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Introduction: why mass-loss?



Evidence for mass-loss: shells around stars

Abell 39 nebula
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Evidence for mass-loss: shells around stars

nebula around WR 124
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Evidence for mass-loss: shells around stars

nebula around Mira (o Cet)
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Evidence for mass-loss: interstellar medium

NGC 3603 cluster
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Evidence for mass-loss: heavy elements

After the period of primordial nucleosynthesys, the Universe was

composed mostly form H and He (with a tiny amount of heavier elements

like Li). Heavy elements (C, N, O, Fe, . . . ) were completely missing.

However, there are heavy elements around us. Where do they come

from? Heavier elements are synthethised during thermonuclear reactions

in the stellar interiors. How do they get into the interstellar medium? 3



How the mass can espape gravitational wells of stars?

Let us start with the momentum equation with gravity

ρ
∂v

∂t
+ ρv

∂v

∂r
= ρgw −

∂p

∂r
−

ρGM

r2
,

which can be simplified assuming stationary isothermal outflow (p = a2ρ)

v
dv

dr
= gw −

a2

ρ

dρ

dr
−

GM

r2
,

where gw gives the force that drives the wind (force per unit of mass, i.e.,

the acceleration) and a is the isothermal sound speed.

We can integrate the equation from the stellar surface R∗ to infinity
∫ ∞

R∗

v
dv

dr
dr =

∫ ∞

R∗

gw dr −

∫ ∞

R∗

a2

ρ

dρ

dr
dr −

∫ ∞

R∗

GM

r2
dr

yielding
1

2
v2
∞ −

1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

−
GM

R∗

.

4



Three ways

The individual terms in

1

2
v2
∞ −

1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

−
GM

R∗

describe (from left to right) change of the kinetic energy (per unit of

mass), work of drivin forces, work of pressure force, and the potential

energy (per unit of mass).

There are three ways to initiate the outflow. Either the initial velocity is

larger than the escape speed vesc,

1

2
v2
0 ≥

GM

R∗

, v0 ≥ vesc =

√

2GM

R∗

, vesc = 620 kms−1

√

M

M⊙

R⊙

R
.

The initial kinetic energy of the flow should be larger than the absolute

value of the potential energy. This is fullfilled for explosive outflows like

supernovae or supernova impostors (e.g., η Car).

5



Three ways

The individual terms in

1

2
v2
∞ −

1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

−
GM

R∗

describe (from left to right) change of the kinetic energy (per unit of

mass), work of drivin forces, work of pressure force, and the potential

energy (per unit of mass).

The other possibility is that the driving force is large enough

∫ ∞

R∗

gw dr ≥
GM

R∗

.

This is true for winds driven radiatively, either due to the absorption in

lines (in hot stars) or on dust particles (in luminous cool stars).
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Three ways

The individual terms in

1

2
v2
∞ −

1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

−
GM

R∗

describe (from left to right) change of the kinetic energy (per unit of

mass), work of drivin forces, work of pressure force, and the potential

energy (per unit of mass).

The last possibility is that the work done by pressure forces is large,

a2 ln
ρ0
ρ∞

≥
GM

R∗

.

Because ln(ρ0/ρ∞) is of the order of ten at most, this implies that

a ≈ vesc. This happens in coronal winds of cool main-sequence stars.
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Coronal winds



Is there any evidence for the wind of our Sun?

� two types of the comet tails (Biermann 1951)
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Is there any evidence for the wind of our Sun?

� aurorae
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Is there any evidence for the wind of our Sun?

� satellite observations

� flux of particles streaming from our Sun (protons, electrons, He, . . . )

� speed about ∼ 500 km s−1

� number density (r = 1a.u.) ∼ 107 particles m−3

� mass-loss rate

Ṁ = 4πr2ρv ≈ 2× 10−14 M⊙ yr−1
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Thermally driven wind

We have seen that the spherically symmetric atmosphere cannot be in

hydrostatic equilibrium. However, the root mean square of the total

velocity of particles vth =
√

3kT
mH

in the atmosphere with T = 6000K is

about vth = 12 kms−1, which is significantly lower than the escape speed

vesc = 620 kms−1.
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Thermally driven wind

The Sun has a large outer

atmosphere called corona. The

corona can be in optical light

observed only during the solar

eclipses or using satellites. The

detection of lines of highly ionized

atoms (Ca XII, Fe XIII, Ni XVI,. . . ,

”coronium”, Grotrian 1939, Edlén

1942) shows that the temperature of the solar corona is about

105 − 106K. Corresponding root mean square of the total velocity of the

order of 100 kms−1 is comparable with the escape speed. Consequently,

the thermal expansion of the solar corona is thought to be the source of

the solar wind (Parker 1958).

This coins the term coronal wind.
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Parker model of the coronal wind

Let us assume that the coronal wind wind can be described as a

spherically symmetric, stationary, and isothermal outlow. Then the

corresponding hydrodynamical equations are

1

r2
d

dr

(

r2ρv
)

= 0,

ρv
dv

dr
= −a2

dρ

dr
−

ρGM

r2
.

The integration of the continuity equation gives the mass-loss rate

Ṁ ≡ 4πr2ρv = const.

Inserting dρ/dr from the continuity equation into the equation of motion

gives ordinary differential equation for velocity

1

v

(

v2 − a2
) dv

dr
=

2a2

r
−

GM

r2
,

which can be solved analytically.
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Parker model of the coronal wind

We shall study the momentum equation

1

v

(

v2 − a2
) dv

dr
=

2a2

r
−

GM

r2

in more detail.

At radius r = rc given by 2a2/rc = GM/r2c the right-hand side of

momentum equation is equal to zero. This implies either v = a or

dv/dr = 0.

