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Magnetic field and stellar structure



Magnetic field and global stellar structure

Magnetic field significantly influences stellar structure if the magnetic

field energy is comparable with gravitational energy, that is,

4

3
πR3B

2

4π
≈ GM2

R
.

In solar units,

B ≈ 108G

(
M

M⊙

)(
R

R⊙

)−2

.

This limit is never reached in any star. In nondegenerate stars, the

magnetic field is always significantly lower than the above limit. The

most strongly magnetized non-degenerate star ever discovered is Babcock

star HD 215441, which has M ≈ 2M⊙, R ≈ 2R⊙, and B ≈ 34 kG, i.e.,

several orders of magnitude below the limit. Neither this is fulfilled in

white dwarfs, where the magnetic field is up to 108 G, but R ≈ 10−2R⊙.

The limit is not reached even in magnetars with B upto 1015G, but very

small radii R ≈ 10−5R⊙. Magnetic field field does not influence the

global structure of stars, but may influence local processes like

convection, angular momentum transport, and magnetosphere.
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Magnetic field and convection

The interplay between magnetic field and convection establishes a very

complex problem, which shall be treated usign MHD simulations in its

general form, coining the term magnetoconvection. At least, an analogue

of Schwartzchield stability condition can be formulated as

d lnT

d ln p
<

κ − 1

κ

+
B2
v

B2
v + 8πκp

,

where Bv is the vertical component of the magnetic field. This means

that the magnetic field may stabilize atmosphere against the convection if

β =
p
B2

8π

. 1.
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where Bv is the vertical component of the magnetic field. This means

that the magnetic field may stabilize atmosphere against the convection if

β =
p
B2

8π

. 1.

The magnetic field stabilizes the

solar atmosphere against convection

in solar spots. As a result, the heat

transport becomes inefficient and

the spot becomes cool.
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Magnetic buyonancy

Let us assume the horizontal

magnetic flux tubewith internal and

external pressure pi and pe,

respectively. The hydrostatic

equilibrium requires that

pi +
B2

4π
= pe.

B

z

This implies that the density inside the flux tube is lower than outside

leading to magnetic buyonancy (Parker & Jensen 1955).

The magnetic flux tubes rise and appear on the stellar surface in the form

of Greek letter Ω. This explains the appearance of stellar spots with

oposite polarities.
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Magnetic field decomposition

tB p

z

B

In many cases, the stars retain some kind

of symmetry, for example an axial

symmetry around the rotational axis. In

such case it becomes convenient to

decompose the magnetic field into

poloidal and toroidal components,

B = Bp + B t.

Denoting t unit vector in the azimuthal direction, the components fulfill

Bp · t = 0, Bt = Bϕt.

Introducing scalar P such that the potential of Bp is A = At = −Pt/R ,

where R is radius in cylindrical coordinates (distance from z axis)

Bp = rotA = −rot

(
P

R
t

)

= − 1

R
∇P × t.

Here we used rot (ψC ) = ψrotC +∇ψ × A and rot (t/R) = 0.
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Magnetic field decomposition: the current

As a result of axial symmetry, from the Ampére’s law (e.g., writing in

components)

j t =
c

4π
rotBp,

j p =
c

4π
rotB t =

c

4π
rot

(

RBϕ
t

R

)

=
c

4πR
∇(RBϕ)× t.

This means that poloidal magnetic field creates toroidal currents and vice

versa. The Lorentz force density is

1

c
j × B =

1

c
j p × Bt +

1

c
j t × Bp

︸ ︷︷ ︸

poloidal

+
1

c
j p × Bp

︸ ︷︷ ︸

toroidal

.

From symmetry, the Gauss’s law for magnetism in the differential form is

divB = divBp + divBt = divBp = 0.
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Ferraro isorotation law



Induction equation in the rotating star

Let us study rotation of spherically symmetric star with rotational velocity

v t = RΩt,

where R is the radius in cylindrical coordinates, Ω is angular frequency,

and t is unit toroidal vector. Separating the magnetic field into poloidal

and toroidal components, B = Bp + B t, the induction equation is

∂B

∂t
= rot (v t × B) = rot [RΩt × (Bp + Bt)] = rot (RΩt × Bp) .

