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Basic equations



Basic assumption

We shall consider plasma as a gas, in which the ionization can not be

neglected. In such a gas the hydrodynamical equations are affected by

the electromagnetic field. On the other hand, Maxwell equations shall

account for the presence of plasma. This leads to a concept of coupled

magnetohydrodynamical (MHD) equations.

We shall assume that plasma is electrically neutral, that is, the charge of

selected macroscopic volume is zero.
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Equation of continuity

We shall assume that plasma consists of: electrons (e), ions (i), and

neutrals (n). The equation of continuity holds for all three components,

∂ne
∂t

+∇ · (nev e) = 0,

∂ni
∂t

+∇ · (niv i) = 0,

∂nn
∂t

+∇ · (nnvn) = 0.

Multiplying these equations by appropriate masses of particles and

summing them up, we derive the mean equation of continuity

∂

∂t
(neme + nimi + nnnn) +∇ · (nemev e + nimiv i + nnmnvn) = 0.

Introducing the total density ρ =
∑

nαmα and mean velocity

v =
∑

nαmαvα/ (
∑

nαmα), the continuity equation takes the same

form as for one-component fluid,

∂ρ

∂t
+∇ · (ρv) = 0.
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Equation of continuity for electric charge

Multiplying the three continuity equations by charge of each component,

we derive equation of continuity for electric charge in the form of

∂

∂t
(neqe + niqi) +∇ · (neqev e + niqiv i) = 0.

Introducing the total electric charge density ρe =
∑

nαqα and the

current density j =
∑

nαqαvα, the equation of continuity for electric

charge has the form of
∂ρe
∂t

+∇ · j = 0.

However, we assume quasineutrality of plasma (ρe = 0), therefore the

equation of continuity for electric charge simplifies to

div j = 0.
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Equation of motion

The equation of motion holds for each component of the flow separately,
∂

∂t
(mαnαvα)

︸ ︷︷ ︸

1

+∇ (nαmαvα ⊗ vα)
︸ ︷︷ ︸

2

=

f α
︸︷︷︸

3

−∇pα
︸︷︷︸

4

+ qαnαE
︸ ︷︷ ︸

5

+
1

c
qαnαvα × B

︸ ︷︷ ︸

6

+
∑

β

Rαβ

︸ ︷︷ ︸

7

,

where we accounted for the Lorentz force (5+6) and for friction between
components (7). Summing the equation over individual components:

1 : use the definitions of ρ and v and the continuity equation,

2 : assume vα · ∇vα ≈ v · ∇v ,

3 : introduce the total volume force f =
∑

α f α,

4 : introduce the total pressure p =
∑

α pα,

5 : assume quasineutrality
∑

α qαnα = 0 (implying no influence of E ),

6 : introduce the current density j =
∑

nαqαvα,

7 : and assuming Newton’s third law
∑

αβ Rαβ = 0, we arrive at

ρ
∂v

∂t
+ ρv · ∇v = −∇p + f +

1

c
j × B . 4



Maxwell’s equations

We shall write the the Maxwell’s equations in cgs units in vacuum (i.e.,

H = B and E = D) and neglecting the displacement current

1/c ∂D/∂t. From the Ampère’s law

rotH =
1

c

∂D

∂t
+

4π

c
j

then follows

j =
c

4π
rotB.

From the equation of motion with frictional term follows the Ohm’s law

j = σE ′

written in the frame where v ′ = 0. Transforming into a general frame

j = σ

(

E +
1

c
v × B

)

.

From this follows for the electric intensity (using the Ampère’s law)

E =
j

σ
−

1

c
v × B =

c

4πσ
rotB −

1

c
v × B.
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Maxwell’s equations

From the induction equation

−
1

c

∂B

∂t
= rotE

follows using E = c

4πσ
rotB −

1
c
v ×B the equation for the magnetic field

∂B

∂t
= −

c2

4πσ
rot rotB + rot (v × B) .

For an ideal plasma (ideal MHD) the conductivity σ → ∞ and

∂B

∂t
= rot (v × B) .

