduje metody kvantitativního modelování vypůjčené z fyziky (Nature). Definice 6 6 Názorně vysvětluje video Dr. Nathana Price, zástupce ředitele Ústavu pro systémovou biologii, Seattle, USA na https://www.youtube.com/watch?v=OrXRl_8UFHU. Definice 7 7  Definition of Systems Biology  Tools  Gene Ontology analysis Osnova 8 Výsledky –omických studií vs. biologicky relevantní závěry □ Výsledky –omických studií reprezentují enormní množství dat, např. geny s rozdílnou expresí. Ale jak z nich získat biologicky relevantní závěry? gene locus sample_1 sample_2 status value_1 value_2 log2(fold_change) test_stat p_value q_value significant AT1G07795 1:2414285-2414967 WT MT OK 0 1,1804 1.79769e+308 1.79769e+3 08 6.88885e-05 0,00039180 1 yes HRS1 1:4556891-4558708 WT MT OK 0 0,696583 1.79769e+308 1.79769e+3 08 6.61994e-06 4.67708e- 05 yes ATMLO14 1:9227472-9232296 WT MT OK 0 0,514609 1.79769e+308 1.79769e+3 08 9.74219e-05 0,00053505 5 yes NRT1.6 1:9400663-9403789 WT MT OK 0 0,877865 1.79769e+308 1.79769e+3 08 3.2692e-08 3.50131e- 07 yes AT1G27570 1:9575425-9582376 WT MT OK 0 2,0829 1.79769e+308 1.79769e+3 08 9.76039e-06 6.647e-05 yes AT1G60095 1:22159735-22162419 WT MT OK 0 0,688588 1.79769e+308 1.79769e+3 08 9.95901e-08 9.84992e- 07 yes AT1G03020 1:698206-698515 WT MT OK 0 1,78859 1.79769e+308 1.79769e+3 08 0,00913915 0,0277958 yes AT1G13609 1:4662720-4663471 WT MT OK 0 3,55814 1.79769e+308 1.79769e+3 08 0,00021683 0,00108079 yes AT1G21550 1:7553100-7553876 WT MT OK 0 0,562868 1.79769e+308 1.79769e+3 08 0,00115582 0,00471497 yes AT1G22120 1:7806308-7809632 WT MT OK 0 0,617354 1.79769e+308 1.79769e+3 08 2.48392e-06 1.91089e- 05 yes AT1G31370 1:11238297-11239363 WT MT OK 0 1,46254 1.79769e+308 1.79769e+3 08 4.83523e-05 0,00028514 3 yes APUM10 1:13253397-13255570 WT MT OK 0 0,581031 1.79769e+308 1.79769e+3 08 7.87855e-06 5.46603e- 05 yes AT1G48700 1:18010728-18012871 WT MT OK 0 0,556525 1.79769e+308 1.79769e+3 08 6.53917e-05 0,00037473 6 yes AT1G59077 1:21746209-21833195 WT MT OK 0 138,886 1.79769e+308 1.79769e+3 08 0,00122789 0,00496816 yes AT1G60050 1:22121549-22123702 WT MT OK 0 0,370087 1.79769e+308 1.79769e+3 08 0,00117953 0,0048001 yes Ddii et al., unpublished AT4G15242 4:8705786-8706997 WT MT OK 0,00930712 17,9056 10,9098 -4,40523 1.05673e-05 7.13983e-05 yes AT5G33251 5:12499071-12500433 WT MT OK 0,0498375 52,2837 10,0349 -9,8119 0 0 yes AT4G12520 4:7421055-7421738 WT MT OK 0,0195111 15,8516 9,66612 -3,90043 9.60217e-05 0,000528904 yes AT1G60020 1:22100651-22105276 WT MT OK 0,0118377 7,18823 9,24611 -7,50382 6.19504e-14 1.4988e-12 yes AT5G15360 5:4987235-4989182 WT MT OK 0,0988273 56,4834 9,1587 -10,4392 0 0 yes Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant. 8 9 Vývoj rostlinných vodivých pletiv □ Vodivé pletivo jako vývojový model pro GO analýzu a MRN modelování Lehesranta etal., Trends in Plant Sci (2010) 10 WT hormonal mutant Hormonální regulace vývoje rostlinných vodivých pletiv □ Rostlinné hormony regulují ukládání ligninu v buněčných stěnách a transport vody xylemem WT mutant lignified cell walls Water Conductivity WT hormonal mutants 10 11 WT hormonal mutant Hormonální regulace vývoje rostlinných vodivých pletiv □ Transkripční profilování pomocí sekvenování RNA mRNA Sekvenování společností Illumina a určení počtu transkriptů mRNA cDNA cDNA 11 12 Výsledky –omických studií vs. biologicky relevantní závěry □ Transkripční profilování identifikovalo víc než 9K odlišně regulovaných genů… gene locus sample_1 sample_2 status value_1 value_2 log2(fold_change) test_stat p_value q_value significant AT1G07795 1:2414285-2414967 WT MT OK 0 1,1804 1.79769e+308 1.79769e+3 08 6.88885e-05 0,00039180 1 yes HRS1 1:4556891-4558708 WT MT OK 0 0,696583 1.79769e+308 1.79769e+3 08 6.61994e-06 4.67708e- 05 yes ATMLO14 1:9227472-9232296 WT MT OK 0 0,514609 1.79769e+308 1.79769e+3 08 9.74219e-05 0,00053505 5 yes NRT1.6 1:9400663-9403789 WT MT OK 0 0,877865 1.79769e+308 1.79769e+3 08 3.2692e-08 3.50131e- 07 yes AT1G27570 1:9575425-9582376 WT MT OK 0 2,0829 1.79769e+308 