1 Capacitively coupled discharges – basic characterisation

l

Basic literature: [9, 1]

$$\omega_{pi} < \omega \ll \omega_{pe} \tag{1}$$

$$\ll \lambda$$
 (2)

2 RF plasma conductivity

$$\sigma = \frac{ne^2}{m(\nu + i\omega)} + i\omega\varepsilon_0 \qquad (3)$$

$$\frac{1}{\sigma} = \frac{m(\nu + i\omega)}{ne^2 + i\omega\varepsilon_0 m(\nu + i\omega)} = \frac{1}{\varepsilon_0} \frac{\nu + i\omega}{\omega_{pe}^2 - \omega^2 + i\nu\omega} \qquad (4)$$

$$\omega_{pe} = e\sqrt{\frac{n}{m\varepsilon_0}} \qquad (5)$$

Ohmic heating:

$$\langle p \rangle = \frac{1}{2} j_1 E_1 \cos \alpha = \frac{1}{2} E_1^2 \operatorname{Re}(\sigma) = \frac{E_1^2}{2} \frac{n e^2 \nu}{m(\nu^2 + \omega^2)} \xrightarrow{\nu \to 0} \frac{E_1^2}{2} \frac{n e^2}{m \omega^2} \nu \tag{6}$$

3 RF. sheath

Literature: [1, 8]

elektroda

Sheath current density:

$$j = \varepsilon_0 \frac{\mathrm{d}E}{\mathrm{d}t} - \frac{en_0}{4} \sqrt{\frac{8kT_e}{\pi m}} e^{-eU_{sh}(t)/(kT_e)} + en_0 \sqrt{\frac{kT_e}{m_i}}$$
(7)
$$\varepsilon_0 \frac{\mathrm{d}E}{\mathrm{d}t} = n_{act} e \frac{\mathrm{d}s}{\mathrm{d}t}$$

DC sheath voltage:

$$0 = -\frac{en_0}{4} \sqrt{\frac{8kT_e}{\pi m}} \left\langle e^{-eU_{sh}(t)/(kT_e)} \right\rangle + en_0 \sqrt{\frac{kT_e}{m_i}}$$

Let us assume $U_{sh} = U_0 + U_1 \sin \omega t$:

$$e^{-\frac{eU_0}{kT_e}} \frac{\omega}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} e^{-\frac{eU_1}{kT_e}\sin\omega t} dt = \sqrt{\frac{2\pi m}{m_i}}$$

We will use

$$\frac{\omega}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} e^{a \sin \omega t} dt = I_0(a),$$

where $I_0(a)$ is the modified Bessel function of the order zero. We will obtain

$$\frac{eU_0}{kT_e} = \frac{1}{2}\ln\left(\frac{m_i}{2\pi m}\right) + \ln\left[I_0\left(\frac{eU_1}{kT_e}\right)\right] \tag{8}$$

4 Series plasma-sheath resonance

The resonance $(Z \approx 0)$ occurs for the frequency

$$\omega_{sr} = \omega_{pe} \sqrt{\frac{s_{tot}}{l}},\tag{9}$$

where l_b is the length of the bulk plasma, s_{tot} is the total thickness of the both sheaths and $l = l_b + s_{tot}$ is the distance of electrodes.

5 Discharge asymmetry

Symmetrical discharge:

bias

-U

First approach:

We will use $U_{sh} \propto s^{\kappa}$ and $U_{sh} \propto \frac{I}{C_{sh}} \propto \frac{I}{S}s$, so that $U_{sh} \propto \frac{U_{sh}^{1/\kappa}}{S}$ and we will obtain

$$U_{sh} \propto rac{1}{S^{rac{\kappa}{\kappa-1}}}$$

The index g marks the sheath at the grounded electrode, the index v sheath at the powered electrode and the index e will mark the voltage at the powered electrode. We can write

$$\frac{U_v}{U_g} = \left(\frac{S_g}{S_v}\right)^{\alpha} \qquad (10)$$

$$\alpha = \frac{\kappa}{\kappa - 1} \in \langle 1; 4 \rangle,$$

Ue

frequently $\alpha \approx 2$ (valid for matrix sheath, $\kappa = 2$). The DC component of the voltage at the powered electrode can be calculated by

$$U_{e0} = U_{g0} - U_{v0} = -U_{e1} \frac{1 - \left(\frac{S_v}{S_g}\right)^{\alpha}}{1 + \left(\frac{S_v}{S_g}\right)^{\alpha}},$$
(11)

where the notation $U = U_0 + U_1 \sin \omega t$ was used.

