Měření elektronových vlastností materiálů pomocí optické spektroskope (elipsometrie a magneto-transmise)

doc. A. Dubroka, PhD., dubroka@physics.muni.cz Ústav fyziky kondenzovaných látek

- Spektroskopická elipsometrie a dielektrická funkce
- Základní optické modely: Lorentzův a Drudeův model
- Studium feromagnetického stavu La_{0.7}Sr₃CoO₃ pomocí elipsometrie
- Studium excitovaných stavů LaCoO₃ pomocí femtosekundové elipsometrie
- Magneto-optická spektroskopie Landauových přechodů v topologických izolátorech Bi₂Te₃

Princip elipsometrie

 Elipsometrie je de facto interferenční experiment s komponentou elektrického pole rovnoběžnou (p) a kolmou (s) k rovině dopadu.

Měřené veličiny v elipsometrii:

- úhel pootočení elipsy Ψ
- elipticita Δ

=>

n,k nebo ϵ_1, ϵ_2 bez dalších předpokladů

základní rovnice elipsometrie

Definice elipsometrických úhlů Ψ a Δ : $\rho = \frac{r_{\rm p}}{r_{\rm s}} = \tan \Psi e^{i\Delta}$ Fresnelovy koeficienty:

$$r_{\rm p} = \frac{N_2 \cos \theta_1 - N_1 \cos \theta_2}{N_1 \cos \theta_2 + N_2 \cos \theta_1} \quad r_{\rm s} = \frac{N_1 \cos \theta_1 - N_2 \cos \theta_2}{N_1 \cos \theta_1 + N_2 \cos \theta_2}$$

Snellůlv zákon: $N_1 \sin \theta_1 = N_2 \sin \theta_2$

Index lomu okolí: $N_1=\sqrt{\epsilon_{
m a}}$ Index lomu vzorku: $N_2=\sqrt{\epsilon_{
m s}}$

Inverzí výše uvedených rovnic obdržíme v případě polonekonečného izotropního vzorku explicitní analytický výraz pro dielektrickou funkci (jak její reálnou tak i imaginární část):

$$\epsilon_{\rm s}(\Psi, \Delta) = \epsilon_{\rm a} \sin^2 \theta_1 \left(1 + \tan^2 \theta_1 \left(\frac{1 - \rho(\Psi, \Delta)}{1 + \rho(\Psi, \Delta)} \right)^2 \right)$$

shrnuto: ze dvou měřených veličin Ψ a Δ určíme dvě veličiny ε_1 a ε_2

Absorpce- reálná část optické vodivosti

Optická vodivost se vztahuje k dielektrické funkci jako $\sigma(\omega) = -i\omega\varepsilon_0(\varepsilon(\omega) - 1)$

Je to komplexní funkce: $\sigma(\omega) = \sigma_1(\omega) + i\sigma_2(\omega)$

• Reálná část vodivosti $\sigma_1(\omega) = \omega \epsilon_0 \epsilon_2(\omega)$, je úměrná absorpci elektromagnetické energie

• $\sigma_1 (\omega=0) = \sigma_{DC}$

• σ_1 je vázaná sumačním pravidlem

$$\int_{0}^{\infty} \sigma_{1}(\omega) \mathrm{d}\omega = \frac{\pi n q^{2}}{2\varepsilon_{0} m} = \text{constant}$$

- Integrál z $\sigma_1(\omega)$ přes široký frekvenční interval je proporční náboji který záření absorbuje.

Lorentzův oscilátor

Newtonova rovnice harmonicky buzeného mechanického oscilátoru:

$$m\frac{\mathrm{d}^{2}x(t)}{\mathrm{d}t^{2}} = -k\,x(t) - m\gamma\frac{\mathrm{d}x(t)}{\mathrm{d}t} + qE_{0}\mathrm{e}^{-\mathrm{i}\omega t}$$

$$\mathbf{\tilde{R}e\check{s}eni:} \qquad x_{0}(\omega) = \frac{F}{\omega_{0}^{2} - \omega^{2} - \mathrm{i}\omega\gamma}$$

$$\omega_0 = \sqrt{\frac{k}{m}} , \quad F = \frac{qE_0}{m}$$

polarizace je hustota dipólového momentu

$$P(\omega) = \sum_{j} nqx_{0,j}(\omega)$$
 n: koncentrace

z definice dielektrické funkce:

$$\varepsilon(\omega) = 1 + \frac{P(\omega)}{\varepsilon_0 E(\omega)} = 1 + \sum_j \frac{\omega_{pl,j}^2}{\omega_{0,j}^2 - \omega^2 - i\omega\gamma_j}$$

příspěvek vysokofrekvenčních přechodů lze nejhruběji aproximovat konstantou:

$$\epsilon(\omega) = \epsilon_{\infty} + \sum_{j} \frac{\omega_{\text{pl},j}^2}{\omega_{0,j}^2 - \omega^2 - i\omega\gamma_j}$$

