ETHzürich

Plastic Monomers, Additives, and Processing Aids

Helene Wiesinger
wiesinger@ifu.baug.ethz.ch

What are Plastics?

- Greek: plastikos = capable of being shaped or molded
- Plastics vs. polymers
\rightarrow Plastics are composed of organic polymers (macromolecules that are composed of many repeated sub-units - monomers) and additives
\rightarrow All plastics are polymers and are often named after the polymer matrix, but not all polymers are plastics.

Different Grouping Methods of Plastics

According to their cost and performance:

1. Commodity plastics (or standard/bulk plastics): produced in great amounts at low cost. e.g. PVC, HDPE, LDPE, LLDPE, VLDPE, PP, PS, EPS, PET
2. Engineering plastics (or technical plastics): plastics with improved mechanical properties and dimensional stability compared to commodity plastics. e.g. PP, PET, PBT, PA, PC, POM, PMMA, SAN, ABS, HIPS, PPO-PS, POM-PUR, PC$A B S$, etc.
3. High-performance plastics (or specialty plastics): engineering plastics with even more improved mechanical properties.
e.g. liquid cystal polymers (LCPs), polyetheretherketone (PEEK), fluoropolymers

Different Grouping Methods of Plastics

(a) Thermoplastic

According to their hardening processes:

- Thermoplastics: harden through simple cooling of a polymer melt (a physical process) and soften while being heated. e.g., PE, PP, ABS, PVC, etc.
- Thermosets: harden through chemical cross-linking reactions between polymer molecules; when heated, they do not soften but decompose chemically.
e.g., alkyd, phenolic, amino, epoxy, unsaturated polyesters, polyurethane, and allylic resins

Different Grouping Methods of Plastics

- According to the origin of feedstock: fossilvs. bio-based plastic
- According to the biodegradability: biodegradable vs. non-biodegradable plastics

Biodegradable

Plastics - Production overview

Global production (2021): $390 \mathrm{Mt} / \mathrm{y}$

In 2015, 4\% of the global greenhouse gas emissions werecaused by plastics. [1]

main causes for climate change impact of plastics: production and waste incineration [2, 3]

1 Zheng, J., Suh, S., 2019. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang.
${ }^{2}$ Cabernard, L. et al., 2022. Growing environmental footprint of plastics driven by coal combustion. Nat. Sustain. ${ }^{3}$ Klotz, M. et al., 2022. Limited utilization option for secondary plastics may restrict their circularity. doi.org/10.1016/j.wasman.2022.01.002

A Wide Range of Chemicals are Present in Plastics

Cindy Zweiben, Pfizer, Inc., Characterization of Extractables and Leachable in Parenteral Drug Products

- Unreacted monomers, residual processing aids and additives can be released during the production, use, disposal and recycling of plastics.

Additives and Processing aids

Global production: ~18 Mt / y

Major types: [2]

- Plasticizers: 7.5 Mt/y
- Fillers
- Flame retardants: 2.1 Mt/y
- Heat stabilizers: 1.2 Mt/y
- Impact modifiers: 1.0 Mt/y
- Lubricants: $0.8 \mathrm{Mt} / \mathrm{y}$
- Antioxidants: 0.5 Mt/y

Concerns about Chemical Release from Plastics

Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways - A test chamber investigation
C. Rauert, S. Harrad *

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION
2020, AHEAD-OF-PRINT, 1-23
https://doi.org/10.1080/10408398.2020.1830747

Migration of endocrine-disrupting chemicals into food from plastic packaging materials: an overview of chemical risk assessment, techniques to monitor migration, and international regulations

Hooi-Theng Ong ${ }^{\text {a }}$, Hayati Samsudin ${ }^{\text {b }}$, and Herlinda Soto-Valdez ${ }^{\text {c }}$

	Science of the Total Environment $720(2020) 137623$
Wournal homepage: www.elsevier.com/locate/scitotenv	
ELSEVIER	Contents lists available at ScienceDirect