1.79769e+3 08 9.76039e-06 6.647e-05 yes AT1G60095 1:22159735-22162419 WT MT OK 0 0,688588 1.79769e+308 1.79769e+3 08 9.95901e-08 9.84992e- 07 yes AT1G03020 1:698206-698515 WT MT OK 0 1,78859 1.79769e+308 1.79769e+3 08 0,00913915 0,0277958 yes AT1G13609 1:4662720-4663471 WT MT OK 0 3,55814 1.79769e+308 1.79769e+3 08 0,00021683 0,00108079 yes AT1G21550 1:7553100-7553876 WT MT OK 0 0,562868 1.79769e+308 1.79769e+3 08 0,00115582 0,00471497 yes AT1G22120 1:7806308-7809632 WT MT OK 0 0,617354 1.79769e+308 1.79769e+3 08 2.48392e-06 1.91089e- 05 yes AT1G31370 1:11238297-11239363 WT MT OK 0 1,46254 1.79769e+308 1.79769e+3 08 4.83523e-05 0,00028514 3 yes APUM10 1:13253397-13255570 WT MT OK 0 0,581031 1.79769e+308 1.79769e+3 08 7.87855e-06 5.46603e- 05 yes AT1G48700 1:18010728-18012871 WT MT OK 0 0,556525 1.79769e+308 1.79769e+3 08 6.53917e-05 0,00037473 6 yes AT1G59077 1:21746209-21833195 WT MT OK 0 138,886 1.79769e+308 1.79769e+3 08 0,00122789 0,00496816 yes AT1G60050 1:22121549-22123702 WT MT OK 0 0,370087 1.79769e+308 1.79769e+3 08 0,00117953 0,0048001 yes Ddii et al., unpublished AT4G15242 4:8705786-8706997 WT MT OK 0,00930712 17,9056 10,9098 -4,405231.05673e-05 7.13983e-05 yes AT5G33251 5:12499071-12500433 WT MT OK 0,0498375 52,2837 10,0349 -9,8119 0 0 yes AT4G12520 4:7421055-7421738 WT MT OK 0,0195111 15,8516 9,66612 -3,900439.60217e-05 0,000528904 yes AT1G60020 1:22100651-22105276 WT MT OK 0,0118377 7,18823 9,24611 -7,503826.19504e-14 1.4988e-12 yes AT5G15360 5:4987235-4989182 WT MT OK 0,0988273 56,4834 9,1587 -10,4392 0 0 yes Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant. 12 13 Genová ontologie □ Jedním z možných přístupů je studium genové ontologie, tj. dříve prokázané spojitosti mezi geny a biologickými procesy Ddii et al., unpublished 14 □ Několik nástrojů umožňuje statisticky vyhodnotit obohacení o geny spojené se specifickými procesy Eden et al., BMC Biinformatics (2009) Genová ontologie One of such recent and very useful tools is Gorilla software, freely available at http://cbl-gorilla.cs.technion.ac.il/. 14 15 □ Několik nástrojů umožňuje statisticky vyhodnotit obohacení o geny spojené se specifickými procesy Genová ontologie 16 □ Několik nástrojů umožňuje statisticky vyhodnotit obohacení o geny spojené se specifickými procesy Genová ontologie 17 □ Několik nástrojů umožňuje statisticky vyhodnotit obohacení o geny spojené se specifickými procesy Genová ontologie 18 □ Několik nástrojů umožňuje statisticky vyhodnotit obohacení o geny spojené se specifickými procesy Genová ontologie 19 □ Několik nástrojů umožňuje statisticky vyhodnotit obohacení o geny spojené se specifickými procesy Genová ontologie 20 20  Definice Systémové biologie  Nástroje  Genová ontologie  Bayesovské sítě Osnova 21 Bayesovské sítě Co je Bayesovská síť?  Pravděpodobný grafický model, který se používá k vytváření modelů z dat a/nebo názoru odborníka 21 22 Bayesovské sítě https://www.youtube.com/watch?v=4fcqyzVJwHM 22 23 Bayesovské sítě  Co je Bayesovská síť?  Pravděpodobný grafický model, který se používá k vytváření modelů z dat a/nebo názoru odborníka  může být využit v široké škále úkolů včetně predikce, detekce anomálie, diagnostiky, automatického pohledu na věc, uvažování, predikce časové řady a rozhodování za nejistoty  UZLY  každý uzel představuje proměnnou, jako je výška, věk nebo pohlaví. Proměnná může být diskrétní, jako například pohlaví = {samičí, samčí}, nebo spojitá, jako např. věk  SPOJE  přidány mezi uzly, aby ukazovaly, že jeden uzel má přímý vliv na druhý 23 24 Bayesovské sítě UZLY SPOJE/OKRAJE 24 25 Asijská Bayesovská síť https://www.bayesserver.com/ 25 26 26  Definice Systémové biologie  Nástroje  Genová ontologie  Bayesovské sítě  Modelování molekulárních/genových regulačních sítí Osnova 27 □ Vodivé pletivo jako vývojový model pro MRN modelování Benitez and Hejatko, PLoS One, 2013 Modelování molekulárních regulačních sítí 28 Modelování molekulárních regulačních sítí □ Vyhledávání publikovaných dat a vytvoření malé databáze Interaction Evidence