At the sonic point (v = a) either r = rc or dv/dr → ∞. At the sonic

point the sound speed is equal to half of the escape speed.
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Solution of the Parker equation

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

v/
a

r/rc
There are two types of continuous solutions describing outflow (wind)

and inflow (accretion). There is one outflow solution that is supersonic at

large distances from the Sun (wind). Other outflow solutions are subsonic

(”breeze”). Observations show supersonic flow at the location of Earth. 10



Nature of coronal heating: unresoloved problem

The nature of coronal heating is one of the most important open

problems in astrophysics. It is most likley related to a deep hydrogen

convective zone in cool stars. The convection magnifies seed magnetic

fields. Sound waves generated by the convection interact with coronal

magnetic field and create MHD waves. Hybrid MHD waves or Alfvén

waves possibly heat the corona.
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Coronal winds: importance

Coronal winds of main-sequence stars are weak and do not influence

stellar evolution significantly. In earlier phases, they might be responsible

for evolution of interplanetary medium. Coronal winds are important for

the interaction of stars with exoplanets and for rotational braking of

main-sequence stars.

In cool gaints, the coronal winds are important for the mass-loss

(Cranmer & Saar 2011, Suzuki 2013). It is expected that our Sun will

lose a fraction of its mass by this mechanism (about 0.2).

12



Dust-driven winds



Evidence for wind in cool luminous stars

� envelopes around stellar remnants

planetary nebula Abell 39
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Evidence for wind in cool luminous stars

� envelopes around stellar remnants

Cat’s Eye Nebula – NGC 6543 (HST)
13



Evidence for wind in cool luminous stars

� envelopes around stellar remnants

nebula around Mira (o Cet)
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Driving the wind of cool luminous stars

We have seen that there are observational indications of wind in cool

luminous stars (AGB stars, red supergiants). These winds are likely not

connected with coronae, due to missing strong X-ray emission and

chromospheric activity. On the other hand, these stars are luminous,

consequently radiative force is capable to drive a wind in these stars. As

a result of their low temperature, dust grains form in the envelopes of

cool luminous stars. Dust grain absorb the stelar radiation and accelerate

the wind giving rise to dust driven winds.
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Dust driven wind equations

Again, let us assume that the dust driven winds can be described as a

spherically symmetric, stationary, and isothermal outlow. Then the

corresponding hydrodynamical equations are

1

r2
d

dr

(

r2ρv
)

= 0,

ρv
dv

dr
= −a2

dρ

dr
−

ρGM

r2
+ ρgrad,

where grad is the radiative force.

The integration of the continuity equation gives the mass-loss rate

Ṁ ≡ 4πr2ρv = const.

Inserting dρ/dr from the continuity equation into the equation of motion

gives ordinary differential equation for velocity

1

v

(

v2 − a2
) dv

dr
=

2a2

r
−

GM

r2
+ grad.

In cool dust driven winds, one can neglect 2a2

r
≪ GM

r2
.
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Sonic point condition

From the momentum equation

1

v

(

v2 − a2
) dv

dr
= grad −

GM

r2

follows that at the sonic point v = a the radiative force equals the gravity

(in magnitude)

grad =
GM

r2
.

The gravity is stronger than the radiative force in subsonic region v < a

grad <
GM

r2
,

while the radiation dominates in the supersonic region v > a

grad >
GM

r2
.
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Radiative force due to the dust

The radiative force due to absorption of radiation on dust particles is

frad = ρgrad =
1

c

∫ ∞

0

χ(r , ν)F (r , ν) dν,

where χ(r , ν) is the absorption coefficient and F (r , ν) is the radiative

flux. Because κ(r , ν) = χ(r , ν)/ρ(r) varies only due to a change of the

dust fraction and F (r , ν)/F (r) varies mostly with frequency, the radiative

acceleration is

grad =
1

c
κ(r)F (r),

where the mean opacity is

κ(r) =

∫ ∞

0

κ(r , ν)
F (r , ν)

F (r)
dν

and F (r) is the integrated flux, F (r) = L/(4πr2).
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Eddington parameter due to dust

Introducing the ratio of the radiative and gravity acceleration,

Γd(r) =
κ(r)L

4πcGM
,

the momentum equation can be rewritten as

1

v

(

v2 − a2
) dv

dr
= −

GM

r2
(1− Γd(r)) .

There are three regions of the wind:

� subsonic region, v < a, Γd(r) < 1,

� sonic point, v = a, Γd(r) = 1 (formation of the dust),

� supersonic region v > a, Γd(r) > 1.
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Estimating the mass-loss rate

Let us start with the momentum equation

ρv
dv

dr
= −

dp

dr
−

ρGM

r2
+ Γd

ρGM

r2

and let us assume that dust starts to form close to the sonic point rc,

where Γd changes from Γd ≪ 1 to Γd ≫ 1. We shall multiply the

momentum equation by 4πr2 and integrate the equation from R∗ to ∞
∫ ∞

R∗

4πr2ρv
dv

dr
dr +

∫ ∞

R∗

4πr2
[

dp

dr
+

ρGM

r2

]

dr =

∫ ∞

R∗

4πr2Γd
ρGM

r2
dr .

The term in the first integral can be taken out assuming constant

mass-loss rate Ṁ = 4πr2ρv . The integral can be evaluated assuming

hydrostatic equilibrium in the atmosphere v(R∗) ≈ 0 and using wind

terminal velocity v∞ = v(r = ∞). Therefore,
∫ ∞

R∗

4πr2ρv
dv

dr
dr = Ṁ [v ]

∞

R∗

≈ Ṁv∞.
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Estimating the mass-loss rate

Let us start with the momentum equation

ρv
dv

dr
= −

dp

dr
−

ρGM

r2
+ Γd

ρGM

r2

and let us assume that dust starts to form close to the sonic point rc,

where Γd changes from Γd ≪ 1 to Γd ≫ 1. We shall multiply the

momentum equation by 4πr2 and integrate the equation from R∗ to ∞
∫ ∞

R∗

4πr2ρv
dv

dr
dr +

∫ ∞

R∗

4πr2
[

dp

dr
+

ρGM

r2

]

dr =

∫ ∞

R∗

4πr2Γd
ρGM

r2
dr .