Second approach:

$$E(x) = \frac{e}{\varepsilon_0} \int_0^x n_i(y) dy \qquad (12)$$
$$U_{sh} = \frac{e}{\varepsilon_0} \int_0^{s(t)} dx \int_0^x n_i(y) dy \qquad (13)$$

For $n_i = konst$. we would get

$$U_{sh} = \frac{en_i s^2}{2\varepsilon_0} = \frac{Q^2}{2en_i \varepsilon_0 S^2},$$

where $Q = en_i Ss$. We can write the eq. (13) by means of the total sheath charge (Q) even in a more general case. We will define $\xi = x/s$ and we will label the actual averaged ion concentration in a sheath $\overline{n_i}$:

$$U_{sh} = \frac{Q^2}{2e \,\overline{n_i} \,\varepsilon_0 \, S^2} \,\mathcal{I}$$
(14)
$$\mathcal{I} = 2 \int_0^1 \mathrm{d}\xi \int_0^{\xi} \frac{n_i(\xi')}{\overline{n_i}} \,\mathrm{d}\xi'$$

Because the total charge in both sheaths $Q_M = Q_g(t) + Q_v(t)$ is constant and because each sheath must almost collapse during each RF period, the maximum charge of each sheath is approximately equal to Q_M . we can write

$$U_{e\,max} = U_{g\,max} = \frac{Q_M^2}{2e\,\overline{n_{ig}}\,\varepsilon_0\,S_g^2}\,\mathcal{I}_g \tag{15}$$

$$U_{e\,min} = -U_{v\,max} = -\frac{Q_M^2}{2e\,\overline{n_{iv}}\,\varepsilon_0\,S_v^2}\,\mathcal{I}_v \tag{16}$$

and we can define the asymmetry parameter \mathcal{E}

$$\mathcal{E} = \frac{U_{g \, max}}{U_{v \, max}} = \left(\frac{S_v}{S_g}\right)^2 \frac{\overline{n_{iv}}}{\overline{n_{ig}}} \frac{\mathcal{I}_g}{\mathcal{I}_v}$$
(17)

For the bias calculation we will mark $U_e = U_{e\,0} + U_{e\,RF}(t)$, where $U_{e\,0}$ is the spontaneously generated DC component of the voltage at the powered electrode (bias) and $U_{e\,RF}$ is the known RF voltage supplied from the RF generator. When we neglect the bulk-plasma voltage, we can write $U_e = U_g - U_v$. We can take advantage of the situation in the two extremes of the supplied

4

voltage

$$U_{g max} = U_{e 0} + U_{e RF max}$$
$$-U_{v max} = U_{e 0} + U_{e RF min}$$

and we can get

$$U_{e0} = -\frac{U_{eRF\,max} + \mathcal{E}U_{eRF\,min}}{1 + \mathcal{E}} \tag{18}$$

For symmetrical supplied voltage $(U_{e\,RF\,max} = -U_{e\,RF\,min}, \text{ e.g. } U_{e\,RF} = U_{e\,RF\,max} \sin \omega t)$ we will get

$$U_{e\,0} = -U_{e\,RF\,max} \frac{1-\mathcal{E}}{1+\mathcal{E}} \tag{19}$$

6 Electric asymmetric effect

For symmetric discharges the eq. (18) has the following form:

$$U_{e\,0} = -\frac{U_{e\,RF\,max} + U_{e\,RF\,min}}{2}$$

Consequently, if we use asymmetric waveform of the supplied voltage, we can generate an electric asymmetry (DC bias) in spite of geometric symmetry of the discharge [2].