• dielektrická fukce nezávislých Lorentzových oscilátorů. Typicky dobře funguje pro fonony. Drudeův model kovů dostaneme dosazením $\omega_0=0$

 $\omega_{\mathrm{pl},j} = \sqrt{\frac{q_j^2 n_j}{\epsilon_0 m_j}}$

Drudeova formule

• odezvu volných nosičů náboje získáme pro $\omega_0=0$

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_{pl}^2}{\omega(\omega + i\gamma)}$$

$$\mathcal{D}_{pl} = \sqrt{\frac{q^2 n}{\varepsilon_0 m^*}}$$

závisí na koncentraci nositelů n a na jejich efektivní hmotnosti m^*

 ε_1 prochází nulou (pro $\gamma \sim 0$) pro

$$\omega = \frac{\omega_{pl}}{\sqrt{\varepsilon_{\infty}}}$$

pro $\varepsilon_{\infty} = 1$ je to přímo ω_{pl} . Na této frekvenci se v látce propaguje longitudinální plasmon, proto se této frekvenci říká plasmová.

Ukázka dielektrické funkce n-dopovaného křemíku

Opticky aktivní excitace mezi THz a ultrafialovým oborem

D. Basov et al., Phys. Mod Rev. 2011

7

Equilibrium ellipsometry at CEITEC Nano

Woollam VASE, NIR-UV range He closed-cycle cryostat 7-400 K

Woollam IR-VASE, mid infrared range

far-infrared (50-700 cm⁻¹) ellipsometer

Elipsometr pro vzdálenou infračervenou oblast v CEITECu

- jen asi 4 přístroje podobného typu na světě
- kryostat s uzavřeným cyklem helia 7-400 K
- rozhraní s ultra-nízkými vibracemi pro odsstranění vlivu vibrací
- motorizovaný goniometr s rozlišením 0.01 °
- automatizované měření ~15 teplot za 24 hodin
- detektor 4.2K (a nově 1.6 K) bolometr

P. Friš a A. Dubroka, Appl. Surf. Science **421**, 430 (2017)

Optická odezva feromagnetických kobaltátů

-hrubá data na 30nm vrstvách

tenké vrstvy (30 nm) feromagnetickémo La_{0.7}Sr_{0.3}CoO₃ vypěstované na substrátu LSAT pomocí pulsní laserové depozice (Alineason Materials Technology)

• Crurieova teplot $T_{\rm c}$ ~205 K

Hrubá data v podobě elipsometrických úhlů obsahují jak odezvu vrtsvy tak susbstrátu

Optické projevy feromagnetického stavu

P. Friš et al, Phys. Rev. B 97, 045137 (2017)

Optické projevy feromagnetického stavu

La_{0.7}Sr_{0.3}CoO₃, *T*_c ~205 K

• spektrální váhy (integrál z σ_{1}) Drudeho píku a pásu na 1.5 eV sledují vývoj magnetizace

P. Friš et al, Phys. Rev. B 97, 045137 (2017)

Modelování spekter pomocí Drudeovy-Lorentzovy formule

La_{0.7}Sr_{0.3}CoO₃, *T*_c ~205 K

Vodivostní odezvu je nutné modelovat třemi Drudeho členy – typický znak interagujících vodivostních elektronů a/nebo přítomnosti několika vodivostních pásů

Přechody elektronů mezi ionty kobaltu

- dvojná výměnná interakce vedoucí k feromagnetismu
- delokalizace elektronů je hnací silou feromagnetického uspořádání
- vede k vodivým vlastnostem

přechod mezi kobalty s antiparalelním uspořádáním spinů se nazývá přechod se "špatným spinem" ("wrong-spin-transition")
tento přechod porušuje Hundova pravidla, je na něho tedy potřeba určitou energii (~ 1.5 eV).