The second integral gives the hydrostatic equilibrium density distribution

for r < rc, while the pressure gradient becomes neglibible for r < rc.

Therefore,
∫ ∞

R∗

4πr2
[

dp

dr
+

ρGM

r2

]

dr =

∫ rc

R∗

4πr2
[

dp

dr
+

ρGM

r2

]

dr+

+

∫ ∞

rc

4πr2
[

dp

dr
+

ρGM

r2

]

dr ≈ 4πGM

∫ ∞

rc

ρ dr .
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Estimating the mass-loss rate

Let us start with the momentum equation

ρv
dv

dr
= −

dp

dr
−

ρGM

r2
+ Γd

ρGM

r2

and let us assume that dust starts to form close to the sonic point rc,

where Γd changes from Γd ≪ 1 to Γd ≫ 1. We shall multiply the

momentum equation by 4πr2 and integrate the equation from R∗ to ∞

∫ ∞

R∗

4πr2ρv
dv

dr
dr +

∫ ∞

R∗

4πr2
[

dp

dr
+

ρGM

r2

]

dr =

∫ ∞

R∗

4πr2Γd
ρGM

r2
dr .

The right-hand side integral can be evaluated using wind optical depth

τW =
∫∞

rc
κ(r)ρ dr ,

∫ ∞

R∗

4πr2Γd
ρGM

r2
dr = 4πGM

∫ ∞

rc

Γdρ dr =
L

c

∫ ∞

rc

κ(r)ρ dr = τW
L

c
.
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Estimating the mass-loss rate

Putting all the terms together we derive

Ṁv∞ = 4πGM

∫ ∞

rc

ρ dr + τW
L

c
.

For Γd ≫ 1 the gravity term can be neglected with respect to the

radiative acceleration and we derive the mass-loss rate estimate

Ṁv∞ = τW
L

c
.

We see that by assuming multiple scattering (τW > 1) the mass-loss rate

can be significantly higher than the single-scattering limit Ṁv∞ = L/c

(Gail a Sedlmayr 1986, Netzer a Elitzur 1993).
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Problem with too high condensation radii

The condition of radiative equilibrium on dust particles
∫ ∞

0

κλ Bλ(T ) dλ =

∫ ∞

0

κλ Jλ dλ

predicts too high dust temperature in the atmosphere. The temperature

is higher than the condensation temperature Tc. The condensation may

appar only at larger distances from the star, which are higher than the

condensation radius, r > rc. This is a problem for radiative driving.

silicate graphite amorphous carbon

Tc = 1500K Tc = 1500K Tc = 1500K

Teff rc/R∗ rc/R∗ rc/R∗

3000 2.99 4.03 3.42

2500 1.85 2.34 2.12

2000 1.15 1.29 1.24

(Lamers a Cassinelli 1999)
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Solution of the problem with too high condensation radii

Luminous cool stars pulsate, consequently, pulsations may transfer the

stellar matter to a large distances from the star.

trajectories of pulsating particles without radiative acceleration on dust

particles (Bowen 1988) 22



Solution of the problem with too high condensation radii

Luminous cool stars pulsate, consequently, pulsations may transfer the

stellar matter to a large distances from the star.

trajectories of pulsating particles with radiative acceleration on dust

particles (Bowen 1988) 22



Wind radial velocity

Neglecting the gas pressure term, the momentum equation

v
dv

dr
= (Γd(r)− 1)

GM

r2

can be integrated. Substituting v dv
dr = 1

2
d(v2)
dr , we have for the radial wind

velocity

v2(r) = v2(rc) + 2GM

∫ r

rc

Γd − 1

r ′2
dr ′.

The wind speed at the critical point can me typically neglected.

Moreover, one can assume that the Eddingtin parameter is constant

Γd = const. This yelds for the wind velocity ”beta” velocity law in the

form of

v(r) = v∞

√

1−
rc

r

with wind terminal velocity

v∞ =
√

2GM (Γd − 1)/rc

propotional to he escape speed.
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Minimum stellar luminosity to drive a wind

As a necessary condition for the wind existence, the radiative force should

overcome the gravity,

Γd > 1.

Inserting the formula for the Eddington parameter,

κL

4πcGM
> 1,

this gives the condition for the stellar luminosity,

L >
4πcGM

κ
.

Assuming a typical mean opacity κ ≈ 30 cm2 g−1, the minimum stellar

luminosity to drive a wind is (in scaled quantities)

L > 400 L⊙

(

M

1M⊙

)

.

This means, that evolved solar-mass stars with L > 400 L⊙ may drive a

dust driven wind.
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Dust driven winds: importance

Dust driven winds appear during the AGB phase of low-mass stars with

initial mass 0.4M⊙ . M0 . 8M⊙. A typical wind mass-loss rate due to

dust driven wind is of the order of 10−7M⊙ yr−1 − 10−6M⊙ yr−1. Given

a typical duration of AGB phase (which is of the order of 10× 106 yr),

low-mass stars lose a significant amount of their mass via dust driven

winds.

Part of the material lost during the AGB phase is ionized in a subsequent

evolutionary phase and form a planetary nebula. Dust driven winds carry

freshly synthethised s-process elements, consequently AGB stars are an

important source of elements heavier than iron.
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Line-driven winds of hot stars



Evidence for wind in hot stars

� shells in the surroundings of hot stars

nebula close to the star WR 124 (HST)
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Evidence for wind in hot stars

� the interstellar medium around hot stars

open cluster NGC 3603 (HST)
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Evidence for wind in hot stars

� P Cyg line profiles in UV

F
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Evidence for wind in hot stars

� Hα emission line

re
la
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e 
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x

λ [Å]

α Cam
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α Cam, 2m telescope in Onďrejov (Kubát 2003)
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Radiative driving

