

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Chemical methods in geology

3. Practical field hydrogeochemistry

Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593

Principles of good practice

- How to approach the utilization of geochemical properties of water?
- How do we get quality data?
- How should we proceed?
- What to watch out for?
- Rules of good practice.

Introduction

- The use of geochemical data in hydrogeology usually requires thoughtful sampling and analysis.
- The key is to keep in mind the goal of the measurement
 - For some studies, basic parameters are sufficient, while others require a broad analytical approach
- If you are not sure about anything the type of sample container, the amount of sample, etc. – consult with the laboratory.

Field measurements

- Properties that can easily change during transport and storage
- Temperature
 - Thermodynamic considerations, equilibria, speciation
 - EC and pH calibration
 - Usually directly via conductometer or a pH meter
 - The value is drifting (tempering of the devices)

Specific conductivity (conductivity)

- Property of a solution a measure of the ability to conduct an electric current
- SI unit is siemens per meter (S/m)
 In hydrogeology commonly µS/cm
- Conductivity is proportional to the content of dissolved ions in the solution
 - Water purity monitoring
 - Deionized water 0.055 μ S/cm
 - Drinking water 50-500 µS/cm
 - Sea water 50000 μS/cm
 - Simple estimation of total dissolved solids (TDS)
 - Basis for further sampling and analyses

Specific conductivity (conductivity)

- It is measured by determining the resistance of the solution between two electrodes at a known (and fixed) distance
- Alternating current (to avoid electrolysis)
- Conductometer
 - A very diverse group of devices
 - With fixed or exchangeable probe
 - Necessary maintenance especially cleaning the electrode from deposits (calcite, dirt, bacteria...)
 - Easy storage, long battery life of basic devices
 - Choose types with automatic temperature compensation! (The water in wells is cold :-))
- Induction is also used for industrial applications...

pН

- One of the most important parameters

 Measuring requires patience and diligence
- Necessary calibration using buffers
 - For groundwater, a two-point calibration is usually sufficient (pH 7 and 4 or 7 and 10)
- Glass electrodes potentiometry

Combined electrode

- The use of two separate electrodes (glass + reference) is extremely impractical
- Combined electrode
 - Contains both electrodes in one body
 - Reference el. of a known potential to a hydrogen electrode
 - Glass measuring electrode
- The circuit is closed using a junction/diaphragm (ceramic, Pt) – reference electrode / measured solution
- The trend of miniaturization of the glass part, plastic bodies, gel fillings

Measurement

pH meters

pH calibration – buffers

direct measurement of **E** – Zobell's solution

pH-electrodes

- For the most accurate measurement possible:
 - Correct electrode storage (see manuals)
 - Replace on time monitor the quality of electrode calibration
 - Rinse the electrode between measurements
 - Gentle movement of the electrode in the solution (prevents development of potentials on the electrode)
 - For some types of water (little buffered, low TDS, low alkalinity...) the measured value can drift
 - For water degassing CO₂ or with low redox (red. Fe and S) it is advisable to avoid contact with air (e.g. using flow cells)

- Electrode measures potential (electromotive force)
- No calibration
 - Checking the correctness of the measurement against a solution with a fixed Eh (e.g. Zobell's solution)

Zobell's Solution (Eh = 0.430 V at 25° C)	Quinhydrone Solution
0.0033 M K+-Fe2+-CN- solution	pH 7 solution = $86 \pm 20 \text{ mV}$
0.0033 M K+-Fe3+-CN- solution	pH 4 solution = 263 ± 20 mV
0.01 M K+/Cl- solution	Δ 3 pH (difference between the two solutions) =
	$177 \pm 4 \text{ mV}$

- When measuring:
 - Gentle movement of the electrode in the solution (prevents the development of static voltage on the electrode)
 - Wait a few minutes for stabilization
 - If the readings fall and then start to rise, there is
 O₂ contamination from the atmosphere record the lowest value reached

- Correcting the measured E to Eh :
 - Add the standard electrode potential to the measured value
 - Standard potentials of argent-chloride electrodes:

<i>T</i> (°C)	0	5	10	15	25	35	50
E _R	220	216	213	209	202	195	184

- Determination problems
 - Volatile values an long settling
 - Clean the electrode (soapy water and a soft brush)
 - Soaking in the preservation solution
 - Measurement in a sealed container (constant solution concentration)