Electric asymmetrical effect for a strongly asymmetric supplied voltage.

An example of the electric asymmetric effect for $U_{e\,RF} = U\cos(\omega t + \Phi) + U\cos(2\omega t)$.

7 Nonlinear nature of sheaths

Literature: [3, 5]

For $n_i = konst$. we can approximate

$$E = \frac{nes}{\varepsilon_0}$$
$$U_{sh} = \frac{nes^2}{2\varepsilon_0}$$
$$j = \varepsilon_0 \frac{dE}{dt} = ne \frac{ds}{dt}$$

The two simplest cases are:

1) Monofrequency current $I = I_1 \cos \omega t$: One sheath:

$$s = \frac{I_1}{Sne\omega} (\sin \omega t + 1)$$

$$U_{sh} = \frac{1}{\varepsilon_0 en} \left(\frac{I_1}{S\omega}\right)^2 \left(\frac{3}{4} + \sin \omega t - \frac{1}{4}\cos 2\omega t\right)$$
(20)

Two sheaths:

$$U_e(\omega t) = U_g(\omega t) - U_v(\omega t + \pi)$$
(21)

$$U_{e} = \frac{1}{\varepsilon_{0}en} \left(\frac{I_{1}}{\omega}\right)^{2} \left[\frac{3}{4} \left(\frac{1}{S_{g}^{2}} - \frac{1}{S_{v}^{2}}\right) + \left(\frac{1}{S_{g}^{2}} + \frac{1}{S_{v}^{2}}\right) \sin \omega t - \frac{1}{4} \left(\frac{1}{S_{g}^{2}} - \frac{1}{S_{v}^{2}}\right) \cos 2\omega t\right] (22)$$

$$U_{e0} = -\frac{3}{4} U_{e1} \frac{1 - \left(\frac{S_{v}}{S_{g}}\right)^{2}}{1 + \left(\frac{S_{v}}{S_{g}}\right)^{2}}$$
(23)

2) Monofrequency voltage $U_{sh} = U_0 + U_1 \cos \omega t$:

$$I = Sne \frac{\mathrm{d}s}{\mathrm{d}t} = S\sqrt{\frac{\varepsilon_0 ne}{2}} \frac{1}{\sqrt{U_{sh}}} \frac{\mathrm{d}U_{sh}}{\mathrm{d}t}$$
(24)

$$I = -S \sqrt{\frac{\varepsilon_0 ne}{2}} \frac{U_1}{\sqrt{U_0}} \frac{\omega \sin \omega t}{\sqrt{1 + \frac{U_1}{U_0} \cos \omega t}}$$
(25)

Monofrequency sheath voltage

8 Ion energy distribution function (IEDF)

Basic parameters:

• Ratio between the mean transit time of an ion through the sheath and the RF period:

$$\frac{T_i}{T} \approx \frac{3\bar{s}\omega}{2\pi} \sqrt{\frac{m_i}{2eU_0}} \tag{26}$$

• Number of ion collisions inside the sheath $\approx 1/(\nu_i T_i)$

Literature: [7]

8.1 Collisionless low-frequency regime

 $T_i \ll T$, ion energy corresponds to the actual sheath voltage in the moment of ion impact. Let us assume $U_{sh} = U_0 + U_1 \cos \omega t$.

8.2 Collisionless middle-frequency regime

The saddle structure narrows with the increase of the T_i/T ratio.