References A-ARRs –| CK signaling Double and higher order type-A ARR mutants show increased sensitivity to CK. Spatial patterns of A-type ARR gene expression and CK response are consistent with partially redundant function of these genes in CK signaling. A-type ARRs decreases B-type ARR6-LUC. Note: In certain contexts, however, some A-ARRs appear to have effects antagonistic to other A- ARRs. [27] [27] [13] [27] AHP6 –| AHP ahp6 partially recovers the mutant phenotype of the CK receptor WOL. Using an in vitro phosphotransfer system, it was shown that, unlike the AHPs, native AHP6 was unable to accept a phosphoryl group. Nevertheless, AHP6 is able to inhibit phosphotransfer from other AHPs to ARRs. [9] [9] Benitez and Hejatko, PLoS One, 2013 29 Modelování molekulárních regulačních sítí □ Formulace logických pravidel definujících dynamiku modelu Network node Dynamical rule CK 2 If ipt=1 and ckx=0 1 If ipt=1 and ckx=1 0 else CKX 1 If barr>0 or arf=2 0 else AHKs ahk=ck AHPs 2 If ahk=2 and ahp6=0 and aarr=0 1 If ahk=2 and (ahp6+aarr<2) 1 If ahk=1 and ahp6<1 0 else B-Type ARRs 1 If ahp>0 0 else A-Type ARRs 1 If arf<2 and ahp>0 0 else Benitez and Hejatko, PLoS One, 2013 30 Modelování molekulárních regulačních sítí □ Specifikace mobilních prvků a jejich chování v modelu According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation: g(t+1)T[i]= H(g(t)[i]+ D (g(t)[i+1]+g(t)[i-1] – N(g(t)[i]))-b) (2), where g(t)T[i] is the total amount of TDIF or MIR165 in cell (i). D is a parameter that determines the proportion of g that can move from any cell to neighboring ones and is correlated to the diffusion rate of g. b is a constant corresponding to a degradation term. H is a step function that converts the continuous values of g into a discrete variable that may attain values of 0, 1 or 2. N stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation: iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i- 1])−N(Diaa)(pin(t)[i])(iaa(t)[i])−biaa) (3), where Diaa is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and biaa corresponds to a degradation term. As in equation 2, H is a step function that converts the continuous values to discrete ones and N stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux. 30 31 Modelování molekulárních regulačních sítí □ Příprava první verze modelu a její testování The proposed model considers data that we identified and evaluated through an extensive search (up to January 2012). It takes into account molecular interactions, hormonal and expression patterns, and cell-to-cell communication processes that have been reported to affect vascular patterning in the bundles of Arabidopsis. The model components and interactions are graphically presented in the figure above. In the network model, nodes stand for molecular elements regulating one another’s activities. Most of the nodes can take only 1 or 0 values (light gray nodes in the figure), corresponding to “present” or “not present,” respectively. Since the formation of gradients of hormones and diffusible elements may have important consequences in pattern formation, mobile elements TDIF and MIR, as well as members of the CK and IAA signaling systems, can take 0, 1 or 2 values (dark gray nodes in the figure above) Benitez and Hejatko, PLoS One, 2013. 31 32 Modelování molekulárních regulačních sítí □ Specifikace chybějících interakcí ze známých predikcí Interaction Evidence References A-ARRs –| CK signaling Double and higher order type-A ARR mutants show increased sensitivity to CK. Spatial patterns of A-type ARR gene expression and CK response are consistent with partially redundant function of these genes in CK signaling. A-type ARRs decreases B-type ARR6-LUC. Note: In certain contexts, however, some A-ARRs appear to have effects antagonistic to other A-ARRs. [27] [27] [13] [27] AHP6 –| AHP ahp6 partially recovers the mutant phenotype of the CK receptor WOL. Using an in vitro phosphotransfer system, it was shown that, unlike the AHPs, native AHP6 was unable to