Photo-induced insulator-to-metal transition in LaCoO₃ explored by femtosecond pump-probe ellipsometry

A. Dubroka, O. Caha, M. Kiaba

Institute of Condensed Matter Physics, Faculty of Science Masaryk University, Kotlářská 2, Brno, Czech Republic

M. Zahradník, S. Espinosa, M. Rebarz, J. Andreasson ELI Beamlines, Fyzikální ústav AV CR, v.v.i., Za Radnicí

ELI Beamlines, Fyzikální ústav AV CR, v.v.i., Za Radnic 835, 25241 Dolní Břežany, Czech Republic

Pump-probe femtosecond ellipsometry in ELI beamlines, Dolní Břežany

FIG. 2. Experimental setup of the femtosecond pump-probe spectroscopic rotatingcompensator ellipsometer. Ch, chopper; A, analyzer; P, wire-grid polarizer; C_R, rotating compensator; L, lens; S, sample; DL, delay line; BS, beam splitter; SHG/ THG, second/third harmonic generation (optional), SCG, super-continuum generation; and CCD, charge-coupled device detector. A photograph is shown in Fig. S1.

S. Espinoza et al., APL **115b** 052105 (2019) S. Richter et al., Rev. Sci. Instrum. **92**, 033104 (2021)

- Ti:Sapphire laser (Coherent Astrella)
- 35 fs pulses at 800 nm
- 1 kHz rep. rate with 6 mJ pulse en.
- 10 mJ for pump mean
- fluency ~ 10 mJ/cm²
- Angle of incidence of probe 60 deg
- Angle of incidence of pump 55 deg
- Rotating compensator design
- measurement range: 1.6-3.4 eV

Drude model

Optical conductivity $\sigma(\omega) = -i\omega\varepsilon_0(\varepsilon(\omega) - 1)$

The real part of optical conductivity is the absorption per unit of frequency $\sigma_1(\omega)$

 $\sigma_1(\omega) \quad (= \omega \epsilon_0 \epsilon_2(\omega))$

absorption sum rule:

$$^{\infty} \sigma_1(\omega) \,\mathrm{d}\omega = \frac{\pi}{2} \frac{nq^2}{\epsilon_0 m} = \mathrm{const.}$$

• Modeling the equilibrium data with a set of Kramers-Kronig consistent functions (Tauc-Lorentz+ Gaussian)

- Modeling 250 fs data with the same model function + Drude term ٠
- Modeling yields ω_{pl}^2 =3.8±0.1 eV² with γ fixed to 1 eV ٠
- For charge per Co ion $N=n^*a^3$, we obtain N=0.15 with $m^*=m_e$
- The modelling strongly suggest that pump-induced insulator-to-metal transition takes place

 $\omega(\omega+i\gamma)$

- pump induces shift of spectral weight to low frequencies just like the with temperature
- Observation of pump-induced insulator-to-metal transition

3D to 2D crossover in antiferromagnetic LaFeO₃/SrTiO3 superlattices

- LaFeO₃ G-type antiferromagnet with T_N =740 K
- $SrTiO_3$ nonmagnetic insulator (semiconductor)
- substrate SrTiO₃

Series of superlattices: $[(LaFeO_3)_N + (SrTiO_3)_5] \times 10$ with N = 3, 2, 1Grown by M. Kiaba using PLD with in-situ RHEED monitoring

Atomically flat SrTiO3

FIG. 5. Typical surface morphology of $\rm SrTiO_3$ substrate made by AFM.

RHEED pattern during growth

Atomically flat superlattice

FIG. 4. Typical surface morphology of $(LFO_m/STO_5)_{10}$ made by AFM.

3D to 2D crossover in antiferromagnetic LaFeO₃/SrTiO3 superlattices

X-ray diffraction showing supelattice peaks and Kiessig fringes

Thickness of LFO+STO bilayer confirms order of suplattice on atomic level

Low-energy muon spin rotation (PSI, Villigen)

Electronic Clock

Can determine magnetic volume fractions of antiferromagnetic order

Drawing A. Sutter, PSI

Low-energy muon spin rotation (PSI, Villigen)

Magneto-spectroscopy on topological insulator Bi₂Te₃

optical spectroscopy:

A. Dubroka (MU Brno) M. Orlita (LNCMI Grenoble), I. Mohelský (LNCMI Grenoble, BUT Brno)

sample growth:

G. Springholz (Uni Linz)

Cyclotron frequency

Landau levels in two dimmensions

relativistic particles with zero mass: linear dispersion

Landau levels of two band model of Dirac Fermions

Two band model:

$$E(k) = \pm \sqrt{\Delta^2 + \hbar^2 v_D^2 k^2}$$

Landau level spectrum

$$E_n = \pm \sqrt{v_D^2 2e\hbar Bn + \Delta^2}$$
, where $n > 0$

Selection rule $n \rightarrow n \pm 1$

Magneto-transmission in high magnetic fields (Grenoble)

I. Mohelský etal., Physical Review B 102, 085201 (2020).

Analysis of critical points of bandstructure of Bi₂Te₃

TABLE I. The values of the amplitude *A*, energy E_{CP} , broadening ζ , and phase ϕ obtained from the fit of the CP model to the data shown in Fig. 10(c).