Evaluating this in the cylindrical component, the ϕ component of

induction equation is
∂Bϕ

∂t
= R (Bp · ∇)Ω.

If angular velocity changes along Bp, then the toroidal field is generated

from the original poloidal field.
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Equation of motion in rotating star

The equation of motion in the direction of ϕ is

ρ
∂vϕ
∂t

= ρR
∂Ω

∂t
=

1

c

[(
j t + j p

)
× (Bp + Bt)

]
t =

1

c

(
j p × Bp

)
t.

Using the previously derived relations and A · (B × C ) = C · (A× B)

ρR2∂Ω

∂t
=

R

c

c

4π

[(

∇(RBϕ)×
t

R

)

× Bp

]

· t = 1

4π
Bp · ∇(RBϕ).
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Torsional waves

Combining the induction and momentum equations and neglecting the

changes of Bp we arrive at the wave equation of torsional waves

ρR2∂
2Ω

∂t2
=

1

4π
Bp · ∇

[
R2 (Bp · ∇)Ω

]
,

∂2Bϕ

∂t2
= R (Bp · ∇)

[
1

4πρR2
Bp · ∇(RBϕ)

]

.

Taking into account small variations of Bp and R

∂2Ω

∂t2
=

B2
p

4πρ

∂2Ω

∂s2
= v2

A

∂2Ω

∂s2
,

where s the element length along Bp. The torsional waves propagate

with Alfvén speed relatively quicky through the star (within 102 − 104 yr).
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Ferraro isorotation law

The torsional waves dampen down during the stellar lifetime,

∂Bϕ/∂t = 0, what implies (Bp · ∇)Ω = 0. For Bp = − 1
R
∇P × t we

have (∇P × t) · ∇Ω = 0. Again using the identity

A · (B × C ) = C · (A× B) we have t · (∇P ×∇Ω) = 0. As a result of

symmetry around the z axis, the term in the bracket should have a

component just in the direction of t. This implies ∇P ×∇Ω = 0, or

Ω = Ω(P).

This is Ferraro isorotation law, which says that the angular rotation

frequency is constant along the magnetic field line. In most cases, this

means solid body rotation for magnetic stars.

From the equation of motion in the stationary state ∂Ω/∂t = 0 and

therefore Bp · ∇(RBϕ) = 0. Again using Bp = − 1
R
∇P × t we have

RBϕ = f (P). Therefore the current

j p =
c

4π
∇(RBϕ)× t =

c

4πR
f ′∇P × t =

c

4π
Bp

flows along the magnetic field and does not produce any force. 9



Solar dynamo



Dynamo: creating magnetic field by motion

Many stars show strong magnetic fields. One of the possibilities how to

explain such fields is by a stellar dynamo, that is, by creating magnetic

fields by flow motion. As we shall see, the dynamos work in cool stars in

their convective envelopes and in convective cores of hot stars.
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Biermann battery

Let us explore the possibility that the polarization electric field is the

source of the magnetic field. The polarization electric field is

E = −mi

2e
g .

From hydrostatic equilibrium equation g = ∇p/ρ we have

E = −mi∇p/ (2eρ) . For ni = ne we have p = 2pe and therefore

E +
1

nee
∇pe = 0.

The Faraday’s law of induction −1/c ∂B/∂t = rotE provides a

possibility to create magnetic field if rot (∇pe/ne) 6= 0.

In a spherically symmetric nonrotating star rotE = 0 and therefore there

is no induced magnetic field. However, in a rotating star where Ω = Ω(z)

from the hydrostatic equilibrium equation rotE 6= 0 providing a posibility

to induce toroidal magnetic field. This is called Biermann battery.

However, the analysis shows that the field is very weak, but it may serve

as a seed field for the dynamos.
11



Cowling antidynamo theorem: the essence

z
B

j t

p

O

Let us assume axial symmetry. The

toroidal magnetic field Bp creates from

the Ampére’s law toroidal currents j t.