Children's exposure to hazardous brominated flame retardants in plastic toys
Oluwatoyin T. Fatunsin ${ }^{\text {a }}$, Temilola O. Oluseyi ${ }^{\text {a }}$, Daniel Drage ${ }^{\text {b }}$, Mohamed Abou-Elwafa Abdallah ${ }^{\text {b }}$, Andrew Turner ${ }^{\text {c }}$, Stuart Harrad ${ }^{\text {b,* }}$

Recyling Challenges Associated with PlasticMAP

They may influence recycled plastics in the following ways:
\rightarrow Interfere with recycling or sorting process
\rightarrow Reduce the (actual) recyclability including aesthetics in mechanical recycling

- Reduction of mechanical properties: pro-degradant/pro-oxidant metal additives (Aldas et al. 2018, 10.1155/2018/2474176), mixing of additives
- Color-changes through colorants, carbon black, PbS (black) in recycled PVC
- Odor changes
\rightarrow Reduce the safety of secondary materials
- heavy metals, halogenated flame retardants, phthalates, etc.

Plastic Monomers, Addtives and Processing Aids Database

Monomers, additives and processing aids are highly diverse

- ECHA + industry: over 400 plastic additives registered under REACH at above 100 tonnes/year
- Groh et al. (2018): over 3'000 additives in plastic packaging
- SpecialChem additives database: over 30'000 commercially available formulations

Only few substances are regularly discussed in scientific literature

\rightarrow Need for an overview of their chemical identities and priority setting

4. Identification of substances of (potential) concern

a) find substances with concerning properties

b) check legal status \& scientific references

number of scientific

 references

Methods - Inclusion of relevant substances and information

a) Identify relevant substances

- Search for plastic-related keywords
- Search for CASRNs
b) Verify CASRNs using SciFinder
c) Assign confidence to sources and substances
d) Include further information

regional use status	tonnage data	legal status	hazard data
	ΔL		

Type	Included Sources		
RegulatorHarmonized	- EU C\&L inventory - harmonized - EU REACH Authorization List - EU REACH PBT Assessment List - EU REACH EDC Assessment List - EU REACH SVHC List - Japanese GHS Classification Results - Australian Hazardous Chemicals Information System - OECD eChemPortal - IARC Classified Agents List		
Companyreported	- EU REACH registration dossiers - EU C\&L inventory - not harmonized		
Gtblads: - OBCDklfigm - Montreal P	oduetibiorvolume tocol	chemícals	

Results - Overview of the Substances

Wiesinger et al. 2021. ES\&T,
10.1021/acs.est.1c00976

Results - Use Patterns

Results - Use Patterns

Results - Regional relevance

- 10-80\% of substances registered in inventories from different parts of the world
- the commercial status, extent of use and concentrations in plastic articles remain unknown

Regional registrations

Results - Substances of Potential Concern

- more than 2'400 substances $=25 \%$ of the identified substances
- about 900 substances of potential concern are also approved for use in food-contact plastics

| HAZARD TYPE | TOTAL | HPVC | NOT REGULATED ${ }^{1}$ | NOT RESEARCHED |
| :---: | :--- | :---: | :---: | :---: | :---: |

[^0]
Results - Examples of Unregulated Substances of Potential Concern

Chloroalkanes, C14-17 Lubricant, flame retardant, plasticizers. CASRN: 85535-85-9
POP candidates

Phosphoric acid, tris(methylphenyl) ester

Flame retardant,.
CASRN: 1330-78-5
Skin Sens. 1, Repr. 2
STOT RE 2, Aquatic Acute 1
Aquatic Chronic 1

1-Propanol, 2-methoxy-, 1-acetate Solvent, used in colorants CASRN: 70657-70-4 Repr. 1B

2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol (Tinuvin 328) Antioxidant
CASRN: 25973-55-1
STOT RE 2

Benzene, 1,1'-(1,1-dimethyl-3-methylene-1,3-propanediyl)bis-

Polymerization control agent
CASRN: 6362-80-7
Skin Sens. 1, STOT RE 2
Aquatic Acute 1, Aquatic Chronic 1

Thioperoxydicarbonic diamide ([(H2N)C(S)]2S2), N,N,N',N'-tetraethylCrosslinking Agent CASRN: 97-77-8
Skin Sens. 1, STOT RE 2 Aquatic Acute 1, Aquatic Acute 2

Results - Examples of Inconsistently Regulated Substances

- 901 substances of potential concern are approved for use in food-contact plastics
$\rightarrow 265$ substances of potential concern are restricted/banned in other use areas

Ethanol, 2-chloro-, 1, 1',1"-phosphate Flame retardant, other processing aid..

