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Bondi-Hoyle-Lyttleton accretion theory



Bondi radius

Let us assume that the medium (ISM, wind, . . . ) moves with velocity v
with respect to the accreting object.

The object is able to accrete only

particles with negative total energy,

Ekin + Epot < 0.

Assuming spherically symmetric

gravitional field,

1

2
ρv2 < ρ

GM

r
.

RBondi

v

This gives condition for a limiting Bondi radius, from which a spherically

symmetric object can accrete matter, as

RBondi =
2GM

v2
.
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Mass-accretion rate from stellar wind in a binary

The total amount of accreted matter per unit of time (mass-accretion

rate) is given by matter swept by a circle with radius RBondi,

Ṁacc = Ṁ
R2
Bondi

4D2
.

Here D is the orbital separation. For

a compact accreting object (white

dwarf, neutron star, or a black hole)

with radius R , the energy released

by accretion (per unit of time) is

LX = Ṁacc

GM

R
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This process can explain X-ray luminosity of high-mass X-ray binaries.
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An alternative view: spherically symmetric accretion

Alternatively, accretion flow in a spherically symmetric case can be

described by the same equations as that used for the coronal flow,

1

r2
d

dr

(

r2ρv
)

= 0,

ρv
dv

dr
= −a2

dρ

dr
− ρGM

r2
.

The integration of the continuity equation gives the mass-accretion rate

Ṁ ≡ −4πr2ρv = const.

Inserting the continuity equation, the momentum equation takes the form

1

v

(

v2

a2
− 1

)

dv

dr
=

2

r
− GM

r2a2
.
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Solution of the Parker equation
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There are two types of solutions describing outflow (wind) and inflow

(accretion). There is one outflow solution that is subsonic at large

distances from the star and supersonic close to the star corresponding to

the accretion from stationary interstellar medium. Other inflow solution

correspond to accretion of matter with non-zero velocity.
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Analytical solution

The momentum equation

1

v

(

v2

a2
− 1

)

dv

dr
=

2

r
− GM

r2a2

can be easily integrated. To do so, it is convenient to introduce a critical

point radius

rc =
GM

2a2
=

1

2
RBondi(v = a),

using which the momentum equation reads (after integration)

(v

a

)2

− ln
(v

a

)2

= 4 ln
r

rc
+ 4

rc

r
+ K ,

where K is an integration constant. Selecting the solution that smoothly

passes throught the criticar point v(rc) = a, K = −3 and

(v

a

)2

− ln
(v

a

)2

= 4 ln
r

rc
+ 4

rc

r
− 3.
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Mass-accretion rate

For a subsonic flow v ≪ a at large distances from the star, r ≫ rc, the

solution of the momentum equation can be simplified as

− ln
(v

a

)2

= 4 ln
r

rc
− 3,

which gives for the velocity

v = −a
( rc

r

)2

e
3
2 .

Here we selected a negative root, which gives positive

Bondi accretion rate

Ṁ ≡ −4πr2ρ∞v = 4πe
3
2 r2c ρ∞a = πe

3
2
(GM)

2

a3
ρ∞,

where ρ∞ is the density of the medium at large distances from the star.

The accretion rate is clearly proportional to T−3/2.
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Accretion disks in a nutshell



The need for angular momentum conservation

The very existence of accretion disks stems from the angular momentum

conservation. Assuming that a typical blob of interstellar medium with

mass M = 1M⊙ ≈ 1033 g, radius rISM = 0.1 pc ≈ 1017 cm, and velocity

vISM = 1 kms−1 = 105 cm s−1 forms a star with about the same mass

M = 1M⊙ ≈ 1033 g and radius R∗ = 1R⊙ ≈ 1011 cm, the need for the

angular momentum conservation implies rotational velocities of the order

of rISMvISM/R∗ = 1011 cm s−1, which is significantly higher than the

escape speed and in fact even higher than speed of the light. Therefore,

during accretion, the matter has to get rid of angular momentum. As a

result of universality of angular momentum conservation law, the

accretion disks appear in different astrophysical environment including

pre-main sequence stars, binaries with mass transfer, and centers of

active galactic nuclei.
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Mass and angular momentum transfer

mass

angular momentum
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Basic hydrodynamics of the disks

Assuming spherically symmetric outflow, the radial component of the

momentum equation

∂vR
∂t

+ vR
∂vR
∂R

+
vφ

R

∂vR
∂φ

+ vz
∂vR
∂z

−
v2
φ

R
= −1

ρ

∂p

∂R
+ gR

can be in a stationary state (∂vR/∂t = 0) neglecting the density gradient

for a slow inflow (vR ≪ vφ) rewritten as

gR +
v2
φ

R
= 0,

which in equatorial plane gR = −GM/R2 gives the Keplerian velocity

vφ =

√

GM

R
.

