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 Definition of Systems Biology
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 Gene Ontology Analysis

 Bayesian Networks

 Molecular/Gene Regulatory Networks Modeling

 Inferring Gene Regulatory Networks from Large Omics

Datasets

Outline
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Systems biology is the computational and mathematical
analysis and modeling of complex biological systems. It
is a biology-based interdisciplinary field of study that
focuses on complex interactions within biological
systems, using a holistic approach (holism instead of the
more traditional reductionism) to biological research
(Wikipedia).

Definition
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Systems biology is the study of biological systems
whose behaviour cannot be reduced to the linear sum of
their parts’ functions. Systems biology does not
necessarily involve large numbers of components or vast
datasets, as in genomics or connectomics, but often
requires quantitative modelling methods borrowed from
physics (Nature).

Definition
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Nice explanatory video by Dr. Nathan Price,
associate director of the Institute for Systems Biology at
https://www.youtube.com/watch?v=OrXRl_8UFHU.

Definition
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 Definition of Systems Biology

 Tools
 Gene Ontology analysis

Outline
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Results of –omics Studies vs 
Biologically Relevant Conclusions 
□ Results of –omics studies represent huge amount of data,

e.g. genes with differential expression. But how to get any
biologically relevant conclusions out of it?

gene locus sample_1 sample_2 status value_1 value_2 log2(fold_change) test_stat p_value q_value significant

AT1G07795 1:2414285-2414967 WT MT OK 0 1,1804 1.79769e+308
1.79769e+3
08 6.88885e-05

0,00039180
1 yes

HRS1 1:4556891-4558708 WT MT OK 0 0,696583 1.79769e+308
1.79769e+3
08 6.61994e-06

4.67708e-
05 yes

ATMLO14 1:9227472-9232296 WT MT OK 0 0,514609 1.79769e+308
1.79769e+3
08 9.74219e-05

0,00053505
5 yes

NRT1.6 1:9400663-9403789 WT MT OK 0 0,877865 1.79769e+308
1.79769e+3
08 3.2692e-08

3.50131e-
07 yes

AT1G27570 1:9575425-9582376 WT MT OK 0 2,0829 1.79769e+308
1.79769e+3
08 9.76039e-06 6.647e-05 yes

AT1G60095 1:22159735-22162419 WT MT OK 0 0,688588 1.79769e+308
1.79769e+3
08 9.95901e-08

9.84992e-
07 yes

AT1G03020 1:698206-698515 WT MT OK 0 1,78859 1.79769e+308
1.79769e+3
08 0,00913915 0,0277958 yes

AT1G13609 1:4662720-4663471 WT MT OK 0 3,55814 1.79769e+308
1.79769e+3
08 0,00021683 0,00108079 yes

AT1G21550 1:7553100-7553876 WT MT OK 0 0,562868 1.79769e+308
1.79769e+3
08 0,00115582 0,00471497 yes

AT1G22120 1:7806308-7809632 WT MT OK 0 0,617354 1.79769e+308
1.79769e+3
08 2.48392e-06

1.91089e-
05 yes

AT1G31370 1:11238297-11239363 WT MT OK 0 1,46254 1.79769e+308
1.79769e+3
08 4.83523e-05

0,00028514
3 yes

APUM10 1:13253397-13255570 WT MT OK 0 0,581031 1.79769e+308
1.79769e+3
08 7.87855e-06

5.46603e-
05 yes

AT1G48700 1:18010728-18012871 WT MT OK 0 0,556525 1.79769e+308
1.79769e+3
08 6.53917e-05

0,00037473
6 yes

AT1G59077 1:21746209-21833195 WT MT OK 0 138,886 1.79769e+308
1.79769e+3
08 0,00122789 0,00496816 yes

AT1G60050 1:22121549-22123702 WT MT OK 0 0,370087 1.79769e+308
1.79769e+3
08 0,00117953 0,0048001 yes

