Norway Grants Juraj Francu, Miroslav Pereszlényi, Ondřej Prokop, Lukáš Jurenka, Oldřich Krejčí, Vít Hladík Czech Geological Survey, Brno, CZ Preparation for a pilot project of CO2 geological storage in the Czech Republic Activity 2 Building a 3D static geological model of the storage site and storage complex Fridtjof Riis IRIS Stavanger, NO Co-operation in research and development of Carbon Capture and Storage technologies, Czech-Norwegian Seminar Oslo, 12 October, 2016 Acknowledgements: Shlumberger for providing the Academic license of the Petrel software Principle steps in building the 3D Model 1.Revised well logs and seismic data 2.Reservoir, seal, and faults 3.Preparation of data for Dynamic Modeling - Well tests and pressure data - Production history from individual wells 4. Data for Risk Analysis - Well completion after abandonment - Perforations, casings and cement plugs 5. Proposal of injection and monitoring wells LBr-1 CO2-Storage Complex Well locations and 3D seismics D:\A BRODSKE\Brodske vstupne udaje\1 Data\02 Mapy obrazky\Topo Brodske.jpg Seismic data LA 7 BR 35 BR 87 BR 7 BR 60 BR 84 BR 90 BR 83 Lower Badenian shales Shales of M. Badenian Seal Constant sandstones base of U. Badenian Pinchout of Lab horizon Trans- gression of Lab hor. Litofacies analysis of well logs SEAL RESERVOIR Partial layers of the Lab reservoir Fault 1 SW NE C:\Users\user\Desktop\LAUSANE\seis1.jpg Integration of seismics and well log data Seismic Stratigraphy + Well logs CZ SVK BR 71 BR 61 BR 83 Target Map of the Sarm. channel Mapping the surfaces and faults in time and depth domains C:\Users\user\Desktop\ZLOMY BRODSKE\Grafika2.jpg Fault 2 Fault 1 Fault 3 Fault 4 Fault 4 Fault 1 Fault 2 Fault 3 Eastern pinchout of the Lab reservoir N N C:\Users\user\Desktop\LAUSANE\Fig4.jpg Seismic attribute analysis Application of seismic attribute analysis (Fig. 7) made it possible to visualize more details in the architecture of the storage complex. The major reflectors and the faults are picked more precisely in this way. The average absolute amplitude shows the probable initial extent of the oil and gas field (Fig. 8). The reason is interpreted as residual hydrocarbon saturation of the reservoir. 3D Model in Petrel of the CO2 Storage Complex Base of the Lab reservoir L1 L2 L3 L4 Fault 1 4 tops of the partial layers of the Lab reservoir 3D Model of LBr-1 viewed from NW Colors show lithologies shale sand C:\Users\user\Desktop\LAUSANE\M1.jpg 3D LBr-1 Model viewed from NW intervals with properties Top Middle Badenian SEAL Partial reservoirs Top Lower Badenian C:\Users\user\Desktop\LAUSANE\M2.jpg 3D Model of LBr-1 Partial layers of the Lab reservoir with permeability Average absolute amplitude of the Lab horizon C:\Users\user\Desktop\LAUSANE\att.jpg Application of seismic attribute analysis made it possible to visualize more details in the architecture of the storage complex. The average absolute amplitude shows the residual hydrocarbon saturation of the reservoir = probable initial extent of the oil and gas field. 3D pohled na povrch lábského obzoru s atributem průměrná absolutní amplituda Povrch lábského obzorus atributem průměrná absolutní amplituda Analýza seismických atributů C:\Users\user\Desktop\LAUSANE\att.jpg Net-to-Gross maps in the four partial horizons of the Lab reservoir N/G = sand thickness / reservoir layer thickness Porosity of the partial reservoir layers Grey area = shale seal, blue contours = porosity of L1-L2-L3-L4 C:\Users\user\Desktop\LAUSANE\Mapy.jpg Tops (SSL) of the partial reservoir layers with Gas Cap – Oil zone – Aquifer Possible spill point Production data suggest partial communication among L1-L2-L3-L4 3D Model