Matter moves on Keplerian orbits in accretion disks. The angular velocity

Ω = vφ/R ∼ R−3/2 decreases with radius, whereas magnitude of the

angular momentum per unit of mass j = Rvφ ∼ R1/2 increases with

radius. Consequently, matter losses angular momentum during accretion.
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The need for anomalous viscosity

The momentum transfer in the direction perpendicular to the flow

(orbital) motion requires viscosity. As a result of viscosity, the particles

moving on neigbouring orbits may interchange the angular momentum.

The coefficient of viscosity ν is given as a product of the particle mean

free path ℓ and the mean velocity 〈v〉, ν ≈ ℓ〈v〉. The particle mean free

path is given as ℓ = 1/(nσ), where n is particle number density and σ is

the particle cross section.

The viscous time, a characteristic time of the angular momentum

transfer, is given by τ ≈ R2/ν. For a characteristic radius

R = 1 au ≈ 1013 cm with a typical particle number density n ≈ 1014 cm−3

and 〈v〉 ≈ 105 cm s−1, for a molecular viscosity with σ ≈ 10−16 cm2 the

viscous time τ ≈ 1019 s ≈ 1011 yr is too large to generate a meaningfull

accretion. Therefore, there is a need for additional anomalous viscosity.
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Accretion disks in a more detail



Viscous disk equations: equation of continuity

Integrating the equation of continuity in cylindrical coordinates

∂ρ

∂t
+

1

R

∂

∂R
(RρvR) +

1

R

∂

∂φ
(ρvφ) +

∂

∂z
(ρvz ) = 0

over the vertical variable (z) assuming axisymmetric flow gives

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0,

where

Σ =

∫ ∞

−∞

ρ dz

and where we assumed that vR does not depend on z and that the disk

disk density is zero in the limit z → ±∞ (therefore
∫∞

−∞
∂/∂z (ρvz ) = 0).
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Viscous disk equations: z component of the equation of motion

The z component of the equation of motion in cylindrical coordinates

∂vz
∂t

+ vR
∂vz
∂R

+
vφ

R

∂vz
∂φ

+ vz
∂vz
∂z

= −1

ρ

∂p

∂z
+ gz

gives with no vertical motion vz = 0 equation of hydrostatic equilibrium

−∂p

∂z
+ ρgz = 0.

The z component of the gravity is using the first order Taylor expansion

gz = −GM

r2
z

r
= − GMz

(R2 + z2)3/2
≈ −GMz

R3
.

The equation of hydrostatic equilibrium can be integrated with p = a2ρ

and assuming (vertically) isothermal disk,

ρ(z) = ρ0e
−

GMz2

2a2R3 = ρ0e
−

1
2

z2

H2 ,

which gives the Gaussian density distribution with scale-height

H = aR3/2/(GM) = aR/vK. The mid-plane disk density is related to the

vertically integrated density via Σ =
√
2πρ0H .
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Viscous disk equations: R component of equation of motion

Integrating the radial component of the equation of motion in cylindrical

coordinates

∂vR
∂t

+ vR
∂vR
∂R

+
vφ

R

∂vR
∂φ

+ vz
∂vR
∂z

−
v2
φ

R
= −1

ρ

∂p

∂R
+ gR

multiplied by ρ over the vertical variable (z) assuming axisymmetric flow

gives

∂vR
∂t

+ vR
∂vR
∂R

−
v2
φ

R
= − 1

Σ

∂

∂R
(

∫ ∞

−∞

p dz) +
1

Σ

∫ ∞

−∞

ρgR dz .