Ddii et al., unpublished

AT4G15242 4:8705786-8706997 WT MT OK 0,00930712 17,9056 10,9098 -4,40523 1.05673e-05 7.13983e-05 yes

AT5G33251 5:12499071-12500433 WT MT OK 0,0498375 52,2837 10,0349 -9,8119 0 0 yes
AT4G12520 4:7421055-7421738 WT MT OK 0,0195111 15,8516 9,66612 -3,90043 9.60217e-05 0,000528904 yes

AT1G60020 1:22100651-22105276 WT MT OK 0,0118377 7,18823 9,24611 -7,50382 6.19504e-14 1.4988e-12 yes
AT5G15360 5:4987235-4989182 WT MT OK 0,0988273 56,4834 9,1587 -10,4392 0 0 yes
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Plant Vascular Tissue 
Development

□ Vascular tissue as a developmental model for GO analysis and MRN
modeling

Lehesranta etal., Trends in Plant Sci (2010)
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WT hormonal mutant

Hormonal Control Over Vascular 
Tissue Development
□ Plant Hormones Regulate Lignin Deposition in Plant Cell

Walls and Xylem Water Conductivity

WT mutant

lignified cell walls

Water Conductivity

WT hormonal mutants
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WT hormonal mutant

Hormonal Control Over Vascular 
Tissue Development
□ Transcriptional profiling via RNA sequencing

mRNA

Sequencing by Illumina and 
number of transcripts determination 

mRNA

cDNA cDNA
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Results of –omics Studies vs 
Biologically Relevant Conclusions 
□ Transcriptional profiling yielded more then 9K differentially

regulated genes…

gene locus sample_1 sample_2 status value_1 value_2 log2(fold_change) test_stat p_value q_value significant

AT1G07795 1:2414285-2414967 WT MT OK 0 1,1804 1.79769e+308
1.79769e+3
08 6.88885e-05

0,00039180
1 yes

HRS1 1:4556891-4558708 WT MT OK 0 0,696583 1.79769e+308
1.79769e+3
08 6.61994e-06

4.67708e-
05 yes

ATMLO14 1:9227472-9232296 WT MT OK 0 0,514609 1.79769e+308
1.79769e+3
08 9.74219e-05

0,00053505
5 yes

NRT1.6 1:9400663-9403789 WT MT OK 0 0,877865 1.79769e+308
1.79769e+3
08 3.2692e-08

3.50131e-
07 yes

AT1G27570 1:9575425-9582376 WT MT OK 0 2,0829 1.79769e+308
1.79769e+3
08 9.76039e-06 6.647e-05 yes

AT1G60095 1:22159735-22162419 WT MT OK 0 0,688588 1.79769e+308
1.79769e+3
08 9.95901e-08

9.84992e-
07 yes

AT1G03020 1:698206-698515 WT MT OK 0 1,78859 1.79769e+308
1.79769e+3
08 0,00913915 0,0277958 yes

AT1G13609 1:4662720-4663471 WT MT OK 0 3,55814 1.79769e+308
1.79769e+3
08 0,00021683 0,00108079 yes

AT1G21550 1:7553100-7553876 WT MT OK 0 0,562868 1.79769e+308
1.79769e+3
08 0,00115582 0,00471497 yes

AT1G22120 1:7806308-7809632 WT MT OK 0 0,617354 1.79769e+308
1.79769e+3
08 2.48392e-06

1.91089e-
05 yes

AT1G31370 1:11238297-11239363 WT MT OK 0 1,46254 1.79769e+308
1.79769e+3
08 4.83523e-05

0,00028514
3 yes

APUM10 1:13253397-13255570 WT MT OK 0 0,581031 1.79769e+308
1.79769e+3
08 7.87855e-06

5.46603e-
05 yes

AT1G48700 1:18010728-18012871 WT MT OK 0 0,556525 1.79769e+308
1.79769e+3
08 6.53917e-05