8.3 Collisionless high-frequency regime

 $T_i \gg T$, for $\frac{T_i}{T} \to \infty$ the saddle structure f_E transforms itself to a single peak at the energy $E = eU_0$.

$$f_{Ei} = \frac{1}{\pi \Delta E \sqrt{1 - \left(\frac{E - eU_0}{\Delta E}\right)^2}}$$

$$\Delta E = \frac{2eU_1}{\pi} \left(\frac{T}{T_i}\right)$$

$$E \in \langle eU_0 - \Delta E; eU_0 + \Delta E \rangle$$
(28)

8.4 Collisions

- elastic collisions continuous decrease of ion energy
- charge transfer generation of new peaks in the EEDF (f_{Ei})
- broadening of the ion angle distribution

9 Matching box

For example [1]:

10 Local/non-local plasma character

Local regime:

$$\vec{j} (\vec{r}, t) = \sigma (\vec{r}, t) \vec{E} (\vec{r}, t) f_E (\vec{r}, t) = f_E \left[\vec{E} (\vec{r}, t) \right]$$

Nonlocal regime:

$$\vec{j}(\vec{r},t) = \iiint_{\vec{r'}} \mathrm{d}\vec{r'} \int_{t' \le t} \mathrm{d}t' \ \sigma\left(\vec{r}-\vec{r'},t-t'\right) \vec{E}\left(\vec{r'},t'\right)$$
$$f_E\left(\vec{r},t\right) = f_E\left[\vec{E}\left(\vec{r'},t'\right)\right], \qquad \vec{r'} \in V, \ t' \le t$$

11 Plasma heating

- collisional (Ohmic) heating [9, 1, 6]
- stochastic heating [9, 1, 16]

- bounce resonance [12]

- field reversal [15]
- γ -heating, α and γ regimes [14, 18, 11, 13]

11.1 γ regime

Potential emission – electron emission from electrode caused by an ion impact, ~ 0.01 . Electron avalanche in the sheath:

$$\frac{\mathrm{d}j_e}{\mathrm{d}x} = \alpha \left[E(x,t) \right] j_e$$

$$j_e(x) = j_e(0) e_0^{\int_0^x \alpha \left[E(x',t) \right] \mathrm{d}x'}$$

$$j_e(0) = \gamma j_i$$

$$\langle j_i \rangle = \left\langle \gamma j_i \left\{ e_0^{\int_0^x \alpha \left[E(x,t) \right] \mathrm{d}x} - 1 \right\} \right\rangle + env_B$$
(29)

For negligible nv_B we can use the last equation for calculation of the ignition voltage for the transition of the sheath from the α to the γ regime. The current density for this transition can be estimated by means of

$$j = ne \frac{\mathrm{d}s}{\mathrm{d}t} \approx \frac{\varepsilon_0}{s} \frac{\mathrm{d}U}{\mathrm{d}t}$$

$$j_1 \approx \varepsilon_0 \frac{\omega U_1}{s}$$
(30)

 $\alpha \rightarrow \gamma$ transition:

- increase of electron concentration, plasma conductivity and current density
- decrease of sheath thickness, generation of a discharge structure that is analogous to the structure of the DC glow discharge
- discharge contraction to a smaller area, VA characteristics with a constant discharge voltage
- increase of supplied power
- in some cases an abrupt transition with hysteresis
- EEDF variations (shift to the Maxwell EEDF, increase of electron concentration, decrease of electron temperature)

12 Global models

Input parameters: pressure, electrode distance (l), angular frequency of the electric field (ω) , RF current amplitude (I_1) , gas composition $(K_i, E_i, \nu, K_{exc}, E_{exc}, K_{el}, m_n)$

Output parameters: electron concentration (n), electron temperature (T_e) , mean sheath thickness (s) [1].

• Balance of the number of electrons:

$$n_n \bar{n} K_i \left(l - s \right) = 2h_l n_c u_B \tag{31}$$

$$K_i = K_{i0} e^{-\frac{E_i}{kT_e}}$$
(32)

$$u_B = \sqrt{\frac{kT_e}{m_i}} \tag{33}$$

 $(n_n \text{ is the concentration of neutrals, } \bar{n} \text{ is the means electron concentration in the bulk plasma, } K_i \text{ is the rate constant for ionization, } n_c \text{ is the electron concentration in the discharge center, } h_l \text{ is the ratio between the electron concentration at the bulk-sheath border and in the plasma center, } u_B \text{ is the Bohm velocity, } E_i \text{ is the ionization energy of neutrals.}$

