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s0010 4.1. INTRODUCTION

p0015 Paleoclimatological research has led to wide acceptance that
quasi-periodic oscillations in the Sun-Earth position, known
as Milankovitch cycles, have induced significant variations in
Earth’s past climate. These astronomically forced climate
variations have in turn influenced climate-sensitive sedi-
mentation, and thereby came to be fossilized in the Earth’s
cyclic stratigraphic, or cyclostratigraphic record. The sub-
discipline that has developed to study this record is known
today as cyclostratigraphy. The detection of astronomical
signals in cyclostratigraphy has been facilitated by impressive
advancements in celestial mechanics, which have provided
accurate models of Earth’s orbital-rotational behavior through
geological time, and also by equally notable improvements in
data collection and analysis.

p0020 A principal outcome of these developments has been the
recognition that the cyclostratigraphic record, when shown
to carry a signal specific to Earth’s astronomical parame-
ters, serves as a powerful chronometer. The astronomical
calibration of these cycles leads to astrochronology and
construction of the Astronomical Time Scale (ATS). High
quality data from the Cenozoic Era have demonstratively
preserved all of the astronomical cycles predicted by
modern celestial mechanics; the Neogene and Paleogene
periods are now almost completely astronomically cali-
brated, as reported in Chapters 28 and 29, although serious

problems remain in the Paleogene. Cyclostratigraphy from
more remote geological ages cannot be calibrated fully or
directly to the astronomical variations, because of model
limitations and uncertainties in determining stratigraphic
age. Nonetheless, in numerous instances signals analogous
to those of the modeled astronomical variations have been
detected in cyclostratigraphy, prompting the development
of “floating” astrochronologies over extended time intervals
(multiple millions of years). Astronomically calibrated
floating time scales have now been proposed for intervals
that extend through entire stages in the Triassic, Jurassic
and Cretaceous periods, and are presented in Chapters 25,
26 and 27.

p0025This chapter provides an introduction to the Earth’s
astronomical parameters, the nature of the astronomically
forced incoming solar radiation (insolation), and the
discovery of astronomically forced insolation signals in
cyclostratigraphy. For remote geologic times, partial astro-
nomical calibration with the modeled 405-kyr orbital eccen-
tricity variation is allowable; the construction and application
of the “405-kyr metronome” is explained. This is followed by
a summary of the cyclostratigraphy that was used in the
“absolute” and “floating” astrochronologies of A Geologic
Time Scale 2012 (GTS2012). A discussion of the precision
and accuracy that can be expected from astronomically cali-
brated cyclostratigraphy is also given. The chapter concludes
with remarks on recent inter-calibration efforts between
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astrochronology and geochronology e the key to future
improvement in geologic time scale determination.

s0015 4.2. EARTH’S ASTRONOMICAL
PARAMETERS

p0030 The Earth undergoes quasi-periodic changes in its orienta-
tion relative to the Sun, as a consequence of interactions
between the Earth’s axial precession and variable orbit
induced by motions of the other planets. These changes may
be described in terms of the Earth’s astronomical parameters
(Figure 4.1). Quantification of these parameters has been
carried out numerous times in the past using analytical
approximations of the planetary motions; a brief history of
these computations is given in Laskar et al. (2004). Today,
models of the astronomical parameters are based on
computerized numerical integration, and include important
new variables, e.g., relativistic effects, flattening of the
Earth, Sun and Moon, Earth’s tidal deceleration, climate
friction, and other factors. The nominal La2004 model
includes all of the above-mentioned variables, and provides
an accurate orbital eccentricity model back to 40 Ma (Laskar
et al., 2004). A new La2010 solution extends accuracy back
to 50 Ma (Section 4.9). Further back in time, however,

modeling validity rapidly diminishes due to uncertainties in
model initial conditions and numerical integration error.
While the initial conditions can be improved, integration
error ultimately limits the validity of the model to approxi-
mately 60 Ma (Laskar, 2006).

p0035Over the past 10 million years the Earth’s orbital eccen-
tricity has varied between 0e0.07 (Figure 4.2a) with prin-
cipal periods at 95 kyr, 99 kyr, 124 kyr, 131 kyr, 405 kyr, and
2260 kyr (Figure 4.3a), caused by gravitational perturbations
from the motions of the other planets acting on Earth’s orbital
elements P and e (Figure 4.1). The obliquity variation
changes the Earth’s axial tilt by between 22�e24�
(Figure 4.2b), with a principal period at 41 kyr, and lesser
ones at 39 kyr, 54 kyr and 29 kyr (Figure 4.3b), due to
planetary motions acting mainly on orbital elements I and U

(Figure 4.1). The precession index represents the combined
effects of orbital eccentricity and the Earth’s axial precession
on the Sun-Earth distance (Figure 4.2c), and has principal
periods at 24 kyr, 22 kyr, 19 kyr and 17 kyr (Figure 4.3c).

p0040Long-term secular changes in geophysical and astrody-
namical factors are expected to have influenced the
frequencies and phasings of the astronomical parameters.
These factors include chaotic diffusion of the Solar System,
tidal dissipation of the Earth-Moon system, Earth’s dynam-
ical ellipticity and climate friction (Section 4.7). At present
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f0010 FIGURE 4.1 The Earth’s astronomical parameters viewed from above the Earth’s geographic North Pole (NP) in a configuration of northern summer solstice

