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Desription of radiation



Definition of specific intensity

The specific intensity of radiation can be defined using an ideal
apparatues (a pinhole camera). The energy collected by the detector
during time At in a bandwidth Av is

A1 A;

AE = 1,72 AtAv.
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Intricate dependences

Al/
_

The specific intensity /(r, n, v, t) depends on

e r: location of the pinhole,
o t time, tangent spaces.(n,z/? at-
tached to fourdimensional

e n: orientation of the screen, spacetime manifold (r, ).

e v: frequency.



Radial dependency

AE — /U%Amy.

Here AQ = A,/r? is the solid angle subtended by A at the aperture.
This means that the intensity does not depend on the location of the
detector. Intensity does not change as the bundle of radiation moves.



Radiation transport equation

Intensity does not change as the bundle of radiation moves over time 7:
Al, = 1,(r+ncr,n t+71)—I,(r,nt)=0.
Taylor-expanding the left-hand side and discarding terms of order 72 and

higher we obtain radiation transport equation in an empty space
101,
c Ot
Change of the intensity due to absorption over time 7: Al, = —k,c7l,.
Change of the intensity due to emission over time 7: Al, = j,cT.

+n-VI,=0.

Summing all the contributions we arive at the (nonrelativistic)
radiation transport equation in the form of

“Z Vi, =, — ko,
C



Radiation transport equation: the quantities

101, .
= VIu: y_ky/u
c Ot o .

e |, is the specific intensity, which is connected with the phase space

density of photons
2

c
F(r,p,t) = 75,
where f(r, p, t) appears in the Boltzmann equation. (Note: radiation
transport equation can be derived from the Boltzmann equation.)
e k, is the absorption (extinction) coefficient

e j, is the emission coefficient (emissivity)



Coupling with hydrodynamics




First moment of the radiation transport equation

Taking advantage of the constancy of n:

101,

“ZY v (nl) =, — k.
or T (nl,) =

Integrating over the angles:

10
S LA+ V-l d2 = ¢ (i — kb)) dS.
S5 pran+ v fanda—§ G - kL)

Denoting the radiation energy density E,, and the vector flux F,

Eu:%flydﬂ FV:]{nIVdQ

we rewrite the first moment of the radiation transport equation as

OF,
= -F, = i, — k,1,)dS2.
ot +V j{(j )d



First moment of the radiation transport equation

Integrating the momentum equation

OE,
ot

+V-F,= j{(jy — k1) dQ.

over frequencies we obtain

%—’f+v-F:/du7f(jy—kyly)dQ,

where frequency-integrated radiation energy density is E = [ dv E, and
the vector flux is F = [dvF,.

Derived equation represents the equation of energy conservation. The
terms on the left-hand side represent the conservation law with energy
density and energy flux. The terms on the right-hand side describe the
rates of gain (due to emission) and loss (due to absorption) of radiation
energy per unit of volume.



Second moment of the radiation transport equation

Multiplying the radiation transport equation
== +V-(nh) =j, — k1,

by n and integrating over the angles:

10

P nl,dQ+ V- 7{nnl dQ = j{njl,— k,nl,) dS2.

Denoting the vector flux F,, and the pressure tensor P,

Fy:%nlydﬂ PV:%%nn/VdQ

and assuming isotropy of j,, and k, we derive the second momentum

equation
10F,

c ot

v =—k,F,.



Second moment of the radiation transport equation

Integrating the second momentum equation

18FV
c Ot

+cV-P,=—kF,.

over frequencies wind dividing by ¢ we obtain

1 OF F,
ga‘}—V'P:—/dukyC?,

where frequency-integrated vector flux is F = [ dvF, and the pressure
tensor is P = [dvP,,.

The radiation momentum density is F/c? and the momentum flux is P.
Therefore the terms on the left-hand side represent the conservation law
with momentum density and momentum flux. The right-hand side
represents the momentum lost per unit time.



Coupling with Euler’s equaions

The continuity equation remains to be the same:

dp
E*V (pv) = 0.