Hot stars are very luminous, consequently the radiative force can be

suspected to drive the wind. In a spherically symmetric case, the

radiative force is

frad =
1

c

∫ ∞

0

χ(r , ν)F (r , ν) dν,

where χ(r , ν) is the absorption coefficient and F (r , ν) the radiative flux.
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Radiative driving: free electrons

The free electrons are the most numerous particles in the wind. In a

nonrelativistic limit, the opacity due to the light scattering on free

electrons is χ(r , ν) = σThne(r), where σTh is the Thomson scattering

cross-section and ne(r) is the electron density. Because the σTh is

frequency independent, the integral can be easily evaluated as

frad =
σThne(r)L

4πr2c
,

where L = 4πr2
∫∞

0
F (r , ν) dν is the stellar luminosity. This can be easily

compared with the force due to gravity fgrav = ρ(r)GM/r2 to give the

Eddington parameter

Γ ≡
frad

fgrav
=

σT
ne(r)
ρ(r) L

4πcGM
, in scaled quantities, Γ ≈ 10−5

(

L

1 L⊙

)(

M

1M⊙

)−1

.

For a typical stars Γ is roughly constant and Γ < 1, therefore free

electrons are not suitable to drive a wind.
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Radiative driving: line transitions

Line (bound-bound) transitions provide another viable source of the

radiative force. The opacity due to the line transitions is

χ(r , ν) =
πe2

mec

∑

lines

ϕij(ν)gi fij

(

ni(r)

gi
−

nj(r)

gj

)

,

where ϕij(ν) is the line profile normalized over frequencies,
∫∞

0 ϕij(ν) dν = 1, fij is the oscillator strength, and ni (r), nj(r) are level

occupation number with statistical weights gi , gj .

The radiative force due to the line transitions is then

fline =
πe2

mec2

∫ ∞

0

∑

line

gi fij

(

ni(r)

gi
−

nj(r)

gj

)

ϕij(ν)F (r , ν) dν.

This cannot be easily evaluated due to the dependence of flux on

frequency (lines may be optically thick). Therefore, F (r , ν) should be

derived from the radiative transfer equation. This introduces coupling

with hydrodynamical equations.
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Radiative driving: optically thin lines

A crude estimate of the radiative force (maximum) can be obtained

assuming that the lines are optically thin. In such case the flux F (r , ν) is

constant over the frequencies corresponding to a given line yilding

f max
lines =

πe2

mec2

∑

lines

gi fij

(

ni(r)

gi
−

nj(r)

gj

)

F (r , νij ),

where νij is the frequency of the line center. Again, we can compare the

radiative force with gravity, which gives the ratio

f max
lines

fgrav
= Γ

∑

lines

σij

σTh

ni

ne

νijLν(νij)

L
,

where we have neglected upper level population nj(r) ≪ ni (r) and where

σij =
πe2fij
νijmec

and Lν(νij) = 4πr2F (r , νij ).

For lines of heavier elements σij/σTh ≈ 107 and therefore f max
line /fgrav is up

to 103 (Abbott 1982, Gayley 1995).

This enables the appearance of line driven winds. 30



Radiative driving: general line depths

In general, lines may be optically thick. Therefore, the dependence of the

line force on density and velocity (due to the Doppler efect) becomes

very complex. Moreover, the level populations depend on the radiative

field. This introduces intricate feedback that has to be resolved

numerically in general.

However, there exists an approximation named after Sobolev, which

allows to derive an approximate expression for the radiative force in

supersonic flows. This allows to obtain approximate solutions of wind

equations.
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Sobolev approximation: the essence

Stellar wind velocity increases with frequency. This causes a Doppler shift

of the frequency at which the line absorbs the stellar radiation. In a

supersonic wind, the width of the line (gray area) is smaller than the shift.
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Sobolev approximation: going into details

ve
lo

ci
ty

fr
eq

ue
nc

y

radius

∆νD2

SL2

If the Doppler width of the line ∆νD is smaller than the Doppler shift due

to the radial expansion, then the radiative transfer equation has to be

solved only accross the Sobolev length

LS ≡
vth
dv
dr

= c
∆νD
νij

1
dv
dr

.

This is possible if the Sobolev length is smaller than the density scale

height H , LS = vth/
(

dv
dr

)

≪ H = ρ/
(

dρ
dr

)

≈ v/
(

dv
dr

)

, i.e., for v ≫ vth. 33



Sobolev approximation: analytical approximation

Solution of the comoving frame (CMF) radiative transfer equation

provides a straightforward way to derive the Sobolev approximation. This

equation for spherically symmetric stationary flow reads

µ
∂

∂r
I (r , µ, ν) +

1− µ2

r

∂

∂µ
I (r , µ, ν)−

νv(r)

cr

(

1− µ2 +
µ2r

v(r)

dv(r)

dr

)

∂

∂ν
I (r , µ, ν) =

= η(r , ν) − χ(r , ν)I (r , µ, ν).

When the spatial derivatives can be neglected (Sobolev approximation),
∂
∂r I (r , µ, ν) ∼

I (r ,µ,ν)
r

≪ νv(r)
cr

∂
∂ν I (r , µ, ν) ∼

νv(r)
cr

I (r ,µ,ν)
∆νD

, i.e, for

v(r) ≫ vth, the CMF radiative transfer equation is

−
νv(r)

cr

(

1− µ2 +
µ2r

v(r)

dv(r)

dr

)

∂

∂ν
I (r , µ, ν) =

= η(r , ν) − χ(r , ν)I (r , µ, ν).
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CMF radiative transfer equation equation: one line

We shall solve the CMF radiative transfer equation for one line,

−
νv(r)

cr

(

1− µ2 +
µ2r

v(r)

dv(r)

dr

)

∂

∂ν
I (r , µ, ν) =

= χL(r)ϕij (ν) (SL(r)− I (r , µ, ν)) ,

where

χ(r , ν) = χL(r)ϕij (ν)

η(r , ν) = χL(r)SL(r)ϕij (ν)

where χL(r) =
πe2

mec
gi fij

(

ni (r)

gi
−

nj(r)

gj

)

.
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Solving the CMF equation

We shall introduce a new variable

y =

∫ ∞

ν

dν′ϕij(ν
′),

which is y = 0 for the incoming side of the line and y = 1 for the

outgoing side of the line.