This results in a flow velocity j t × Bp in

the direction to the neutral point. To

prevent this, we would need a flow

source in the neutral point O, which is

impossible due to the conservation of

mass.

This means that any axisymmetric

magnetic field cannot be sustained

against the Ohmic decay via

axisymmetric flow of matter.

This is Cowling antidynamo theorem. As a result, we need

nonaxisymmtric flow to obtain stable dynamo.

12



Cowling antidynamo theorem: detailed analysis

Let us search for a stable dynamo assuming axial symmetry. The toroidal

component of the Ohm’s law is

j t

σ
= E t +

1

c
vp × Bp.

Assuming the vector potential in the form of A = −Pt/R , we have the

poloidal magnetic field

Bp = − 1

R
∇P × t.

Decaying axially symmetric magnetic field creates toroidal electric field

E t = −1/c∂A/∂t (as a result of axial symmetry, there is not contribution

from ∇ϕ. In a stationary state, E t = 0 and the toroidal current is

j t =
c

4π
rotB =

c

4π
rot rotA =

c

4π
rot

(
1

R
∇P × t

)

=

c

4π

[
t

R
div∇P +∇P div

(
t

R

)

︸ ︷︷ ︸

=0, axisym.

+(∇P · ∇)

(
t

R

)

︸ ︷︷ ︸

−1/R ∂P/∂Rt

−
(
t

R
· ∇
)

∇P

︸ ︷︷ ︸

=0, axisym.

]

.
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Cowling antidynamo theorem: detailed analysis

The right hand side of the Ohm’s law is

1

c
vp×Bp = − 1

cR
vp × (∇P × t) = − 1

cR
(vp · t)
︸ ︷︷ ︸

=0

·∇P +
1

cR
(vp · ∇P) · t.

Combining the last two equations we have the Ohm’s law as

vp · ∇P =
c2

4πσ

(

div∇P − 1

R

∂P

∂R

)

.

In the neutral point O we have ∇P = 0 (∂P/∂R = 0), but div∇P 6= 0.

This means that the above condition is fullfilled either just for σ → ∞
(for the frozen field) or in the vicinity of O we shall have vp → ∞, which

does not make a sense. Consequently, any axisymmetric magnetic field

cannot be sustained against the Ohmic decay via axisymmetric flow of

matter.
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Towards the working dynamo: model due to Babcock & Parker

The Cowling antidynamo theorem shows that to sustain a working

dynamo, one needs to employ the toroidal field component. The dynamo

model is based on oscillarory process:

� The process starts with a dipolar field. As a result of differential

rotation, the magnetic field is wind up. Therefore, the differential

rotation creates toroidal field from initial poloidal field.

� In a second step, the poloidal field should be recreated from initial

toroidal one. This happends due to the magnetic buyonancy and

convection, due to which the magnetic flux tubes move upward. The

convective bubles expand, what creates the the Coriolis force, which

winds us the toroidal field creating the poloidal field.

These steps lead to reversal of the magnetic poles. Therefore the real

period of the dynamo is twice that given by these processes.
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Parker’s dynamo: poloidal component of induction equation

We shall assume general magnetic field that contains both poloidal and

toroidal components induced by stellar rotation

Bp = rot (At) , B t = Bϕt, v = vp +ΩRt.

The general induction equation including the resistivity λ

∂B

∂t
= rot (v × B)− λ rot rotB = rot (v × B)− λ∆B .

The poloidal component has the form of

∂ (rot (At))

∂t
= rot (v × B)− λ rot rot rot (At) ,

what gives for A after integration with Bp = rot (At) = −t ×∇A

∂ (At)

∂t
= −v × (t ×∇A)− λ rot rot (At) .

With rot rot (At) = ∇ div (At)
︸ ︷︷ ︸

=0 (sym.)