results – comparison the new and the archival reserves estimation OIL in place GAS in place Recoverable OIL Recoverable GAS thous. sm3 mil. sm3 thous. sm3 mil. sm3 290 97 73 77.6 OIL in place GAS in place Recoverable OIL Recoverable GAS thous. sm3 mil. sm3 thous. sm3 mil. sm3 305 84 61.1 75.4 Cumulative OIL Cumulative GAS thous. sm3 mil. sm3 61.9 68.7 Oil and Gas reserves estimated using the new 3D model Oil and Gas reserves based on archival report (Šele 1960) Cumulative production of Oil and Gas Archival report (Káňa 1998) C:\Users\user\Desktop\LAUSANE\Mapy.jpg Z celkové těžby not 72.4 je nutné odečíst vrty ze středního jihu Br-60 5582 tis m3 ropy, Br-84 4829 tis m3 ropy Br-90 190 m3 ropy Pozor může to být i z jiných horizontů mimo láb Spodní tab zdroj tabulka Káňa 98 (tab. Excelu jsme dostali od Khrulenka – Olina), horní tab zdroj Petrel Report Miro asi 10.9.2016; prostřední tab. Podle Šele etal (1960). Add on properties Pressure and Temperature Steady State Temperature (°C) with measured depth (m) based on measurements in wells in the LBr1 Time: Sep 1957 – Sep 1997 Formation pressure evolution throughout the production history in LBr-1 Limited data during the main production interval D:\BRODSKE\Brodske Deliverables\sladke vody.jpg C:\Users\user\Desktop\XSection5a.jpg BR71 BR69 BR70 BR64 BR88 BR27 BR87 Map of the brines – freshwater transition zone Sarmatian Upper Badenian Lower Badenian Middle Badenian Lab Horizon Karpatian Hydrogeochemical Model of saline and freshwater zones BR71 BR69 BR70 BR64 BR88 BR27 BR87 Total salinity: freshwater – to 1 000 mg.l-1, transition zone – from 1 000 to 3 000 mg.l-1, brackish water – over 3 000 mg.l-1 Hydrogeochemical zones with brines and freshwater in the LBr-1 overburden Data for Dynamic modeling and History Matching Gas at the early phase of PRODUCTION Oil production decreasing Water - almost the only fluid produced in the final phase. Production, pressure and test data - individual wells Production data – Br-64 GAS Pressure - individual well data with time Perforation depth 1066-1070 m, 11 Nov 1957 Casing pressure 110 atm, Tubing pressure 120 atm 15 Sep 1957 16 Jul 1969 Average daily production per month - well Br-89 Perforation 1101-1102 m natural inflow Perforation 1101-1102 m pumping Perforation 1084-1087.5 m, pumping Production of gas not registered Production of gas is not registered Sep 1960 Oct 1965 Natur. inflow Gas at the early phase of PRODUCTION Oil production decreasing Water - almost the only fluid produced in the final phase. Perf. 1101-1102 m Natu-ral inflow Perforation 1101-1102 m pumping Perforation 1084-1087.5 m, pumping Production of gas is not registered Production of gas is not registered Cummulative production well BR 89 Sep 1960 Oct 1965 Water Oil Gas Proposal for injection and monitoring Návrh vtlačných (injektážních) vrtů Proposed injection wells Proposal for injection and monitoring at reservoir level Návrh monitorovacích vrtů na úrovni lábského obzoru Proposed monitoring wells at the Láb reservoir level Proposal for injection and monitoring above the seal Návrh monitorovacích vrtů v bazálním obzoru svrchního badenu Proposed monitoring wells with perforation in the Basal sand of the Upper Badenian Proposal for injection and monitoring Komplexní návrh vtlačných, hlubokých a mělkých monitorovacích vrtů Proposed system of injection and deep & shallow monitoring wells Conclusions 1.New stratigraphy 2.3D Reservoir & seal properties 3.Database on gas pressure & Production history from individual wells for Dynamic Modeling 4. Well completion after abandonment in GIS for Risk Analysis 5. Proposal of injection and monitoring wells Thank you for your attention