0,00037473
6 yes

AT1G59077 1:21746209-21833195 WT MT OK 0 138,886 1.79769e+308
1.79769e+3
08 0,00122789 0,00496816 yes

AT1G60050 1:22121549-22123702 WT MT OK 0 0,370087 1.79769e+308
1.79769e+3
08 0,00117953 0,0048001 yes

Ddii et al., unpublished

AT4G15242 4:8705786-8706997 WT MT OK 0,00930712 17,9056 10,9098 -4,40523 1.05673e-05 7.13983e-05 yes

AT5G33251 5:12499071-12500433 WT MT OK 0,0498375 52,2837 10,0349 -9,8119 0 0 yes
AT4G12520 4:7421055-7421738 WT MT OK 0,0195111 15,8516 9,66612 -3,90043 9.60217e-05 0,000528904 yes

AT1G60020 1:22100651-22105276 WT MT OK 0,0118377 7,18823 9,24611 -7,50382 6.19504e-14 1.4988e-12 yes
AT5G15360 5:4987235-4989182 WT MT OK 0,0988273 56,4834 9,1587 -10,4392 0 0 yes
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Gene Ontology Analysis
□ One of the possible approaches is to study gene ontology, i.e.

previously demonstrated association of genes to biological
processes

Ddii et al., unpublished
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Gene Ontology Analysis
□ Several tools allow statistical evaluation of enrichment for

genes associated with specific processes
Eden et al., BMC Biinformatics (2009)
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Gene Ontology Analysis
□ Several tools allow statistical evaluation of enrichment for

genes associated with specific processes
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Gene Ontology Analysis
□ Several tools allow statistical evaluation of enrichment for

genes associated with specific processes
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Gene Ontology Analysis
□ Several tools allow statistical evaluation of enrichment for

genes associated with specific processes
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Gene Ontology Analysis
□ Several tools allow statistical evaluation of enrichment for

genes associated with specific processes
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Gene Ontology Analysis
□ Several tools allow statistical evaluation of enrichment for

genes associated with specific processes
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 Definition of Systems Biology

 Tools
 Gene Ontology analysis

 Bayesian Networks

Outline
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Bayesian Networks
 What are Bayesian networks?

 Probabilistic Graphical Model that can be used to build models from
data and/or expert opinion

https://www.youtube.com/watch?v=4fcqyzVJwH
M
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Bayesian Networks
 What are Bayesian Networks?

 Probabilistic Graphical Model that can be used to build models from
data and/or expert opinion

 can be used for a wide range of tasks including prediction, anomaly
detection, diagnostics, automated insight, reasoning, time series
prediction and decision making under uncertainty

 NODES
 each node represents a variable such as someone's height, age or gender.

A variable might be discrete, such as Gender = {Female, Male} or might be
continuous such as someone's age

 LINKS
 added between nodes to indicate that one node directly influences the

other
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Bayesian Networks
NODES

LINKS/EDGES
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Asia Bayesian Network

https://www.bayesserver.com/
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 Definition of Systems Biology

 Tools
 Gene Ontology analysis

 Bayesian Networks

 Molecular/Gene Regulatory Networks Modeling

Outline
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□ Vascular tissue as a developmental model for MRN modeling

Benitez and Hejatko, PLoS One, 2013

Molecular Regulatory 
Networks Modeling
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Molecular Regulatory Networks Modeling

□ Literature search for published data and creating small
database

Interaction Evidence References
A-ARRs  –| CK 
signaling 

Double and higher order type-A ARR mutants show 
increased sensitivity to CK.

Spatial patterns of A-type ARR gene expression and 
CK response are consistent with partially redundant 
function of these genes in CK signaling.

A-type ARRs decreases B-type ARR6-LUC.

Note:  In certain contexts, however, some A-ARRs 
appear to have effects antagonistic to other A-
ARRs. 