Label	Α	E _{CP} (meV)	ζ (meV)	φ (deg)	Line shape
А	7.8	188	24	-29	2D
В	$21 \text{ eV}^{-1/2}$	363	16	23	3D
С	$8 \text{ eV}^{-1/2}$	408	11	76	3D
D	$6 \text{ eV}^{-1/2}$	472	13	300	3D
Е	$16 \text{ eV}^{-1/2}$	575	15	60	3D

I. Mohelský etal., Physical Review B 102, 085201 (2020).

Děkuji za pozornost

Historie elipsometrie

r 1900

Paul Karl Ludwig Drude 1863-1906

Fig. 81.

Prof. Antonín Vašíček 1903-1966

~ 1938

Spektroskopie: Studium interakce mezi látkou a sondou s určitou *energií*

design of far-infrared ellipsometer at CEITEC

alternated Max-Planc design

- three chambers to support top loaded cryostat
- detection arm on a goniometer for reproducible exchange of angle of incidence

P. Friš a A. Dubroka, Appl. Surf. Science 421, 430 (2017)

Testing performance on SrTiO₃ single crystal

• Measured Ψ and Δ in comparison with those measured with Woollam IR-VASE.

• The difference is less than 0.2° in Ψ and less than 1° in Δ .

• Reproducibility in Ψ is better than 0.1° and better than 0.3° in $\Delta.$

P. Fřiš a A. D., Appl. Surf. Sci. 421 (2017) 430

dielectric function of SrTiO3

- obtained dielectric function of SrTiO3 from different angles of incidence
- agreement down to factor about 1:100

P. Fřiš a A. D., Appl. Surf. Sci. 421 (2017) 430

Jak vypadá přechod se "špatným spinem" v La_{1-x}Sr_xCoO₃ pro další úrovně koncentrací stroncia?

 elektronová struktura (Drude a "wrong spin transition") feromagnetického stavu v La_{1-x}Sr_xCoO₃ v závislosti na koncentraci děr x. Evoluce z izolujícího stavu (x=0) do feromagnetu (x>0)

• dopování x=0.5, 0.7, a 0.2

Rotační kompenzátor (čtvrtvlnová destička) pro FIRový elipsometr

- kompenzátor (čtvrtvlnová "destička") pro FIRový elipsometr
- umožňuje provádět elipsometrii s "rotačním kompenzátorem", která umožňuje měřit depolarizaci a lépe měřit Δ v celém oboru
- pouze jediný další takový elipsometr na světě (Brookhaven, USA)

dodatky

...pokud se v experimentu se světlem použijí polarizátory, tak se typicky získají nové informace

Absorpční hrana v topologických izolátorech Bi₂Se_xTe_{1-x}

Druhé derivace kritických bodů modelovány funkcí $\frac{d^{j}\hat{\varepsilon}(E)}{dE^{j}} = Ae^{i\phi}(E - E_{\rm CP} + i\Gamma)^{-n-j},$

A. D. et al, Phys. Rev. B, 96 235202 (2017)

• Fitting of data at AOI = 80° with complex lorentzians demonstrates Kramers-Kronig consistency of our data.

• Effect in Δ below 100 cm-1 is likely an onset of diffraction effects

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum \frac{\omega_{pl}^2 + i\omega_c \omega}{\omega_0^2 - \omega^2 - i\omega\gamma}$$

P. Fřiš a A. D., Appl. Surf. Sci. 421 (2017) 430

ukázka: IČ Reflektivita LiF

Drude model

A classical model of dielectric response of free and *mutually non-interacting* charge carriers

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_{\rm pl}^2}{\omega(\omega + i\gamma)}$$

where $\omega_{\rm pl}$ is the plasma frequency $\omega_{\rm pl}=$

$$_{n} = \sqrt{\frac{q^2 n}{\varepsilon_0 m^*}}$$

Example on n-doped silicon:

Optical signatures of ferromagnetic state

La_{0.7}Sr_{0.3}CoO₃, *T*_c ~205 K