Introducing vertically independent isothermal speed of sound a in the

first integral and assuming Gaussian vertical density distribution in the

second integral with the Taylor expansion of gR in terms of z

gR = −GM

r2
R

r
= − GMR

(R2 + z2)3/2
≈ −GM

R2

(

1− 3

2

z2

R2

)

gives after the integration over z the momentum equation

∂vR
∂t

+ vR
∂vR
∂R

−
v2
φ

R
= − 1

Σ

∂

∂R
(a2Σ)− GM

R2
+

3

2

a2

R
. 13



Viscous disk equations: φ component of equation of motion

The Keplerian disk motion (vφ ∼ R−1/2) results in a radial shear. As a

result of radial shear, fluid elements exchange angular momentum leading

to a net flux of mass inwards and agular momentum outwards. Such

angular momentum flux perpendicular to the mass flow is desribed by

viscosity. However, the φ component of equation of motion in cylindrical

coordinates,

∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ

R

∂vφ
∂φ

+ vz
∂vφ
∂z

+
vRvφ

R
= − 1

ρR

∂p

∂φ
+ gφ,

which assuming axisymmetric flow and gφ = 0 reads as

∂vφ
∂t

+
vR

R

∂(Rvφ)

∂R
= 0,

was derived assuming inviscid flow and therefore does not contain any

viscosity.
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Introducing anomalous viscosity

The corresponding component of stress tensor

τRφ = µR
∂Ω

∂R

is parameterized assumimg proportionality to pressure via α parameter of

viscosity (Shakura & Sunyaev 1973) as

τRφ = αp.

The viscosity is assumed to stem mostly from the magnetorotational

instability for which α ≈ 0.01.

The vertically integrated momentum equation is then

∂vφ
∂t

+
vR

R

∂(Rvφ)

∂R
+

α

ΣR2

∂

∂R

(

R2

∫ ∞

−∞

p dz

)

= 0,

or, with µ = αaρH (assuming eddies with length-scale H and speed a)

∂vφ
∂t

+
vR

R

∂(Rvφ)

∂R
=

α

ΣR2

∂

∂R

(

a2Σ
R4

vφ

∂
( vφ

R

)

∂R

)

.

Apparently, angular momentum transfer is zero for rigidly rotating disks. 15



Stationary disks

In stationary (∂/∂t = 0) disk the continuity equation reads

1

R

d

dR
(RΣvR) = 0,

which has a solution

2πRΣvR = Ṁ = const.

giving the disk accretion rate.

The orbital velocity dominates the radial component of equation of

motion vφ ≫ a ≫ vR , therefore the equation again predicts the Keplerian

velocity distribution close to the star

vφ =

√

GM

R
.
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Stationary disks: example of solution

Equations for stationary disks

1

R

d(RΣvR)

dR
= 0,

vR
dvR
dR

+
1

Σ

d(a2Σ)

dR
+
GM

R2
=

v2
φ + 3

2
a2

R
,

vR
d(Rvφ)

dR
=

α

ΣR

d

dR

[

a2Σ
R4

vφ

d
( vφ

R

)

dR

]

predict nearly Keplerian rotation

close to the star, decrease of the

accretion velocity and of the angular

momentum J̇ = ṀvφR towards the
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star. The disks are subsonic (vR < a) up to the critical radius Rcrit.

Multiplication of the azimuthal component of the momentum equation by

2πR Σ gives for Keplerian rotation the accretion rate Ṁ = 3παa2ΣR/vφ.
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Disk evolution

Assuming the Keplerian rotation, the φ-component of the momentum

equation yields equation for disk radial velocity

vR = − 3α

ΣRvφ

∂

∂R
(R2a2Σ).

Inserting this expression into the continuity equation gives

∂Σ

∂t
=

3α

R

∂

∂R

(

1

vφ

∂

∂R
(R2a2Σ)

)

,

which is a diffusion equation for Σ. From this equation the viscous

time-scale is
∂Σ

∂t
≈ Σ

τvis
≈ αa2Σ

Rvφ
,

or

τvis =
Rvφ

αa2
=

1

αΩ

(

R

H

)2

.

The viscous time-scale is of the order of years for stellar disks (α ≈ 1).