−∆(At) = −∆A− A/R2 we have

∂A

∂t
+ vp · ∇A = λ

(

∆− 1

R2

)

A. 16



Parker’s dynamo: toroidal component of induction equation

The toroidal component of the induction equation is

t

∂Bϕ

∂t
= rot (ΩRt × Bp + vp × (Bϕt))−∆(Bϕt) .

The first right hand term is after some manipulation

rot (ΩRt × Bp) = rot (t × Bp)ΩR − (t × Bp)×∇ (ΩR) =

t divBp
︸ ︷︷ ︸

=0

+tBp · ∇ (RΩ)−∇ (RΩ) · t
︸ ︷︷ ︸

=0

Bp.

After evaluating in components after some math the second term is

rot (vp × tBϕ) = rot (vp × t)Bϕ − (vp × t)×∇Bϕ =

−tR div (vp/R)Bϕ − t vp · ∇Bϕ = −tRdiv (vpBϕ/R) .

As a result, the toroidal component of the induction equation is

∂Bϕ

∂t
+ Rdiv

(
1

R
Bϕvp

)

= RBp · ∇Ω + λ

(

∆− 1

R2

)

Bϕ.
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Dynamo equations

Let us summarize that we obtained the following system of equations:

∂A

∂t
+ vp · ∇A = λ

(

∆− 1

R2

)

A,

∂Bϕ

∂t
+ Rdiv

(
1

R
Bϕvp

)

= RBp · ∇Ω+ λ

(

∆− 1

R2

)

Bϕ

for toroidal and poloidal components of the magnetic field. The term

RBp · ∇Ω describes the generation of toroidal magnetic field from the

poloidal field due to differential rotation (winding up of the field lines).

This is the first step of the dynamo.

However, due to topological difference between these field components,

there is no such term in the equation for the poloidal component.

Therefore, there has to be a term propotional to Bϕ to close the dynamo

loop. In such case the poloidal equation reads

∂A

∂t
+ vp · ∇A = αBα + λ

(

∆− 1

R2

)

A.
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The magic with α

The possibility how to create poloidal field from the toroidal field is the

followind one. As a result of the convective motion, hot buble moves

upward. The buble expands as it moves up. This leas the circular

movement of the gas in the bubble due to to the action of the Coriolis

force. The magnetic field follows the matter in the plume, creating the

poloidal field from the toroidal one.

B

z

g

Ω

This does not violate the Cowling antidynamo theorem, because the

motion due to the convection is not axisymmetric.
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Convenient model of dynamo

Let us for simplicity study the dynamo in cartesian coordinates with axis

y in toroidal direction and axis z corresponding to the rotation. We shall

impose the axial symmetry ∂/∂z = 0 and the vector of the differential

rotation velocity v = (0, v(z), 0). In such a case

B =

(

−∂A
∂z
, By ,

∂A

∂x

)

fulfills divB = 0 constraint. The induction equations then read

∂By

∂t
= v ′ ∂A

∂x
+ η∆By ,

∂A

∂t
= αBy + η∆A,

where v ′ = dv/dz .

20



Oscillatory dynamo

We will search the solution in the form of exp (ikx + pt) with constants k

and p. This yields the system of algebraic equations

pBy = ikv ′A− ηk2By ,

pA = αBy − ηk2A.

From the second equation we have By = A/α (p + ηk2), which inserting

into the first equation yields (p + ηk2)2 = iαv ′k , or

p + ηk2 = (1± i)
√

|D|ηk2, with D =
αv ′

2η2k3
,

and ± depending on the sign of D. The solution has the form of

A ∼ e

[

ηk2
(√

|D|−1
)

t
]

e
i
[

kx±ηk2
√

|D|t
]

.

Therefore, for |D| > 1 we obtain exponentially growing wave (with

amplitude constrained due to damping) with period 2π/
(

ηk2
√

|D|
)

. For

D > 0 (v ′ > 0) it disseminates towards the poles, while for D < 0

(v ′ < 0) it disseminates towards the equator, explaining the cyclical

movement of solar spots. 21



Magneto-rotational instability



Magneto-rotational instability: principle

The magneto-rotational instability is a possible source of anomalous

viscosity in accretion disks. Let us study the stability of the material in

the disk imersed in magnetic field.