accept a phosphoryl group. Nevertheless, AHP6 is able to inhibit phosphotransfer from other AHPs to ARRs. [9] [9] CK → PIN7 radial localization Predicted interaction (could be direct or indirect) Informed by the following data: During the specification of root vascular cells in Arabidopsis thaliana, CK regulates the radial localization of PIN7. Expression of PIN7:GFP and PIN7::GUS is upregulated by CK with no significant influence of ethylene. In the root, CK signaling is required for the CK regulation of PIN1, PIN3, and PIN7. Their expression is altered in wol, cre1, ahk3 and ahp6 mutants. [18] [18,20] [19] CK→ APL Predicted interaction (could be direct or indirect) Consistent with the fact that APL overexpression prevents or delays xylem cell differentiation, as does CKs. Partially supported by microarray data and phloem-specific expression patterns of CK response factors. [21] (TAIR, ExpressionSet: 1005823559, [22]) 33 Modelování molekulárních regulačních sítí □ Příprava další verze modelu a její testování Benitez and Hejatko, PLoS One, 2013 In comparison to the model shown on slide 21, the final version of the model contains the predicted interactions (dashed lines). 33 34 □ Dobrý model by měl být schopen simulovat realitu Benitez and Hejatko, PLoS One, 2013 Modelování molekulárních regulačních sítí 35 □ Formulace rovnic popisujících vzájemné vztahy v modelu Modelování molekulárních regulačních sítí Static nodes: gn(t+1)=Fn(gn1(t),gn2(t),..., gnk(t)) Mobile nodes: g(t+1)T [i]= H(g(t) [i]+ D (g(t) [i+1]+g(t) [i-1] – N(g(t) [i]))-b) state in the time t+1 state in the time tlogical rule function state in the time t+1 Amount if TDIF or MIR165 in cell i proportion of movable element constant corresponding to a degradation term 35 36 □ Dobrý model by měl být schopen simulovat realitu Benitez and Hejatko, PLoS One, 2013 Modelování molekulárních regulačních sítí Static nodes: gn(t+1)=Fn(gn1(t),gn2(t),..., gnk(t)) Mobile nodes: g(t+1)T [i]= H(g(t) [i]+ D (g(t) [i+1]+g(t) [i-1] – N(g(t) [i]))-b) The initial conditions specify the initial state of some of the network elements (figure above) and are the following : I) In the procambial position (central compartment), CK is initially available and there is an initial and sustained IAA input or selfupregulation. This condition is supported by several lines of evidence. Also HB8, a marker of early vascular development that has been found in preprocambial cells, is assumed to be initially present at this position. These conditions are not fixed, however. After the initial configuration, all the members of the CK and IAA signaling pathways, as well as HB8, can change their states according to the logical rules. II) In the xylem and phloem positions, it is assumed that no element is initially active except for the CK signaling pathway and TDIF, both in the phloem position.The level of expression for a given node is represented by a discrete variable g and its value at a time t+1 depends on the state of other components of the network (g1, g2, ..., gN) at a previous time unit. The state of every gene g therefore changes according to: gn(t+1)=Fn(gn1(t),gn2(t),..., gnk(t)) (1). In this equation, gn1, gn2,…, gnk are the regulators of gene gn and Fn is a discrete function known as a logical rule (logical rules are grounded in available experimental data, for example see slide 20). Given the logical rules, it is possible to follow the dynamics of the network for any given initial configuration of the nodes expression state. One of the most important traits of dynamic models is the existence of steady states in which the entire network enters into a selfsustained configuration of the nodes state. It is thought that in developmental systems such self-sustained states correspond to particular cell types. According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation: g(t+1)T[i]= H(g(t)[i]+ D (g(t)[i+1]+g(t)[i-1] – N(g(t)[i]))-b) (2), where g(t)T[i] is the total amount of TDIF or MIR165 in cell (i). D is a parameter