This transforms the CMF radiative transfer equation

−
νv(r)

cr

(

1− µ2 +
µ2r

v(r)

dv(r)

dr

)

∂

∂ν
I (r , µ, ν) =

= χL(r)ϕij (ν) (SL(r)− I (r , µ, ν)) ,

into

νv(r)

cr

(

1− µ2 +
µ2r

v(r)

dv(r)

dr

)

∂

∂y
I (r , µ, y) =

= χL(r) (SL(r)− I (r , µ, y)) .
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Integrating the CMF equation

The transformed CMF radiative transfer equation

νv(r)

cr

(

1− µ2 +
µ2r

v(r)

dv(r)

dr

)

∂

∂y
I (r , µ, y) =

= χL(r) (SL(r)− I (r , µ, y)) .

can be integrated assuming that the variables do not significantly vary

with r within the Sobolev ”resonance zone”. Replacing ν by

center-of-line frequency ν0, the integration gives

I (y) = Ic(µ) exp [−τ(µ)y ] + SL {1− exp [−τ(µ)y ]} ,

where the Sobolev optical depth is given by

τ(µ) =
χL(r)cr

ν0v(r)
(

1− µ2 + µ2r
v(r)

dv(r)
dr

)

and where we assumed the boundary condition I (y = 0) = Ic(µ). Clearly,

the Sobolev optical depth is inversely proportional to the velocity

gradient, τ ∼
(

dv
dr

)−1
.
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Calculating the radiative force

The radial component of the radiative force is

frad =
1

c

∫ ∞

0

χ(r , ν)F (r , ν) dν.

Inserting the expression for the specific intensity and opacity gives

frad =
2π

c

∫ ∞

0

dν χL(r)ϕij (ν)

∫ 1

−1

dµµI (r , µ, ν).

Transforming the intregral using variable y yields.

frad =
2πχL(r)

c

∫ 1

0

dy

∫ 1

−1

dµµI (r , µ, y).

Inserting the solution of CMF equation

frad =
2πχL(r)

c

∫ 1

0

dy

∫ 1

−1

dµµ {Ic(µ) exp [−τ(µ)y ] + SL {1− exp [−τ(µ)y ]}}

shows that there is no net contribution of the emission to the radiative

force, because the Sobolev optical depth is an even function of µ

(assuming that SL is isotropic in the CMF).
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The radiative force

The Sobolev radiative force

frad =
2πχL(r)

c

∫ 1

0

dy

∫ 1

−1

dµµIc(µ) exp [−τ(µ)y ]

after the integration over µ is

frad =
2πχL(r)

c

∫ 1

−1

dµµIc(µ)
1− exp [−τ(µ)]

τ(µ)

and after inserting the expression for the optical depth we arrive at the

radiative force in the form of (with σ(r) = r
v(r)

dv(r)
dr − 1)

frad =
2πν0v(r)

rc2

∫ 1

−1

dµµIc(µ)
[

1 + µ2σ(r)
]

×

×

{

1− exp

[

−
χL(r)cr

ν0v(r) (1 + µ2σ(r))

]}

,

which was derived by Sobolev (1957), Castor (1974), and Rybicki &

Hummer (1978).
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Optically thin lines: checking the consistency

For optically thin lines τ(µ) ≪ 1 the radiative force

frad =
2πχL(r)

c

∫ 1

−1

dµµIc(µ)
1− exp [−τ(µ)]

τ(µ)

can be simplified using exp [−τ(µ)] ≈ 1− τ(µ), which gives

1− exp [−τ(µ)]

τ(µ)
≈ 1

and for the radiative force

frad =
2π

c

∫ 1

−1

dµµIc(µ)χL(r) =
1

c
χL(r)F (r).

Therefore, the optically thin radiative force proportional to the radiative

flux F (r) and to opacity (density). The same result can be derived for

the static medium.
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Optically thick lines

For optically thick lines τ(µ) ≫ 1 one can neglect the exp [−τ(µ)] term in

frad =
2πχL(r)

c

∫ 1

−1

dµµIc(µ)
1 − exp [−τ(µ)]

τ(µ)
,

which, after inserting of the optical depth cancels out the opacity,

frad =
2πν0v(r)

rc2

∫ 1

−1

dµµIc(µ)

{

1 + µ2

[

r

v(r)

dv(r)

dr
− 1

]}

.

Neglecting the limb darkening one can assume that

Ic(µ) =

{

Ic = const., µ ≥ µ∗,

0, µ < µ∗

, where µ∗ =

√

1−
R2
∗

r2
,

and the radiative force is

frad =
ν0v(r)F (r)

rc2

{

1 +

[

r

v(r)

dv(r)

dr
− 1

] [

1−
1

2

R2
∗

r2

]}

,

where F = 2π
∫ 1

µ∗

dµµIc = π
R2
∗

r2
Ic.
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Optically thick lines

At large distances from the star r ≫ R∗ the optically thick radiative force

frad =
ν0v(r)F (r)

rc2

{

1 +

[

r

v(r)

dv(r)

dr
− 1

] [

1−
1

2

R2
∗

r2

]}

is

frad ≈
ν0F (r)

c2
dv(r)

dr
.

Therefore, the radiative force is proportional to the radiative flux and to

the velocity gradient, but does not depend on the level populations or on

the density.
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Solving the hydrodynamical equations

Because the optically thick lines significantly contribute to the radiative

force, one can solve stationary hydrodynamical equations

1

r2
d

dr

(

r2ρv
)

= 0

ρv
dv

dr
= −a2

dρ

dr
+ frad −

ρGM(1− Γ)

r2

with optically thick line force only.

