CG920 Genomics

Lesson 4

Forward Genetics

Jan Hejátko

Functional Genomics and Proteomics of Plants,

CEITEC - Central European Institute of Technology And National Centre for Bimolecular Research, Faculty of Science,

MUNI SCI

Masaryk University, Brno hejatko@sci.muni.cz, www.ceitec.eu

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest
 - Identification of the Mutated Locus
 - plasmid rescue
 - iPCR
- Use of Libraries of Point Mutants in Forward Genetics
 - Positional Cloning
 - GWAS

Outline

Forward vs. Reverse Genetics

"Classical" genetics *versus* "reverse genetics" approaches in functional genomics

RANDOM MUTAGENESIS

Outline

Forward vs. Reverse Genetics

- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype

- Use of insertional mutagenesis for study of carcinogenesis
 - Infection of EµMyc mice by MoMuLV retrovirus leads to lymphomas formation, which arose due to activation of Pim kinases (40 % activation of Pim1, 15 % activation of Pim2), molecular targets of these kinases were unknown

6

- Use of insertional mutagenesis for study of carcinogenesis
 - Infection of EµMyc *pim1* mutants by MoMuLV retrovirus leads to lymphomas formation, which in 90 % contain insertion nearby (activation) Pim2

Mikkers et al., Nature Gen (2002)

- Use of insertional mutagenesis for study of carcinogenesis
 - Infection of EµMyc double mutants *pim1, pim2* by MoMuLV retrovirus leads to lymphomas formation, which can be expected to activate either one of the signalling partner of Pim proteins (Y), one of the downsteram proteins of Pim signalling pathway (X) or to activate some of the related pathways leading to lymphomagenesis (Z).

- Isolation of genomic regions adjacent to the insertion site of the provirus
 - Cleavage of genomic DNA and ligation of special linkers, so-called *splincerettes* (increasing the specifity of amplification)

а

 Isolation of genomic regions adjacent to the insertion site of the provirus

 Isolation of genomic regions adjacent to the insertion site of the provirus

 Isolation of genomic regions adjacent to the insertion site of the provirus

а

 Sequencing and localization of regions adjacent to provirus by searching in annotated databases of mouse genome

Mikkers et al., Nature Gen (2002)

tumor DNA restricted

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype
 - metabolic profile

- Metabolic profiling of plants
 - Automated analysis of metabolites (up to 25.000) by GC-MS techniques in libraries of T-DNA mutants

- Metabolic profiling of plants
 - Automated analysis of metabolites (up to 25.000) by GC-MS techniques in libraries of T-DNA mutants
 - Identification of interesting (even comercially interesting) mutants

- Metabolic profiling of plants
 - Automated analysis of metabolites (up to 25.000) by GC-MS techniques in libraries of T-DNA mutants
 - Identification of interesting (even comercially interesting) mutants
 - Fast and easy isolation of genes through identification of sequences adjacent to T-DNA

- Metabolic profiling of plants
 - Possibility to use special techniques, e.g. microdissection

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest

Expression profile

- Identification of mutants with a change in the expression profile
 - Analysis of expression profile (pattern) of the gene and identification of mutants with altered expression pattern

Expression profile

- Identification of mutants with a change in the expression profile
 - Analysis of expression profile (pattern) of the gene and identification of mutants with altered expression pattern
 - Possibility of partial automation (virtual digital microscopy)

Automated Microscopy Screening

Dobisova and Hejatko, Methods in Mol Biol, 2014

Expression profile

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest
 - Identification of the Mutated Locus
 - plasmid rescue
 - iPCR

- Identification of chromosomal rearrangements responsible for bushy phenotype of *Arabidopsis*
 - Description of phenotype

Identification of mutant

- Crinkled leaves
- Bushy phenotype (branching defective)
- No trichomes on leaves and stems
- Late senescence

Identification of mutant

 Male sterility, defects in stamen filament elongation (A,B)

(compare with wild type C)