The loss of photon momentum is the gain of momentum of matter.
Therefore, the negative of the photom momentum loss rate is the
radiative force that shall be included in the momentum equation

,oa +pv-Vv=—-Vp+pg+ — /dukF

Similarly, the loss of radiation energy is the gain of energy of matter. As

a result, the negative of the energy loss rate shall be included in the
equation for energy

0 pv? v2 B .
ot (pe + T)—FV- {pv (e + 7) + pv} = pvg—/dz/j{ Uy — ko 1,) d2.
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Field criterion of thermal instability




Equilibrium between heating and cooling

In absence of macroscopic motion, there should be equilibrium between

/du]{(jy — k1,)dQ = 0.

For optically thin gas in LTE assuming external source of heat this
simplifies to (Field 1965, Lepp et al. 1985)

L(p, T)=0.

heating and cooling:

log T

log p



Equilibrium between heating and cooling

L(p,T)=0

log T

log p

e excitation of rotational levels of molecules and fine structure levels
of atoms, strong dependence of £ on T



Equilibrium between heating and cooling

L(p,T)=0

log T

T /

log p

e rotational levels of molecules and fine structure levels of atoms
exctited, corresponding Boltzmann factors e~ ¢/kT 1, weak
dependence of L on T "



Equilibrium between heating and cooling

L(p,T)=0

log T

log p

e excitation of levels of atoms and ions, strong dependence of L on T



Equilibrium between heating and cooling

L(p,T)=0

log T

log p

e levels of atoms and ions excited, corresponding Boltzmann factors
e~ /KT ~ 1, weak dependence of £Lon T



Equilibrium between heating and cooling

L(p,T)=0

log T

log p

e matter is strongly ionized, excitation of inner shells of atoms, strong

dependence of L on T



L(p,T) <0

log p
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L(p,T) >0

log p
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Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble

e bubble in a mechanical equilibrium with external environment:
p ~ pT = const.
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Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble
e bubble in a mechanical equilibrium with external environment:

p ~ pT = const.

log T

log p

e increase of temperature and decrease of density = more cooling =

stability
15



Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble
e bubble in a mechanical equilibrium with external environment:

p ~ pT = const.

log T

log p

e decrease of temperature and increase of density = more heating =-

stability
15



Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble

e bubble in a mechanical equilibrium with external environment:
p ~ pT = const.

log T

log p
e region of stability

15



Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble
e bubble in a mechanical equilibrium with external environment:

p ~ pT = const.

log T

log p

e increase of temperature and decrease of density = more heating =-

instability
15



Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble
e bubble in a mechanical equilibrium with external environment:

p ~ pT = const.

log T

log p

e decrease of temperature and increase of density = more cooling =-

instability
15



Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble

e bubble in a mechanical equilibrium with external environment:
p ~ pT = const.

log T

log p
e region of instability
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Bubble with perturbed temperature

e small perturbation of temperature and density in a bubble

e bubble in a mechanical equilibrium with external environment:
p ~ pT = const.

log T

log p

Field criterion of thermal stability: (§%) < 0. 15



Three phases of interstellar medium

log T ISM

log p

e three regions of stability = three phases of interstellar medium
(cool gas, warm ionized gas, and hot coronal gas)
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Three phases of interstellar medium

log T cool gas
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Three phases of interstellar medium

log T warm ionized gas

log p
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Three phases of interstellar medium

log T very hot gas

log p
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Existence of solar transition region
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Radiative vs. adiabatic shocks




Post-shock temperature distribution

In the post-shock region, the gas can be typically cooled-down either
adiabatically or radiatively. The importance of these processes can be
determined from the energy equation
9 (pe)
ot

+ V- (pev) = —p?N(T) = pV - v,

where A(T) is the cooling function.
Assuming stationary spherically symmetric
post-shock flow with constant flow velocity

3k vd(r?pT) ) pkT 2v
soR gy =P NT)— ——.
wr dr wor
From continuity equation at constant speed r

r?p =const. the temperature gradient is

dT AT 2
_ BOA

dr — 3r 3kv 0



Radiative vs. adiabatic shocks

The first right-hand side term in energy equation

dT 4T 2pup
dr— 3r 3kv

describes adiabatic cooling, while the second right-hand side term stands
for radiative cooling. When adiabatic cooling dominates, from the energy
equation follows that the post-shock region is large, comparable with r.
On the other hand, the post-shock region is significantly thinner when
radiative cooling dominates.
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