CASRN: 115-96-8
SVHC (Repro)

Terphenyl, hydrogenated Colorant, other processing aid,.. CASRN: 61788-32-7
SVHC (vPvB)

Ethane, 1,1,1-trichloroAntioxidant, stabilizer, lubricant,.. CASRN: 26523-78-4
SVHC (EDC)

1,2-Benzenedicarboxylic acid, 1,2-bis(2-ethylhexyl) ester
Colorant, plasticizer, CASRN: 117-81-7
SVHC (Repro, EDC)

Discussion - Data Availability \& Uncertainties

Critical data and knowledge gaps:

- Regulator-harmonized hazard data
- Use details and concentration ranges

Our numbers may still well be underestimates, due to focuses on:

- digitized sources (vs. print sources)
- sources where assigned CASRNs are provided (vs. sources where no assigned CASRNs provided)
- intentionally added substances (vs. NIAS)
- existing GHS hazard data (vs. literature values)

Discussion - Possible Ways Forward

- Establishing a centralized knowledge base
\rightarrow e.g. through public-private partnerships and corporate social responsibility; harmonizing information exchange standards
- Ensuring transition to a safe and sustainable circular plastic economy
\rightarrow e.g. developing standardized approaches to assessing the sustainable circularity of plastics and chemicals therein; avoiding hazardous substances, reducing product complexity and embedding sustainable circularity in the design phase; fostering innovative and enabling business models and practices
- Expanding and harmonizing regulatory efforts
\rightarrow e.g. group- or class-based approaches; one substance, one assessment; complementary market-based policy instruments to internalize externalities

Take-Home Messages

- A messy situation regarding intentionally added chemicals in plastics
- Thousands of diverse substances (potentially) used
- 25% having concerning properties, and only a part researched and regulated (including conflicting regulations in different domains)
- A general lack of transparency on their actual occurrence in products and hazards
- Concerted efforts from all actors are urgently need to ensure transition to a safe and sustainable circular economy, starting from the design phase!

Outlook

Following policy actions are urgently needed

- Design for recycling - also on the chemical level
- Supply chain transparency
- Expand focus of research, regulation and monitoring

Research needs and opportunities

- Target list for non-targeted analysis
- Support alternatives assessment
- New research foci
- Need for analytical standards
- Need for standardized terminology regarding chemicals

Publication of paper and database soon

"Clean Cycle" Strategy

Key components of the strategy

(1) Phase-out of hazardous chemicals in primary materials
(2) Separation of contaminated used materials
(3) Safe treatment/disposal of contaminated materials
\rightarrow "Clean Cycle" Project @ETHZ

Clean Cycle Project @ETHZ

Current research - Measurements of chemicals in plastics

Goal: Fill the data gaps from PlasticMAP regarding concentrations and actual uses

- Which chemicals are actually present in plastics samples?
- Which concentrations are relevant for different products?
- Where are hot/blind-spots in plastic screening literature?

Current research - B\&C case study

ETHzürich

Acknowledgement

Thank you very much for your attention! Thanks to RECETOX and Ondřej and Peter for the invitation!

Further, I thank for the support from:

- the Clean Cycle project team: Magdalena Klotz, Dr. Zhanyun Wang, Dr. Melanie Haupt, Prof. Stefanie Hellweg
- the Swiss Federal Office for the Environment (FOEN), the Swiss Federal Office of Public Health (FOPH) and Canton of Zurich's Office of Waste, Water, Energy and Air (AWEL).

[^0]: ${ }^{1}$ regulated by international regulatory lists or in the EU, USA, Japan or Republic of Korea
 ${ }^{2}$ no scientific references according to SciFinder