In this case the Ohm’s law simplifies to

E = −
1

c
v × B.
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A side note: magnetic diffusion

The term inversely proportional to σ in the induction equation

∂B

∂t
= −

c2

4πσ
rot rotB + rot (v × B)

describes magnetic field diffusion, because

∂B

∂t
=

c2

4πσ
∆B

is a diffusion equation. From this equation follows the characteristic

diffusion time

τ =
4πσ

c2
L2,

which is typically very large for astrophysical plasmas due to large L.

Therefore, in most applications the diffusion term can be safely neglected.
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Basic equations of ideal MHD

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv · ∇v = −∇p + f +

1

4π
(rotB)× B

∂B

∂t
= rot (v × B)

divB = 0

equation for energy
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Some applications



Flux freezing

Let us study a closed curve C = ∂S that is co-moving with the plasma

and calculate the change of magnetic flux through C ,

d

dt

∫

S

B dS =

∫

S

∂B

∂t
dS +

∮

∂S

B · (v × ds) =

∫

S

∂B

∂t
dS +

∮

∂S

B × v ds =

∫

S

(
∂B

∂t
− rot (v × B)

)

dS = 0.

ds
v dt

S

This means that the flux remains constant in time for any arbitrary closed

curve. In turn, this implies that magnetic field-lines must move with the

plasma. Or, in scientific jargon, the field-lines are frozen into the plasma.

Flow along B is not affected by the field, while the flow perpendicular to

B tears down the field. In a tube the product SB is constant, for which

the continuity equation ρSv = const. implies ρ ∼ B/v .
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Two limiting cases

From the momentum equation

ρ
∂v

∂t
+ ρv · ∇v = −∇p + f +

1

4π
(rotB)× B

two limiting cases follow. For negligible magnetic field

(rotB)× B/(4π) ≈ 0 the flow is not affected by the magnetic field and

moves freely. But we still have

∂B

∂t
= rot (v × B) ,

and the magnetic field is from the flux freezing condition carried with the

flow.

In the oposite case the magnetic field dominates and the flow follows the

magnetic field.
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Introducing the magnetic pressure

The magnetic term in the equation of motion can be rewritten as

1

4π
(rotB)× B =

1

4π
(B · ∇)B −∇

(
B2

4π

)

.

Consequently, the equation of motion takes the form of

ρ
∂v

∂t
+ ρv · ∇v = −∇

(

p +
B2

4π

)

+ f +
1

4π
B · ∇B .

From this equation, the term B2/(4π) can be regarded as magnetic

pressure.
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Magnetostatics

The magnetic pressure plays a crucial role in magnetostatics, which is an

application of MHD on stationary (∂/∂t = 0) and static (v = 0)

systems. For these systems the momentum equation gives

∇

(

p +
B2

4π

)

= f +
1

4π
B · ∇B

or

∇p =
1

4π
(rotB)× B + f .
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Magnetostatics: two examples

In absence of external fields f = 0, for

vertically constant magnetic field

∂B/∂z = 0 in the z direction the

momentum equation simplifies to

∇

(

p +
B2

4π

)

= 0 ⇒ p +
B2

4π
= const.

B

=const.p
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Magnetostatics: two examples

In absence of external fields f = 0, for

vertically constant magnetic field

∂B/∂z = 0 in the z direction the

momentum equation simplifies to

∇

(

p +
B2

4π

)

= 0 ⇒ p +
B2

4π
= const.

For atmosphere with horizontal

magnetic field the hydrostatic

equilibrium equation reads

d

dz

(

p +
B2

4π

)

= −ρg .

For dB2/dz < 0 this enables enables to

support the matter (ρ > 0) above the

regions of zero density (ρ = 0). This

corresponds to solar prominences.

z

ρρ

ρ

>0

ρ>0

=0
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Polarization electric field in the stellar atmosphere

Let us go back to the momentum equations of individual components

and assume an isothermal atmosphere in hydrostatic equilibrium without

magnetic field (B = 0) composed of ionized hydrogen only. In such a

case the momentum equations simplify to

kT∇ni −mini g − eni E = 0,

kT∇ne −mene g + ene E = 0.

Summing these two equation (taking into an account that me ≪ mi and

ni ≈ ne) we derive
1

ni
∇ni =

mi

2kT
g ,

which is ordinary hydrostatic equilibrium equation. Substracting these

equations we derive equation for polarization electic field in the form of

E = −
mi

2e
g .
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