[27]

[27]

[13]

[27]

AHP6 –| AHP ahp6 partially recovers the mutant phenotype of the 
CK receptor WOL.

Using an in vitro phosphotransfer system, it was 
shown that, unlike the AHPs, native AHP6 was 
unable to accept a phosphoryl group.  Nevertheless, 
AHP6 is able to inhibit phosphotransfer from other 
AHPs to ARRs.

[9]

[9]

Benitez and Hejatko, PLoS One, 2013
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Molecular Regulatory Networks Modeling

□ Formulating logical rules defining the model dynamics

Network node Dynamical rule
CK 2 If ipt=1 and ckx=0

1 If ipt=1 and ckx=1
0 else

CKX 1 If barr>0 or arf=2 
0 else

AHKs ahk=ck
AHPs 2 If ahk=2 and ahp6=0 and aarr=0

1 If ahk=2 and (ahp6+aarr<2)
1 If ahk=1 and ahp6<1
0 else

B-Type ARRs 1 If ahp>0
0 else 

A-Type ARRs 1 If arf<2 and ahp>0
0 else

Benitez and Hejatko, PLoS One, 2013
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Molecular Regulatory Networks Modeling

□ Specifying mobile elements and their model behaviour
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Molecular Regulatory Networks Modeling

□ Preparing the first version of the model and its testing
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Molecular Regulatory Networks Modeling

□ Specifying of missing interactions via informed predictions
Interaction Evidence References
A-ARRs  –| CK 
signaling 

Double and higher order type-A ARR mutants show 
increased sensitivity to CK.

Spatial patterns of A-type ARR gene expression and CK 
response are consistent with partially redundant function of 
these genes in CK signaling.

A-type ARRs decreases B-type ARR6-LUC.

Note:  In certain contexts, however, some A-ARRs appear to 
have effects antagonistic to other A-ARRs. 

[27]

[27]

[13]

[27]

AHP6 –| AHP ahp6 partially recovers the mutant phenotype of the CK 
receptor WOL.

Using an in vitro phosphotransfer system, it was shown that, 
unlike the AHPs, native AHP6 was unable to accept a 
phosphoryl group.  Nevertheless, AHP6 is able to inhibit 
phosphotransfer from other AHPs to ARRs.

[9]

[9]

CK → PIN7 radial 
localization

Predicted interaction (could be direct or indirect)

Informed by  the following data:

During the specification of root vascular cells in Arabidopsis 
thaliana, CK regulates the radial localization of PIN7.

Expression of PIN7:GFP and PIN7::GUS is upregulated by 
CK with no significant influence of ethylene. 

In the root, CK signaling is required for the CK regulation of 
PIN1, PIN3, and PIN7. Their expression is altered in wol, 
cre1, ahk3 and ahp6 mutants. 

[18]

[18,20]

[19]

CK→ APL Predicted interaction (could be direct or indirect)

Consistent with the fact that APL overexpression prevents or 
delays xylem cell differentiation, as does CKs.

Partially supported by microarray data and phloem-specific 
expression patterns of CK response factors.

[21]

(TAIR, 
ExpressionSet:
1005823559, 
[22])
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Molecular Regulatory Networks Modeling

□ Preparing the next version of the model and its testing

Benitez and Hejatko, PLoS One, 2013
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□ Good model should be able to simulate reality

Benitez and Hejatko, PLoS One, 2013

Molecular Regulatory 
Networks Modeling
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□ Formulating equations describing the relationships in the model

Molecular Regulatory 
Networks Modeling

Static nodes: gn(t+1)=Fn(gn1(t),gn2(t),..., gnk(t))

Mobile  nodes: g(t+1)T [i]= H(g(t) [i]+ D (g(t) [i+1]+g(t) [i-1] – N(g(t) [i]))-b)

state in the time t+1

state in the time tlogical rule function

state in the time t+1

Amount if TDIF or MIR165 in cell i

proportion of movable element

constant corresponding to a degradation term
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□ Good model should be able to simulate reality