⇒

The magnetic field follows the

density perturbation. For a strong

field (β . 1): magnetic field returns

the blob to its original position. On

the other hand, for weak field

(β & 1) the centrifugal force wins

and the material is further

accelerated leading to instability.

Therefore, the magnetorotational

isntability is a weak field instability.
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Magneto-rotational instability: perturbations

We will study the magneto-rotational instability (MRI) in so-called

Boussinesq approximation assuming constant density and introducing just

density variations in the buyonancy term. We will study the perturbations

in the disk with radially variable angular velocity Ω(R). We will assume

that the stationary magnetic field is homogeneous and has nonzero

component just in the direction perpendicular to the disk. Thus, the

velocity in cylindrical coordinates is

v = (δvR ,ΩR + δvϕ, δvz)

and the magnetic field

B = (δBR , δBϕ,Bz + δBz).

We will search for the axisymmetric perturbations in the form of waves,

δx ∼ e i(kRR+kzz−ωt).
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MRI: continuity and induction equations

Withinh our assumptions, the continuity equation div v = 0 is

kRδvR + kzδvz = 0.

The induction equation ∂B/∂t = rot (v × B) gives with for the R , z ,

and ϕ components (neglecting second order terms)

−iωδBR = ikzBzδvR ,

−iωδBz = −ikRBzδvR ,

−iωδBϕ = ikzBzδvϕ +ΩRikzδBz + (ΩR)′δBR + ΩRikRδBR ,

where we used the continuity equation in the z-component. The

condition Rdiv δB = 0 gives ikRRδBR + δBR + ikzRδBz = 0, which

cancels several terms in the ϕ-component equation giving

−iωδBϕ = ikzBzδvϕ +Ω′RδBR .
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MRI: equation of motion

The perturbations in the equation of motion

∂v

∂t
+ v · ∇v +

1

ρ
∇
(

p +
B2

4π

)

− g − 1

4πρ
B · ∇B = 0

give for the R , z , and ϕ components

−iωδvR − 2Ωδvϕ
︸ ︷︷ ︸

v2
ϕ
/R

+
ikR

ρ
δp − δρ

ρ2
∂p

∂R
︸ ︷︷ ︸

Boussinesq

+
ikR

4πρ
BzδBz −

ikz

4πρ
BzδBR = 0,

−iωδvz +
ikz

ρ
δp − δρ

ρ2
∂p

∂z
= 0,

−iωδvϕ +
κ2

2Ω
δvR − ikz

4πρ
BzδBϕ = 0,

where the epicyclic frequency is

κ2 =
1

R3

d
(
ΩR2

)2

dR
.
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En route we find...

The strategy is to evaluate all perturbations in term of δvR and insert the

terms into the R-component of the momentum equation,

−iωδvR − 2Ωδvϕ
︸ ︷︷ ︸

v2
ϕ
/R

+
ikR

ρ
δp − δρ

ρ2
∂p

∂R
+

ikR

4πρ
BzδBz −

ikz

4πρ
BzδBR = 0.

From the induction equation we have

δBR =
kzBz

ω
δvR , δBz =

kRBz

ω
δvR

and from the ϕ-component of equation of motion (inserting induction

equation)

− i

ω

(
ω2 − k2

z v
2
Az

)
δvϕ +

κ2

2Ω
δvR +

Ω′R

ω
kzδBR = 0

or

− i

ω

(
ω2 − k2

z v
2
Az

)
δvϕ +

κ2

2Ω
δvR +

Ω′R

ω2
k2
zBzδvR = 0.
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Employing the Boussinesq approximation

Assuming the entropy conservation for gas with κ = 5/3

D ln
(
pρ−5/3

)

Dt
=
∂ ln

(
pρ−5/3

)

∂t
+ v · ∇ ln

(

pρ−5/3
)

= 0,

which within the Boussinesq approximation gives

iω
5

3

δρ

ρ
+ δvz

∂ ln
(
pρ−5/3

)

∂z
+ δvR

∂ ln
(
pρ−5/3

)

∂R
= 0.