However, this equation is typically used to derive α from observations.
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Thermodynamics of the disk



Disk structural equations

The vertical structure of the optically thick disk can be described by a

similar structural equations as the equations used for the modelling of

stellar structure or stellar atmospheres, i.e., hydrostatic equilibrium

equation
∂p

∂z
= −ρ

GMz

R3
,

heat transport equation

F =

{

− 4acT 3

3κρ
∂T
∂z , ∇ ≡ d lnT

d ln p
< ∇add,

Fconv, ∇ > ∇add,

and the equation describing the frictional generation of heat

∂F

∂z
= µ

(

R
dΩ

dR

)2

.

These equations permit to get the thermal structure of the disk and to

predict disk spectra solving the radiation transfer equation.
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Some general relations

Integration of the equation for ∂F/∂z from the disk midplane upwards

and assuming Keplerian disk rotation gives for the flux from the surface

and effective disk temperature

F0 = σT 4
eff =

9

8

GM

R2

αa2Σ

vK
.

The accretion leads to heating, which can lead to the emission of

high-energy photons from the disk (UV, X-ray).
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Application to cataclysmic variables

Cataclysmic variables are binary systems in which a white dwarf accretes

matter through an accretion disk from a late-type main sequence

companion, which fills its Roche lobe. These systems show semi-regular

outbursts in which the brightness rises by several magnitudes.
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Light curve of SS Cyg derived from AAVSO database
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Outburst in cataclysmic variables

Disk structural equations allow to

obtain relation between the disk column

density Σ and the accretion rate. In the

region of partial ionization of hydrogen

and helium this relation is double valued

and allows two solutions connected by

an unstable branch. This leads to

cyclical behaviour (Meyer &

Meyer-Hofmeister 1982).
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Self-gravitating accretion disks



The disk gravity

In many cases, the mass of the disk is comparable to the mass of the

central object (e.g., AGN disks and disks around young stellar objects).

In such a case, the gravitational potential Φ in the equation of motion is

given as a sum of two terms corresponding to the contribution of the

central object and the disk, Φ = Φc +Φd. For geometrically thin disk,

the potential can be obtained from the Poission’s equation in the form of

∇2Φd = 4πGΣδ(z),

where δ(z) is the Dirac δ-function.
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Disk orbital velocity

Again, assuming spherically symmetric inflow, the radial component of

the momentum equation

∂vR
∂t

+ vR
∂vR
∂R

+
vφ

R

∂vR
∂φ

+ vz
∂vR
∂z

−
v2
φ

R
= −1

ρ

∂p

∂R
− ∂Φ

∂R

can be in a stationary state (∂vR/∂t = 0) neglecting the density gradient

for a slow inflow (vR ≪ vφ) rewritten as

v2
φ

R
=

∂Φ

∂R
.

For self-graviting disks with Σ = Σ0R0/R (Mestel 1963) the Poission’s

equations gives (Lodato 2007)

∂Φd

∂R
= 2πGΣ.

In this case the orbital velocity is non-Keplerian,

vφ =

√

1 +
2πΣ0R0

M
RvK.

This implies vφ = const. for strongly self-graviting disks. 24



Disk vertical structure

For radially homogeneous slab we have the Poission’s equation

∂2Φd

∂z2
= 4πGρ,

which after integration from −z to z gives

∂Φd(z)

∂z
= 2πGΣ(z),

where Σ(z) =
∫ z

−z
ρ(z ′) dz ′. Therefore, the hydrostatic equilibrium

equation in the vertical direction is

−a2

ρ

∂ρ

∂z
= 2πGΣ(z).

This equation has a solution

ρ(z) =
ρ0

cosh2(z/Hsg)
, Hsg =

a2

πGΣ
.
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When the self-gravity becomes important?

The vertical component of the gravitational field produced by the disk is

of the order of

2πGΣ ≈ GMdisk

R2
,

while taking into account the projection effect the vertical component of

the gravitational field of the central object is of the order of

GM

R2

H

R
.

Therefore, the self-gravity of the disk becomes important already when

Mdisk

M
≈ H

R
,

which is typically much smaller than 1. Therefore, the disk self-gravity

may become important even if the disk mass is smaller than the mass of

the central object.
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