• Balance of the mean electron energy:

$$\frac{1}{2} \left(R_{ohm} + 2R_{stoch} + 2R_{ohm,sh} \right) I_1^2 = 2h_l n_c u_B E_T(T_e) S \tag{34}$$

$$E_T = E_i + \frac{K_{exc}}{K_i} E_{exc} + \frac{3m}{m_n} \frac{K_{el}}{K_i} kT_e + 2kT_e + e\Delta\Phi$$
(35)

$$R_{stoch} = 0.72 \ (mkT_e)^{1/2} \frac{\omega s}{eI_1}$$
(36)

$$R_{ohm} = 1.55 \, hm\nu \left(l - 2s\right) \left(\frac{\omega}{eI_1}\right)^{3/2} \left(S\varepsilon_0 skT_e\right)^{1/2} \tag{37}$$

$$R_{ohm,sh} = 0.33 \, m\nu s \frac{\omega s}{eI_1} \tag{38}$$

 $(R_{ohm}, R_{stoch} \text{ and } R_{ohm,sh}$ are resistivities caused by the collisional heating in the bulk plasma, stochastic heating and collisional heating in the sheath, E_T is the mean energy supplied to one electron, K_{exc} is the rate constant for excitation of neutrals, E_{exc} is the excitation energy, K_{el} is the rate constant for elastic collisions between electrons and neutrals, m_n is the mass of neutrals, $\Delta \Phi$ is the average voltage that must be overcome by an electron that leaves plasma.)

• Sheath thickness:

$$s = \frac{5}{12eh_l^2 n_c^2 \varepsilon_0 k T_e} \left(\frac{I_1}{S\omega}\right)^3 \tag{39}$$

The equations listed above are valid for low-pressure plasma with no negative ions and with no collisions in the sheaths.

- 13 Independent control of the reactive species concentration and ion energy
 - DC + RF [19, 10]

- Capacitive biasing of an electrode in a different discharge (ICP, MW)
- Double-frequency CCP [1, 4]
- Electric asymmetric effect [2, 4, 17]

14 CCP ignition

Breakdown voltage in the high-pressure branch:

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \nu_i n + D \frac{\mathrm{d}^2 n}{\mathrm{d}x^2}$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} \ge 0$$

$$n \approx n_{\mathrm{centr}} \sin\left(\sqrt{\frac{\nu_i}{D}}x\right)$$

$$\nu_i = D\left(\frac{\pi}{l}\right)^2$$

$$\nu_i = K_1 p \,\mathrm{e}^{-K_2 \frac{lp}{U}}$$

$$U = \frac{K_2 p l}{\ln\left(\frac{p l}{K_1 \pi^2} \frac{l}{D}\right)}$$

Used marking of quantities

ω_{pi}	plasma frequency of ions
ω	(angular) frequency of el. field
ω_{pe}	plasma frequency of electrons
l	electrode separation
λ	wavelength
σ	plasma conductivity
n	electron concentration
e	elementary charge
m	electron mass
ν	mean collisional frequency of transition of momentum of the electron (to neutrals)
ε_0	vacuum permittivity
p	power density
j	current density
j_1	current density amplitude
E	electric field intensity
	energy
E_1	amplitude of electric field intensity
n_0	electron concentration at the plasma-sheath border
n_i	ion concentration
k	Boltzmann constant
T_e	electron temperature
U_{sh}	sheath voltage
m_i	ion mass
s	sheath thickness
U_0	DC voltage component
U_1	amplitude of the fundamental voltage component
I_0	modified Bessel function of the 1. kind, order 0
Z_b	bulk plasma impedance
l_b	bulk plasma length
S	electrode area
Z_{sh}	sheath impedance
C_{sh}	sheath(s) capacity
s_{tot}	total thickness of both sheaths
Z	discharge impedance
ω_{sr}	(angular) frequency of the plasma-sheath resonance
U_g	sheath voltage (at the grounded electrode)
U_v	sheath voltage (at the powered electrode)
U_e	powered electrode voltage
κ	power in the dependence of the sheath voltage on the sheath thickness
α	phase difference between current and voltage
	power in the dependence of the electric and geometric discharge asymmetry