Ion Selective Electrodes (ISE)

- Membrane potentials solid/liquid membrane
- Direct quantitative determination according to the Nernst equation – calibration line
- For anions: F⁻, Cl⁻, NO₃⁻, SO₄²⁻, PO₄³⁻...
- Metals: Ca, Ag, Pb, Cd, Na, K...
- Alkali metals membranes contain molecular cavities with the exact dimensions of the given element
- Degradation of electrodes (relatively limited lifetime) – more intensive than for pH and ORP
- Typically for frequent measurements of e.g. nitrates or sodium (measurement of water quality, spread of pollution, passage of contamination cloud, etc.)

Examples of measuring range:

-	
0.1 to 14000 mg/L	NO ₃ ⁻
0.002 to 23000 mg/L	Na⁺
1.8 to 35500 mg/L	Cl-
0.02 to 40100 mg/L	Ca ²⁺

Multimeters

O GDEISINGFI

Measurement of conductivity, temperature, pH, redox , oxygen, ISE

WTW marketers idea

of using a multimeter

-_(ツ)_/־

Logger functions (data recording), direct connection with a PC Generally applies to all devices – the more functions, the greater the demand on the battery Simplicity could lead to pure perfection

Less common properties

- Radioactivity of water
 - Dissolved gases (Rn)

– Activity [Bq]

- Amount of dissolved oxygen
 - Oxidation-reduction properties
 - Biota
 - Electrochemically (electrodes)

CHEMICAL ANALYSES

Filtration

- Water contains unsuitable particles (suspension)
 - Chemical interactions may occur
 - Filtration directly in the field
 - Syringe attachment (various sizes)
 - Most commonly 0.45 μm
 - Particles, clays, part of oxohydroxides Fe and Mn
 - Bacteria
 - Does not capture viruses and most organics (e.g. fulvic and humic acids)
 - For colloids up to 0.1 μm
 - Suction can cause degassing forcing is better

Major anions

Laboratory measurements

- Gravimetric (sulphates), titration (nitrates), liquid chromatography, possibly also MS (sulfur)
- Carbonates by titration (determination of alkalinity)
- Direct field measurement
 - Briefcase sets
 - ISE
 - Portable photometers
 (*Cl* 0.01-10 mg/L, *ammonia* 0.01-50 mg/L, *NO*₃⁻0.2-133 mg/L)
 - Lower accuracy suitable for orientation measurements, rapid development monitoring or routine measurements

Samples for anion analysis

- Usually 5 mL is enough for one analysis, better around 50 mL (repetition)
- PE or PP bottles, rinse with sampled water, filter
- Store in a cool and dark place microbial activity (oxidation-reduction of sulphur), precipitation

Sulfides and sulfates

- H₂S and HS⁻ very soluble
- They are formed under reducing conditions from sulfates
- They oxidize quickly even O₂ diffusing through the plastic of the bottle
 - Necessary stabilization during sampling precipitation as Zn and Cd sulfides
- Distortion of sulfate content it is necessary to separate also for the determination of SO₄²⁻

Major cations + trace elements

- Field determination via ISE (Na⁺, K⁺, Ca²⁺, Mg²⁺)
- Today usually ICP-AES, ICP-MS, AES or AAS
- Spectrophotometry (complexing cations)
- High precision, small samples (limit ca. 25 mL)
- Samples can be acidified preventing precipitation of carbonates and oxides (typically small amounts of HNO₃)
 - Keeps metals in solution
- The acidified filtered sample is stored in a PP or PE bottle

Sampling for isotopic analyses

- $\delta^{18}O$ and $\delta^{2}H$
 - Not subject to significant chemical and biochemical processes can withstand long-term storage
 - High content in water resistence to dilution and interaction (isotopic exchange)
 - A large air space above the water
 - Tightly closed bottle with minimal bubbles depending on sample volume
 - No filtration, tightly sealed (due to evaporation), refrigeration recommended
 - Various methods (LRS; IRMS)
- Tritium
 - Depending on the method, it may not require special sampling (LSC scintillation methods)

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593

Resources

 Most pictures are public domain or taken from manufacturer's catalogues