- Identification of chromosomal rearrangements responsible for bushy phenotype of *Arabidopsis*
 - Description of phenotype
 - Identification of T-DNA mutated region

1. Identification of region of genomic DNA adjacent to the *left* border using plasmid rescue

2. Identification of region of genomic DNA adjacent to the *right* border using inversion PCR (iPCR)

- Identification of chromosomal rearrangements responsible for bushy phenotype of *Arabidopsis*
 - Description of phenotype
 - Identification of T-DNA mutated region
 - Localization of T-DNA insertion site in Arabidopsis genome

Searching in library IGF-BAC

- Genome library containing 10.752 clones with an average size of an insert of 100 kb
- Bacterial clones arranged in the microtiter plates
- Library loaded onto nylon filters for hybridization with the radiolabeled probe

Mapping with IGF-BAC database

I. Sequences adjacent to the left border of T-DNA

- 28 positively hybridizing clones in total
- 19 of them located on chromosome 2
 18 of them similar with mtDNA

II. Sequences adjacent to the right border of T-DNA

- 6 positively hybridizing clones in totalall of them located on chromosome 2

Localization of genomic T-DNA adjacent to both left and right T-DNA borders on chromosome 2

Sequences adjacent to *right* and *left* border of T-DNA

А.	rga RNS1 mi421 PhyB er cop1 LTP Ubique mi79a	rga RNS1 mi421 PhyB er cop1 LTP Ubique mi79a
В.	Is,865,410 bp 18,865,410 bp sccsnp37 5M235_247,2 CD2131 ScCsnp169 5M26_495,4 5M120_:: sccsnp17 5M25_492,4 CD2131 ScCsnp169 5M42_495,4 5M120_:: sccsnp1 T2P4-3 CLU2 ScCsnp169 5M54_387,3 CD25 sccsnp363 T2P4-2 SM34_325,7 T6M12 5M33_202,4	B. 2,836,580 bp 3,000,000 3,200,000 3,400,000 3,600,000 3,800, MI310 F5315-SP6 \$M180_402,3 \$M143_142,1 \$M59_143,1 \$M143_20 \$M143_142,1 \$M59_143,1 \$M143_20 \$M15_134,4 \$F \$M15_134,4 \$F \$M15_134,4 \$M72_75,1 \$M15_205,6 \$M142_136,1 \$M152_136,1 \$
	FILL SCCSNP363 T2P4-2 SM34_325,7 T6M12 SM33_202,4 F12L6 T28M21 T2P4 T3K9 T26013 T24P15 F23E6 F18019 F16B22 F4L23 F41 2 F17A14 T3C21 T2085 T32G6 MHK10 MFL8 F6E13 T13E15 F17K2 5 T517 F27J1 T2D17 F12H10 T6D20 F14N22 T1024 F411 T14P1	Phils_194,4 SM72_75,1 SM15_205,6 MI421_SM12_136,1 1 13611 F9A16 T17H1 T567 T14C8 T1 1 1 1 T567 T14C8 T1 1 1 T567 T1423 F7819 1 1 T587 T12302 F7819
c.	\$77.75 CM 67.38 CM \$87.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 \$FM853 \$PAD \$FA03 + \$COP1 + \$\$COP2 + \$A\$1	C. 9.62 CM 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 FMB91 RCA + FMB34 STI + MUR2 SPR

 There was probably an inversion of almost entire chromosome 2
 rga RNS1 mi421 Phy8 er cop1 LTP Ubique mi79a

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest
 - Identification of the Mutated Locus
 - plasmid rescue
 - iPCR
- Use of Libraries of Point Mutants in Forward Genetics
 - Positional Cloning