	designation of the CCP regime with negligible role of γ -electrons
	1. Towsend coefficient
S_g	grounded electrode area
S_v	powered electrode area
Q	el. charge
Q_g	sheath charge at the grounded electrode
Q_v	sheath charge at the powered electrode
Q_M	total charge in both sheaths
Φ	el. potential
$U_{x max}$	maximum value of the voltage U_x
$U_{x \min}$	minimum value of the voltage U_x
U_{eRF}	RF component of the powered electrode voltage (i.e. $U_e - U_{e0}$)
${\mathcal I}$	quantity that describes profile of ion concentration inside a sheath
${\cal E}$	discharge asymmetry parameter
Ι	electric current
T_i	mean transit time of an ion through a sheath
T	discharge period
$ u_i$	mean collisional frequency of an ion
f_{Ei}	IEDF
f_E	EEDF (electron energy distribution function)
$ u_i$	ionization frequency
D	coefficient of diffusion

References

- P. Chabert and N. Braithwaite. *Physics of Radio-Frequency Plasmas*. Cambridge University Press, 2011.
- [2] U. Czarnetzki, B. G. Heil, J. Schulze, Z. Donkó, T. Mussenbrock, and R. P. Brinkmann. Journal of Physics: Conference Series, 162:012010, 2009.
- [3] U. Czarnetzki, T. Mussenbrock, and R. P. Brinkmann. *Physics of Plasmas*, 13:123503, 2006.
- [4] Z. Donkó. Plasma Sources Sci. Technol., 20:024001, sect. 5, 2011.
- [5] P. Dvořák. Plasma Sources Sci. Technol., 22:045016, 2013.
- [6] T. Hemke, D. Eremin, T. Mussenbrock, A. Derzsi, Z. Donkó, K. Dittmann, J. Meichsner, and J. Schulze. *Plasma Sources Sci. Technol.*, 22:015012, 2013.
- [7] E. Kawamura, V. Vahedi, M. A. Lieberman, and B. C. K. Plasma Sources Sci. Technol., 8:R45-R64, 1999.
- [8] M. A. Lieberman. *IEEE T Plasma Sci*, 16:638, 1988.
- M. A. Lieberman and A. J. Lichtenberg. Principles of Plasma Discharges and Materials Processing. John Wiley & sons, inc., 1994.

- [10] V. A. Lisovskiy, N. D. Kharchenko, and V. D. Yegorenkov. J. Phys. D: Appl. Phys., 41:125207, 2008.
- [11] D. W. Liu, F. Iza, and M. G. Kong. Applied Physics Letters, 93:261503, 2008.
- [12] Y. X. Liu, Q. Z. Zhang, J. Liu, Y. H. Song, A. Bogaerts, and Y. N. Wang. Plasma Sources Sci. Technol., 22:025012, 2013.
- [13] Z. Navrátil, L. Dosoudilová, R. Josepson, P. Dvořák, and D. Trunec. Plasma Sources Sci. Technol., 23:042001, 2014.
- [14] Y. P. Raizer. Gas Discharge Physics. Springer, 1997.
- [15] J. Schulze, Z. Donkó, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann, and U. Czarnetzki. J. Phys. D: Appl. Phys., 41:105214, 2008.
- [16] J. Schulze, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann, and U. Czarnetzki. J. Phys. D: Appl. Phys., 41:042003, 2008.
- [17] J. Schulze, E. Schüngel, Z. Donkó, and U. Czarnetzki. Plasma Sources Sci. Technol., 19:045028, 2010.
- [18] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang, and R. F. Hicks. *Plasma Sources Sci. Technol.*, 14:314, 2005.
- [19] M. Zeuner, H. Neumann, and J. Meichsner. J. Appl. Phys., 81:2985, 1997.