As always, the continuity equation gives the mass-loss rate

Ṁ ≡ 4πr2ρv = const.
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Solving the equation of motion

Neglecting the gas pressure term, the equation of motion reads

v
dv

dr
=

frad

ρ
−

GM(1− Γ)

r2
.

Inserting the optically thick line force, the equation of motion can be

rewritten as
[

v −
ν0Lν

4πr2ρc2

(

1−
1

2

R2
∗

r2

)]

dv

dr
=

ν0v(r)Lν
8πρc2r3

−
GM(1− Γ)

r2
,

where the monochromatic luminosity is Lν = 4πr2F (r). This equation

has a critical point, which at large distances from the star is given by

v −
ν0Lν

4πr2ρc2
= 0.

This provides the mass-loss rate estimate

Ṁ ≡ 4πr2ρv(r) =
ν0Lν
c2

≈
L

c2
.

The wind mass-loss rate is proportional to the equivalent photon

mass-loss rate.
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Example: α Cam

The wind nass-loss rate estimate

Ṁ ≈
L

c2

was derived for one optically thick line. Assuming now that the mass-loss

is due to Nthick optically thick lines, the mass-loss rate prediction reads

Ṁ ≈ NthickL/c
2.

The NLTE calculations for the stars α Cam (Teff = 30 900K,

R∗ = 27.6 R⊙, and M = 43M⊙) give Nthick ≈ 1000. This gives the

mass-loss rate prediction Ṁ ≈ 4× 10−5M⊙ yr−1 not far from a more

detailed calculation, which gives 1.5× 10−6M⊙ yr−1 (Krtička & Kubát

2008).
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CAK theory

We have seen that the optically thin line force is

frad =
1

c
χL(r)F (r),

while the optically thick line force is

frad =
ν0F (r)

c2
dv

dr
.

This gives a possibility to introduce the Sobolev optical depth τS = χL(r)c

ν0
dv
dr

,

which enables us to rewrite the radiative force in a unified form

frad =
1

c
χL(r)F (r)

(

τ−1
S

)α
,

where α = 0 for optically thin line and α = 1 for optically thick line.
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CAK theory

We derived the radiative force accounting for optically thick lines only.

However, in reality the wind is driven by a mixture of optically thick and

thin lines. Therefore, Castor, Abbott & Klein (1975) introduced the

radiative force in the form of

frad = k
σThneL

4πr2c

(

1

σThnevth

dv

dr

)α

,

where k , α are constants (force multipliers) derived from a given line list

using NLTE calculations. Here σTh is the Thomson scattering

cross-section, ne is the electron number density, and vth is hydrogen

thermal speed (for T = Teff).

Gayley (1995) introduced a more physically motivated paremeter Q̄,

which scales the line force in terms of optically thin line force,

frad =
1

1− α

κeρFQ̄

c

(

dv/dr

ρcQ̄κe

)α

.
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Solving the momentum with CAK radiative force

Neglecting the gas pressure term, the momentum equation with CAK line

force reads after some manipulation

r2v
dv

dr
= k

σThL

4πc

ne

ρ

(

ρ

ne

4πr2v

σThṀvth

dv

dr

)α

− GM(1− Γ).

We will express the velocity in terms of the escape speed

w ≡
v2

v2
esc

, where v2
esc =

2GM(1− Γ)

R∗

.

Introducing a new variable

x ≡ 1−
R∗

r

the momentum equation can be rewritten as algebraic equation

1 + w ′ = C (w ′)
α
,

where w ′ ≡ dw
dx and C is some uggly constant that depends on the

mass-loss rate.
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Solving for the mass-loss rate

The algebraic equation

1 + w ′ = C (w ′)
α

has zero, one or two solutions depending on the value of C (or Ṁ).
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Solving for the mass-loss rate and terminal velocity

Because C is inversely proportional to Ṁ , the maximum mass-loss rate

appears for the minimum C , where both curves are tangent. This gives

w ′

c =
α

1− α
,

Cc =
(1 − α)α−1

αα
.

The second equation gives the wind mass-loss rate and the first one

(after the integration) the velocity profile

w =
α

1− α
x ⇒ v = v∞

(

1−
R∗

r

)1/2

,

in the form of the β-velocity law with β = 1/2 and wind terminal

velocity

v∞ = vesc

√

α

1− α

proportional to the escape speed. Because vesc is of order of 100 kms
−1,

hot star winds are supersonic. For α Cam vesc = 620 kms
−1 (α = 0.61)

prediction v∞ = 780 kms
−1 is close to the empirical 1500± 200 kms

−1. 50



Wind instabilities I.: The ansatz

The Sobolev approximation gives reliable prediction of wind structure.

Therefore, it is reasonable to assume that is also provides a sound basis

for the study of instabilities. We shall start with time-dependent

hydrodynamical equations

∂ρ

∂t
+

1

r2
∂

∂r

(

r2ρv
)

= 0

ρ
∂v

∂t
+ ρv

∂v

∂r
= −a2

∂ρ

∂r
+ frad −

ρGM(1− Γ)

r2

We will study the instabilities in the comoving fluid-frame and assume

small perturbations δρ of stationary solution desctibed by ρ0 and v0:

ρ = ρ0 + δρ,

v = v0 + δv , v0 = 0.
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Wind instabilities I.: Wave equation

Inserting the perturbation into hydrodynamical equations and neglecting

second order term we derive equations for perturbations δρ and δv

∂δρ

∂t
+ ρ0

∂δv

∂r
= 0,

ρ0
∂δv

∂t
= −a2

∂δρ

∂r
+ δfrad,

where δfrad = ρ0g
′

rad ∂δv/∂r and g ′

rad ≡ ∂grad/∂ (dv/dr). Combining the

radial derivative of the equation of continuity with the temporal

derivative of the momentum equation we arrive into the wave equation in

the form of
∂2δv

∂t2
= a2

∂2δv

∂r2
+ g ′

rad

∂2δv

∂t∂r
.
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Wind instabilities I.: Searching for the solution

We shall search for the solution of the wave equation

∂2δv

∂t2
= a2

∂2δv

∂r2
+ g ′

rad

∂2δv

∂t∂r

in the form of travelling waves, δv ∼ exp [i (ωt − kr)], which yields the

dispersion relation

ω2 + g ′

radωk − a2k2 = 0,

which has a solution

ω

k
= −

1

2
g ′

rad ±

(

1

4
g ′2
rad + a2

)1/2

.