that determines the proportion of g that can move from any cell to neighboring ones and is correlated to the diffusion rate of g. b is a constant corresponding to a degradation term. H is a step function that converts the continuous values of g into a discrete variable that may attain values of 0, 1 or 2. N stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation: iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i-1])−N(Diaa)(pin(t)[i])(iaa(t)[i])−biaa) (3), where Diaa is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and biaa corresponds to a degradation term. As in equation 2, H is a step function that converts the continuous values to discrete ones and N stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux. Using the logical rules, equations 1–3, and a broad range of parameter values (not shown here), it is possible fully to reproduce the results and analyses reported in the following sections (see the figure above for the simulation time course). 36 37 Modelování molekulárních regulačních sítí Benitez and Hejatko, submitted □ Dobrý model by měl být schopen simulovat realitu Another representation of the distinct expression profiles in the individual vascular bundle compartments (phloem, procambium and xylem). 37 38 Modelování molekulárních regulačních sítí Benitez and Hejatko, submitted □ Simulace mutantů 38 39 39  Definice Systémové biologie  Nástroje  Genová ontologie  Bayesovské sítě  Modelování molekulárních/genových regulačních sítí  Odvození genových regulačních sítí z velkých omických datových sad Osnova 40 40 Systémová biologie ve výzkumu rakoviny 41 41 miRNA/mRNA profilování Guo et al., Mol Med Reports, 2017 Hypertrophic scars (HS) area fibroproliferative disorder of the skin, which causes aesthetic and functional impairment. However, the molecular pathogenesis of this disease remains largely unknown and currently no efficient treatment exists. MicroRNAs (miRNAs) are involved in a variety of pathophysiological processes, however the role of miRNAs in HS development remains unclear. To investigate the miRNA expression signature of HS, microarray analysis was performed and 152 miRNAs were observed to be differentially expressed in HS tissue compared with normal skin tissues. Of the miRNAs identified, miRNA-21 (miR-21) was significantly increased in HS tissues and hypertrophic scar fibroblasts (HSFBs) as determined by reverse transcription-quantitative polymerase chain reaction analysis. It was also observed that, when miR-21 in HSFBs was blocked through use of an antagomir, the phenotype of fibrotic fibroblasts in vitro was reversed, as demonstrated by growth inhibition, induction of apoptosis and suppressed expression of fibrosis-associated genes collagen type I α 1 chain (COL1A1), COL1A2 and fibronectin. Furthermore, miR-21 antagomir administration significantly reduced the severity of HS formation and decreased collagen deposition in a rabbit ear HS model. The total scar area and scar elevation index were calculated and were demonstrated to be significantly decreased in the treatment group compared with control rabbits. These results indicated that the miR-21 antagomir has a therapeutic effect on HS and suggests that targeting miRNAs may be a successful and novel therapeutic strategy in the treatment of fibrotic diseases that are difficult to treat with existing methods. miRNA expression signature profiling in hypertrophic scars (HS). (A) Volcano plot presenting differentially expressed miRNAs between HS and paired (non-scar, obtained from donor sites during scar resection) NS tissue. miRNA microarray expression profiling from three paired HS and NS tissues was performed. Differentially expressed miRNAs were identified by fold change and a P-value calculated using Student's t-test. The threshold set to identify up and downregulated genes was a fold change ≥2 and P<0.05. Red dots indicate points-of-interest that exhibit large-magnitude fold-changes (x-axis; log2 of the fold change) and high statistical significance (y-axis; -log10 of the P-value). (B) Hierarchical clustering showing differentially expressed miRNAs from HS samples compared with paired NS tissues. Each row represents one miRNA and each column represents one tissue sample. The relative miRNA expression is depicted according to the color scale. Red indicates upregulation and green indicates downregulation. N1-3 represents NS tissue samples, whereas H1-3 represents HS tissue samples. The differentially expressed miRNAs were clearly separated into clusters. miRNA, microRNA; hsa-miR, human microRNA; HS, hypertrophic scar; NS, normal skin. 42 42 Benkova and Hejatko,Plant Mol Biol (2008) proximalroot meristem distalroot meristem Odvození genových regulačních sítí 43 Klidové centrum Quiescent centre Kolumela Columella cell files Iniciály kolumely Columella initials Epiderims Epidermis Kortex Cortex Endodermis Endodermis Iniciály stéle Stele initials proximalroot meristem distalroot meristem Postranní kořenová čepička Lateral root cap Iniciály epidermis Epidermis initials Iniciála endodermis a kortexu Endodermis and cortex initial Genové regulační sítě In the root, several functional and anatomical units could be recognized. Along the longitudinal axis, the root meristem forms a distal root tip, including stem cell niche, columella and lateral root cap, proximal meristem with a population of rapidly dividing cells and elongation zone where cells leaving the root meristem undergo rapid elongation and mature. 43 44 Birnbaum et al., Science, 2003 Genové regulační sítě - GENIST de Luis Balaguer et al., PNAS, 2017  Odvození GR sítí přes GENIST  GEne regulatory Network Inference from SpatioTemporal data algorithm  Kombinace prostorových- a časově- specifických profilů exprese genů Specific subpopulations from the stem cell niche (SCN) were isolated via protopasting the root (removing the cell wall enzymatically allowing to release the individual cells) of several specific reporter lines (A-D in the figure on the right) and GFP-positive cells were isolated using cell sorter. The mRNA was isolated and transcriptional; profiling via NGS was performed. By comparing the cell type-specific transcriptomes with developmental-specific root transcriptomes (isolating mRNA from meristematic (1, the figure on the left), elongation (2) and differentiation (I3) zones, the stem cell-specific transcritomes were identified. 44 45 Kombinace velkých omických datových sad GENY PLETIVO/ČAS 45 46 Genové regulační sítě - GENIST  Odvození GR sítí přes GENIST  shlukování (klastrování) genů  Expresní podobnost za různých podmínek/genetické pozadí, časové body, …  Odvození spojení uvnitř klastru  Selekce potenciálních regulátorů a ko- regulátorů  Na základě časové korelace ve změně exprese a/nebo specifikace uživatele  Modelování dynamické Bayesovské sítě Haeseleer, Computational Biology, 2005 GENIST algorithm The MATLAB source code for GENIST is publically available at https://github.com/madeluis/GENIST. For the detailed description of the procedure, see de Luis Balaguer et al., 2017, SI (https://www.pnas.org/content/114/36/E7632/tab-figures-data) 46 47  Odvození GR sítí přes GENIST  shlukování (klastrování) genů  Expresní podobnost za různých podmínek/genetické pozadí, časové body, …  Odvození spojení uvnitř klastru  Selekce potencionálních regulátorů a ko- regulátorů  Na základě časové korelace ve změně exprese a/nebo specifikace uživatele  Modelování dynamické Bayesovské sítě de Luis Balaguer et al., PNAS, 2017 Genové regulační sítě - GENIST GENIST algorithm The MATLAB source code for GENIST is publically available at https://github.com/madeluis/GENIST. For the detailed description of the procedure, see de Luis Balaguer et al., 2017, SI (https://www.pnas.org/content/114/36/E7632/tab-figures-data) GENIST block diagram. GENIST is implemented in MATLAB, and is composed of  two consecutive steps, clustering and GRN inference. Clustering is performed  based on a spatial dataset. Each resulting cluster is independently processed by the GRN inference step, based on a temporal  dataset. 