Benitez and Hejatko, submitted

Molecular Regulatory 
Networks Modeling

Static nodes: gn(t+1)=Fn(gn1(t),gn2(t),..., gnk(t))
Mobile  nodes: g(t+1)T [i]= H(g(t) [i]+ D (g(t) [i+1]+g(t) [i-1] – N(g(t) [i]))-b)
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Molecular Regulatory Networks Modeling

Benitez and Hejatko, submitted

□ The good model should be able to simulate reality
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Molecular Regulatory Networks Modeling

Benitez and Hejatko, submitted

□ Simulation of mutants
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 Definition of Systems Biology

 Tools
 Gene Ontology analysis

 Bayesian Networks

 Molecular/Gene Regulatory Networks Modeling

 Inferring Gene Regulatory Networks from Large Omics

Datasets

Outline
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Systems Biology in 
Cancer Research
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miRNA/mRNA Profiling

Guo et al., Mol Med Reports, 2017
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Inferring Gene 
Regulatory Networks
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Klidové centrum
Quiescent centre

Kolumela
Columella cell files

Iniciály kolumely
Columella initials

Epiderims
Epidermis

Kortex
Cortex

Endodermis
Endodermis

Iniciály stéle
Stele initials
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Postranní kořenová čepička
Lateral root cap

Iniciály epidermis
Epidermis  initials

Iniciála endodermis a kortexu
Endodermis and cortex initial

Gene Regulatory 
Networks



43 Birnbaum et al., Science, 2003

Gene Regulatory 
Networks - GENIST

de Luis Balaguer et al., PNAS, 2017

 Inferring GRNs via GENIST
 GEne regulatory Network

Inference from SpatioTemporal
data algorithm

 Combining spatial- and time-
specific gene expression
profiles
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Combining Large Omics 
Datasets GENES

TISSUE/TIME
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Gene Regulatory 
Networks - GENIST

 Inferring GRNs via GENIST
 Clustering of genes

 Expression similarity under
various conditions/genetic
backgrounds, time points, …

 Inferring intra-cluster
connections
 Selection of potential

regulators and co-
regulators
 Based on the time

correlation in the change
of expression and/or user
specification

 Dynamic Bayesian
Network modeling

Haeseleer, Computational Biology, 2005
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 Inferring GRNs via GENIST
 Clustering of genes

 Expression similarity under
various conditions/genetic
backgrounds, time points, …

 Inferring intra-cluster
connections
 Selection of potential

regulators and co-
regulators
 Based on the time

correlation in the change
of expression and/or user
specification

 Dynamic Bayesian
Network modeling

de Luis Balaguer et al., PNAS, 2017

Gene Regulatory 
Networks - GENIST
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Gene Regulatory 
Networks - GENIST

de Luis Balaguer et al., PNAS, 2017



48 de Luis Balaguer et al., PNAS, 2017

Gene Regulatory 
Networks - GENIST
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Indirect PAN targets

feed-back loops

Gene Regulatory 
Networks - GENISTMODEL PREDICTION

EXPERIMENTAL 
VERIFICATION
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 Systems biology aims to identify new
properties/behavior of groups of functional subunits
(regulators, molecules) that are not simple addition of
individual subunits, but represent a new feature
dependent on the way of their mutual interaction

 It uses mathematical models, often Bayesian
networks

 Gene regulatory networks can be identified also with
the help of (semi)automated tools using large
datasets (e.g. genome-wide expression profiles)

 Machine learning (AI) approaches are frequently used

Key Concepts
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 Definition of Systems Biology

 Tools
 Gene Ontology analysis

 Bayesian Networks

 Molecular/Gene Regulatory Networks Modeling

 Inferring Gene Regulatory Networks from Large Omics

Datasets

Summary
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Discussion