With zero radiative force we obtain ordinary sound waves ω/k = ±a once

again as it should be. A general case gives a new type of waves –

radiative-acoustic (Abbott) waves (Abbott 1980, Feldmeier et al. 2008)

with downstream (+) and upstream (−) mode.
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Wind instabilities I.: Understanding the critical point

A very special point is the critical point, at which the radial wind velocity

equals to the speed of (upstream) Abbott waves; they move in opposite

direction, therefore from vc = −ω/k the critical point conditions is

vc −
1

2
g ′

rad −

(

1

4
g ′2
rad + a2

)1/2

= 0.

The siginificance of the critical point stems from the fact that no

information can travel from the regions with v > vc towards the stellar

surface. In that sense the critical surface resembles the even horizon of a

black hole (Feldmeier & Shloshman 2000). This also means that the

mass-loss rate is determined there.

As a bottom line, we have not found any instability of hot-star winds.

The hot star winds should be perfectly stable, as follows, for example,

from hydrodynamical simulations of Votruba et al. (2007).
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Wind instabilities II.

Our stability analysis showed that the wind should be stable. However,

the question is what causes the occurrence of X-rays? Is there anything

wrong with our stability analysis? The problem is that the Sobolev

approximation is not valid for small-scale perturbations!
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Wind instabilities II. – The origin of instability

ν0

I = I0 exp(-τ∫ν
∞ϕ(ν)dν)

The plot shows the radiative transfer in the comoving frame. As the

unabsorbed photon comes from blue, it hits the rezonance zone where it

can be absorbed. This results in the decrease of the light intensity.
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Wind instabilities II. – The origin of instability

ν0

I = I0 exp(-τ∫ν
∞ϕ(ν)dν)

ϕ(ν)

While the intensity in a given line decreases with decreasing frequency,

the absorption line profile ϕ(ν) is symmetric accross the laboratory

frequency of a given line ν0 in the comoving frame.
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Wind instabilities II. – The origin of instability

ν0

I = I0 exp(-τ∫ν
∞ϕ(ν)dν)

ϕ(ν)

grad

Therefore, the line force, which is given by a product of opacity and flux

comes mostly from the blue part of a given line.
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Wind instabilities II. – The origin of instability

ν0

I = I0 exp(-τ∫ν
∞ϕ(ν)dν)

ϕ(ν)

ϕ(ν-δν)

grad

grad+δgrad

The line force can significantly change after introducing a small change

of the velocity. This is the essence of the line-driven wind instability

(Lucy & Solomon 1970, Owocki et al. 1984, Feldmeier et al. 1997).
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Wind instabilities II. – Line force perturbation

To describe the instability, we shall evaluate the perturbation of the

radiative acceleration

grad =
2π

cρ

∫ ∞

0

dν χL(r)ϕij (ν)

∫ 1

−1

dµµI (r , µ, ν)

assuming optically thin perturbation. This means, we shall perturb just

the line profile and not the intensity,

δgrad =
2π

cρ

∫ ∞

0

dν χL(r)δϕij (ν)

∫ 1

−1

dµµI (r , µ, ν).

The perturbed line profile due to velocity perturbation is

δϕij(ν) =
∂ϕij(ν)

∂ν0
δν0 =

∂ϕij(ν)

∂ν0
ν0

δv

c
.

In short, the radiative force perturbation is

δgrad = Ωδv ,

where the positive quantity Ω need not to be written down explicitly.
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Wind instabilities II. – Wave equation

The equations for perturbations δρ and δv are the same as before,

∂δρ

∂t
+ ρ0

∂δv

∂r
= 0,

ρ0
∂δv

∂t
= −a2

∂δρ

∂r
+ δfrad.

Combining these two gives the wave equation

∂2δv

∂t2
= a2

∂2δv

∂r2
+Ω

∂δv

∂t
.

As usual, we shall seek the solution in the form of travelling waves

δv ∼ exp [i (ωt − kr)], which gives the dispersion relation

ω2 + iΩω − a2k2 = 0.

This has a solution, which is

ω = −
1

2
iΩ±

(

−
1

4
Ω2 + a2k2

)1/2

.
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Wind instabilities II. – The dispersion relation

The dispersion relation

ω = −
1

2
iΩ±

(

−
1

4
Ω2 + a2k2

)1/2

takes in the case of negligible gas pressure Ω2 ≫ a2k2 the simple form of

ω = −iΩ.

Therefore, the wave amplitude varies as (Ω > 0)

δv ∼ exp (iωt) = exp (Ωt) .

This leads to a strong instability of the radiative driving (Lucy &

Solomon 1970, MacGregor et al. 1979, Carlberg 1980, Owocki et al.

1984, Feldmeier et al. 1997).
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Wind instabilities II. – Simulations

We have seen that line driven wind is stable for large scale perturbations,

while it becomes unstable for small-scale perturbations. This enables us

to derive basic wind properties from global models, while the small-scale

structure may affect some observables. This is referred to as clumping.

However, our instability analysis is

linear only and hydrodynamical

simulations are necessary to

describe the instability in detail

(Owocki et al. 1988, Feldmeier et

al. 1997, Runacres & Owocki

2002).
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Line-driven wind instability: the initiation

Here we see the simulations of Feldmeier & Thomas (2017) initiated by

sinusoidal boundary perturbation. The initial perturbation steepens into

shocks. However, most wind material appears at velocity that roughly

corresponds to CAK solution (dashed lines). The low-density regions

between individual clumps are formed due to strong radiative force acting

on rarefied gas. Most of the wind material has negative velocity gradient.