47 48 Genové regulační sítě - GENIST de Luis Balaguer et al., PNAS, 2017 Network of the 201 TFs enriched in the SCN, inferred with the 12 developmental time points of the Arabidopsis root. Clusters of nodes indicate groups of TFs functionally related or functioning in the same cell type. Node sizes indicate importance of the nodes in terms of the number of TFs that they regulate. The highly connected groups of genes or subnetworks correspond to the dynamic Bayesian network (DBN) inferred for each cluster. Green (orange) nodes represent factors that are differentially down-regulated (up-regulated) in the pan mutant with respect to Col-0 wild type. Blue represents the PAN node. 48 49 de Luis Balaguer et al., PNAS, 2017 Genové regulační sítě - GENIST Network of QC-enriched TFs. (A) Network among the QC-enriched TFs inferred with the 12 developmental time points of the Arabidopsis root. Node sizes indicate importance of the nodes in terms of the number of TFs that they regulate. Color-coded nodes represent genes downstream of PERIANTHA (PAN) that were used for the mathematical model and experimental confirmations. 49 50 Indirect PAN targets feed-back loops Genové regulační sítě GENIST MODEL PREDICTION EXPERIMENTAL VERIFICATION PAN subnetwork in the QC inferred with the 12 developmental time points of the  Arabidopsis root. (A) Optimal configuration (combination of signs— activation or  repression—of the regulations that were inferred with undefined signs, which best fits  the data in the simulations of the equations) of the subnetwork of PAN and its  downstream targets. (B and C) Resulting expression values of PAN and its downstream  targets, over time, after simulating the optimal configuration of the model. Simulations  were run for 5 d and plots are shown until all factors reached steady states in the WT  and pan mutant simulations. (B)Model simulated with the fitted equation parameters.  (C)Model simulated with the PAN‐associated parameters set to zero to simulate a pan  mutant situation. (D) Normalized expression values of PAN and its predicted  downstream targets in Col‐0 wild type and in pan mutant. Statistically significant  changes of expression between the mutant and the wild type, *q < 0.05. In the WT simulation, all targets reached steady states by day 1 with subtle changes of  expression during the transients (time length until expression values reach their steady  states). On the contrary, the pan mutant simulation showed that EIN3 and WIP4  presented high expression values during the transients and reached steady states at later  stages (days 3 and 4, respectively). These delayed responses and initial activations of  EIN3 and WIP4 reflect the prediction that these genes are indirectly affected by PAN.  Further, the dynamics of our simulations depict that BRAVO, NTT, and WIP4 are, in our  equations, connected through feedback loops. During the transient phase of the mutant  simulation, NTT and BRAVO show an exponential decay, which is consistent with the  prediction that they activate each other in the absence of PAN. However, their steady  states are not immediately reached since they are activated by WIP4 and EIN3.  Conversely, WIP4, which is repressed by a decaying NTT, shows high levels of expression. 50 With the exception of indirect target EIN3, the qRT PCR‐based gene expression  quantification confirmed the predicted expression values. 51 51  Systémová biologie se pokouší identifikovat nové vlastnosti/chování skupin funkčních podjednotek (regulátorů/molekul), které nejsou prostým součtem vlastností jednotlivých podjednotek, ale jsou novou vlastností závislou na způsobu jejich vzájemné interakce  Využívá matematické modely, často Bayesovské sítě  Genové regulační sítě lze identifikovat i pomocí (semi)automatických nástrojů z velkých datových sad (např. genové exprese na úrovni celého genomu)  Využití metod strojového účení („umělá inteligence“) Klíčové koncepty 52 52 Diskuse