This gives from the z-component of the equation of motion

δp

ρ
=

ω

kz
δvz − i

δρ

kzρ2
∂p

∂z
=

=
ω

kz
δvz r +

3

5

1

kzρ

∂p

∂z

[

δvz
∂ ln

(
pρ−5/3

)

∂z
+ δvR

∂ ln
(
pρ−5/3

)

∂R

]

.
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Dispersion relation

Denoting ω̃2 = ω2 − k2
z v

2
Az and inserting into the R-component of the

momentum equation we finally derive the dispersion relation

ω̃4+
k2
z

k2
R + k2

z

[

3

5ρ

(
kR

kz

∂p

∂z
− ∂p

∂R

)(

kR

kz

∂ ln
(
pρ−5/3

)

∂z
+
∂ ln

(
pρ−5/3

)

∂R

)

−κ2
]

ω̃2−

4Ω2 k2
z

k2
R + k2

z

v2
Az = 0.

From the relation p = p(ρ) follows

∂p

∂R

∂ ln
(
pρ−5/3

)

∂z
=
∂p

∂z

∂ ln
(
pρ−5/3

)

∂R
.

Finally, we introduce pieces of Brunt-Väisälä frequency

N2
R = − 3

5ρ

∂p

∂R

∂ ln
(
pρ−5/3

)

∂R
, N2

z = − 3

5ρ

∂p

∂z

∂ ln
(
pρ−5/3

)

∂z
.

28



Dispersion relation

We arrive at the dispersion relation

k2
z + k2

R

k2
z

ω̃4 −
[

κ2 +

(
kR

kz
Nz − NR

)2
]

ω̃2 − 4Ω2k2
z v

2
Az = 0.

The discriminant of the dispersion relation is always positive, therefore

always ω̃2 and also ω2 are real. Therefore, it is sufficient to investigate

the instability around the root ω2 = 0, where the imaginary part of ω

appears. In this case the dispersion relation becomes in terms of kR

k2
R(k

2
z v

2
Az + N2

z )− 2kRkzNRNz + k2
z

(
dΩ2

d lnR
+ N2

R + k2
z v

2
Az

)

= 0.
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Magneto-rotational instability

This equation is never fullfilled (and therefore ω2 never passes through 0)

if the discriminant is negative, that is (in terms of k2
z )

k4
z v

4
Az + k2

z v
2
Az

(

N2
R + N2

z +
dΩ2

d lnR

)

+ N2
z

dΩ2

d lnR
> 0.

For arbitrary kz , the condition of stability is fulfilled only if

dΩ2

dR
> 0.

However, this never happens in real disks where dΩ/dR < 0. Therefore,

the instability, which is called the magneto-rotational instability, always

appears in real disks (Fricke 1969, Balbus & Hawley 1991). The

instability leads to turbulence, which is considered to be the main source

of anomalous viscosity in disks.
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Magneto-rotational instability: conditions

Neglecting the Brunt-Väisälä frequencies, the instability appears (the

previous condition is not fulfilled) for small wavenumbers

kz < kz,max =
1

vAz

∣
∣
∣
∣

dΩ2

d lnR

∣
∣
∣
∣

1/2

.

For larger wavenumbers the magnetic stresses are so large that they

return the blob to its original position.

Denoting a typical vertical disk thickness as 23/2H with H = aR/vK,

where vK is the Keplerian rotation velocity and a is the sound speed, only

the modes with wavelength lower than 23/2H can exist in the disk, giving

the condition for the lowest wavelength leading to instability as

2π/kz,max < 23/2H . Inserting the Alfvén speed with the midplane density

ρ0, the conditions for the development of instability gives

Bz <

√
6

π

(√

2

π

avKṀ

vRR2

)1/2

,

where the disk mass-loss rate is Ṁ = (2π)
3/2

vRρ0RH . 31
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