Note that while there are not

strong velocity perturbations

close to the photosphere,

there are huge variations of

density in this region. This is

because even very small

perturbation of velocity is

able to evacuate the material

between two forming clumps.
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Line-driven wind instability: not a typical turbulence

Here we see the simulations of Feldmeier & Thomas (2017) close to the

photosphere initiated by stochastic boundary perturbations. Again,

typical structure of line-driven wind instability forms with thin

overdensities close to the CAK solution but with negative velocity

gradients and rarefied region between them.

Interestingly, although the

boundary perturbation is

stochastic, the structure of

line-driven wind instability is

rather regular. Therefore, the

instability does not resemble

the turbulence.
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Hot star winds: micro-view

We have seen that the stellar wind of hot stars is accelerated due to the

scattering of radiation in lines and on free electrons. However, mostly

heavy elements such as carbon, nitrogen, silicon, and iron contribute to

the radiative force. How does it work on a micro-level?
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Hot star winds: micro-view

Typical volume with: 1000 H ions
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Hot star winds: micro-view

Typical volume with: 1000 H ions

� radiative acceleration due to the line

absorption can be in most cases

neglected

� radiative acceleration due to the

free-free processes also negligible

σp ≪ σe
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Hot star winds: micro-view

Typical volume with: 1000 H ions + 100 He ions
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Hot star winds: micro-view

Typical volume with: 1000 H ions + 100 He ions

� radiative acceleration due to the line

absorption can be in most cases

neglected

� radiative acceleration due to the

free-free processes also negligible
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Hot star winds: micro-view

Typical volume with: 1000 H ions + 100 He ions + 1200 e−
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Hot star winds: micro-view

Typical volume with: 1000 H ions + 100 He ions + 1200 e−

� Γ = ge/ggrav ≈ 0.1 for many OB stars

⇒ significant contribution to the

radiative acceleration
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Hot star winds: micro-view

Typical volume with: 1000 H ions + 100 He ions + 1200 e− + 2 metals
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Hot star winds: micro-view

Typical volume with: 1000 H ions + 100 He ions + 1200 e− + 2 metals

� maximum radiative acceleration due to

the lines gmax
line ≈ 1000 ggrav (Gayley

1995) ⇒ crucial contribution to the

radiative acceleration
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Hot star winds: micro-view

Typical volume with: 1000 H ions + 100 He ions + 1200 e− + 2 metals
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How can this work?

In order to accelerate the stellar wind, two efficient processes are

necessary.

A process which transfers momentum from radiative field to heavier ions.

This has to be efficitent in such a way that only a very small part of the

radiative energy is used to heat the wind. Therefore, the frequency of

absorbed and emitted photon should be precisely the same. Such

absorption is called scattering in astrophysics. We have seen that both

light scattering on free electrons and in spectral lines are exactly such

processes.

However, since most of radiative momentum is received by heavy

elements, a second process is necessary, which transfers momentum from

heavier ions to the bulk flow (H and He).
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How to transfer momentum?

Stellar wind of hot stars is ionised. Therefore, Coulomb collisions are

efficient to transfer momentum from heavier elements to the passive

component. In such case the frictional force on passive component (p)

due to heavy ions (i) is

fpi = ρpgpi = npni
4πq2pq

2
i

kTip
ln ΛG(xip)

vi − vp

|vi − vp|
,

where np, ni are number densities of components, vi, vp are their radial

velocities, and qp, qi their charges. The frictional force depends on the

velocity difference between the wind componets via so-called

Chandrasekhar function.

xip =
|vi − vp|

αip

α2
ip =

2k (miTp +mpTi)
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Momentum transfer efficiency: efficient transfer

The frictional force depends on the product of densities of individual

components. Consequently, to transfer a given amount of momentum at

high densities, just a small velocity difference is needed. In such a case

xip ≪ 1, the transfer of momentum from heavier ions to hydrogen and

helium is efficient and one-component models are sufficient in such case.

Moreove, such winds are stable, a decrease of velocity difference leads to

a stronger frictional force, which in turn leads to stronger coupling and

decrease of the velocity difference.

Such winds are typically found at

high densities or at high mass-loss

rates. Therefore, wind of luminous

OB stars and WR stars can treated

as one-component flow neglecting

all multicomponent effects.
0.00

0.05

0.10

0.15

0.20

0.25

 0  1  2  3  4  5

G
(x

ip
)

xip

Chandrasekhar function G(xip)

70



Momentum transfer efficiency: multicomponent effects

For lower wind densities (or lower wind mass-loss rates) the momentum

transfer between heavy ions and hydrogen and helium becomes

inefficient. For xip . 1 part of transfered energy goes to heating, which

leads to frictional heating of the wind.

For even lower densities xip > 1 and a new type of instability appears.

The Chandrasekhar function is a decreasing function of velocity

difference. This means that small positive perturbation of velocity

difference leads to decrease of the frictional force, which in turn allows

for even larger velocity separation. This leads to runaway of heavy ions or

to decoupling instability.

To model winds at low densities,

multicomponent approach is

needed. Such winds are typically

found in main-sequence B stars or

in stars at low metallicity. 0.00
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Line-driven winds: importance

Despite the fact that massive stars are short lived (106 yr), with large

mass-loss rate (of the order of 10−6M⊙ yr−1) the massive stars may lose

a significant fraction of their mass on their way from main sequence to

the neutron star or a black hole. Amount of the mass-loss is one of the

factors that determine the nature of the final evolutionary stage.

Hot star winds are important also for the dynamics of the interstellar

medium. Moreover, cosmic-ray particles are generated at the boundary

between hot star wind bubble and the interstellar medium.

Line-driven winds appear in O and early B main-sequence stars, in OBA

supergiants, in hot subdwarfs and central stars of planetary nebulae and

in Wolf-Rayet stars. Accretion disks around supermassive black holes

may also be sources of line-driven wind.
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