- Positional cloning
 - Principle: co-segregation analysis of segregating population (mostly of offspring of backcrosses) with molecular markers
 - SSLP (Simple Sequence Length Polymorphism)
 - Polymorphism of genome (PCR products) length, amplified using specific primers
 - RFLP (Restriction Fragment Length Polymorphism)
 - Detection by Southern blot (PCR after digestion of the genomic DNA and ligation of adapters)
 - CAPS (Cleaved Amplified Polymorphic Sequence)
 - Restriction fragment length polymorphism, genome segments amplified by PCR
 - RAPD (Randomly Amplified Polymorphic DNA)
 - Polymorphism of length of randomly amplified genome segments, using short 8-10bp primers

Recombinant analysis – determining the percentage of recombination between mutation and molecular marker <u>r [%] = number of chromosomes of Col /</u> <u>number of all the chromosomes × 100</u>

 F2 mutants
 Ler Col
 r

 F2 mutants
 1

 F2 mutants
 Ler Col
 r

 F2 mutants
 1
 1

 F3 mutants
 1
 1

 F4 mutants
 1
 1<

marker I – linked 5 mutants $1/10 \times 100 = 10\%$

marker II - no linkage 6 mutants $7/12 \times 100 = 58\%$

- Analysis of approximately 2000 mutant plants
- Determining the closest (still segregating) marker
- Identification of mutation by sequencing

Map of DNA molecular markers

Markers for fine mapping

~

AGI Map	qd O bp		2,463,170 bp	
	Υ ¹ ,	000,000	2,000,000	
Zoom to: - 8x - 💌	T	04_73,6 <mark>CIW2</mark> SM115_237,0		
Zoom up to 200x to see genes!	SM134_72,6 SM71_250,0 FI	IS1 SGCSNP180 SM46_294,4	SGCSNP129 T6P5-	
Find	SM61_322,0 SM45_234,7	,SM57_225,2 ,SM84_98,	5 <mark>,5M158_96,3 ,SGCSN</mark>	
Search by name (e.g. UFO)	,5M122_129,8 MI320 ,5D	M206_129,8 SM121_171,	6 SM14_243,3 T6P5-	
Go	5M122_129,8 NGA1145	SM254_364,8	54532 M497A	
Select range (e.g.	이 5개122_129,8 이GA1145 및 5M253_310,7 NGA114 및 5M121_93,6	SM17_241,6	34553 _, T6P5-	
1500-2000)	g 5M121_93,6	M246	SM46_411,1 T6P5-	
AGI Map color key	RGA	SGCSNP111	_T12A.	
		SM138_120,2	SM14	
	SM73_258,4			
	SM233_178,9			
	NOR_2 F219 T23K3 T16F16 T17	13 <u>F19</u> B11 <u>F3L1</u> 2 <u>T103</u>	F1013 F16J10 T25M19 F	
	F10A8 F23114 T20F6	T18E12 T18C20 T16B23 F	2818 F15L11 T3P4 F5K7	
	F10A8 F23I14 T20F6	T4M8 F3C11 T23015	F5G3 T20G20 T17C22	
	₽ ₩ F14H20	F	D11 <u>T6P5</u>	
Lister & Dean RI	▲ 0.00 cM		11.97 cM	
	0.00	5.00	10,00	
Zoom to: - 8x - 💌	TEL2N RGA + KK1 +	VE012		
Find	NOR2 SGCSNP180 +	ATPT	=	
Search by name (e.g. UFO)			ATGST2B	
Go				

<u>CIW2</u>

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest
 - Identification of the Mutated Locus
 - plasmid rescue
 - iPCR
- Use of Libraries of Point Mutants in Forward Genetics
 - Positional Cloning
 - GWAS

Genome Wide Association Study - GWAS

Key Concepts

- Forward genetics allows targeted screening for interesting phenotypes, whose association with a given gene/locus is unknown
 - Employs both insertional mutagenes as well as point mutations
 - Inserional mutation
 - (mostly) loss-of-function mutation
 - Identification via
 - iPCR
 - plasmid rescue
 - Point mutation
 - Both loss-of-function as well as
 - gain-of-function mutations
 - Identification via
 - map-based cloning
 - GWAS

Discussion