(NP pointed towards the Sun). The Earth’s orbit is elliptical with (invariant) semi-major axis a and semi-minor axis b defining eccentricity e. The Sun occupies

one of the two foci (f1, f2). Variables e,P, I andU are “orbital elements,” whereP¼Uþu. The plane of the Earth’s orbit (the “ecliptic of date”) is inclined at

an angle I relative to the fixed reference ecliptic, and intersects this reference ecliptic at a longitude U at point N, the ascending node, relative to fixed vernal

point go. (In this depiction, I is greatly exaggerated from its actual magnitude of 1 to 2�.) The orbital perihelion point P is measured relative to go as the longitude

of perihelionP, and moves slowly anticlockwise. The Earth’s figure is tilted with respect to the ecliptic of date normal n at obliquity angle ε. Earth’s rotation4

is anticlockwise; gravitational forces along the ecliptic of date from the Moon and Sun act on the Earth’s equatorial bulge and cause a clockwise precession j of

the rotation axis. This precession causes the vernal equinox point g to migrate clockwise along the Earth’s orbit, shifting the seasons relative to the orbit’s

eccentric shape; this motion constitutes the “precession of the equinoxes.” The angle6between g and P is the moving longitude of perihelion and is used in the

precession index esin6 to track Earth-Sun distance. Variations of e, ε and esin6 are shown in Figure 4.2.
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f0015 FIGURE 4.2 Variations of the Earth’s astronomical parameters over the past 10 million years according to the nominal La2004 model sampled at 1-kyr

intervals (Laskar et al., 2004). (a) Orbital eccentricity (dimensionless). (b) Obliquity variation, in degrees of axial tilt. (c) Precession index (dimensionless). All

values may be downloaded from the website: http://www.imcce.fr/Equipes/ASD/insola/earth/earth.html.
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f0020 FIGURE 4.3 Harmonic analysis using 4p multi-tapers (Thomson, 1982) of the Earth’s astronomical parameters depicted in Figure 4.2. Labels identify

periodic components in thousands of years. (a) Orbital eccentricity. (b) Obliquity variation. (c) Precession index. Due to the quasi-periodic nature of the

parameters and other factors (Section 4.7), the significance, periodicity and amplitude of the labeled components may change for analyses performed over other

time segments.
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the effects of these factors are in the main known only
theoretically; the cyclostratigraphic record has yet to be
analyzed for the magnitude and timing of these factors.

s0020 4.3. THE 405-KYR METRONOME

p0045 While chaotic behavior has in all liklelihood affected Earth’s
~100 kyr scale orbital eccentricity terms through geologic time,
the 405 kyr eccentricity cycle has remained relatively stable
over at least the past 250million years (Laskar et al., 2004). This
high-amplitude cycle is the consequence of gravitational
interactions between Jupiter and Venus, i.e. , motions of their
orbital perihelia, g2eg5. The largemass of Jupiter is responsible
for the stability of the 405-kyr cycle, which has an estimated
uncertainty of ~500 kyr at 250Ma. Thus, this cycle can be used
as a basic calibration period for cyclostratigraphy; this approach
has been advocated by Laskar et al. (2004), and many others.
Today 405-kyr cyclicity has been recognized in many cyclo-
stratigraphic sequences, as demonstrated in the astrochronolo-
gies presented inChapters 25e29of this volume. It nowappears
that many of the so-called “third order sequences” in Mesozoic
stratigraphy are responses to the 405-kyr eccentricity cycle
through climate forcing by precession index carriers (e.g., Gale
et al., 2002; Boulila et al., 2010a).

p0050 To obtain the 405-kyr metronome, Laskar et al.
(2004) suggested using the simple formula:
e405¼ 0.027558� 0.010739 cos(2434”þ 3.200”t). However,
this formula is valid only for 0e100 Ma. To provide an
accurate metronome for the entire modeled 0e249 Ma, the
nominal La2004 orbital eccentricity series was down-
sampled to an 8 kyr spacing (down from 1 kyr given by
Laskar et al., 2004); bandpass filtering was applied to extract
the 405-kyr cycle. The filtered signal (normalized to unity) is
the 405-kyr metronome; four representative time slices are
shown in Figure 4.4. The depicted single-frequency metro-
nome has been included in TSCreator (Ogg, et al., 2011). The
long-term goal of astrochronology is to assign (“tune”)
cyclostratigraphy to the appropriate 405-kyr bins.

p0055 A slightly wider passband surrounding the 405-kyr term
includes the important g4eg3 modulation into the metronome
(Laskar et al., 2011). Figure 4.4 also displays this wide-band
metronome, which can vary significantly from the single-
frequency metronome. The wide-band metronome can be used
to accurately tune cyclostratigraphy over 0e40 Ma using
La2004, and over 0e50 Ma using La2010 (Section 4.9). Prior
to 50 Ma, however, the g4eg3 modulation is inaccurately
known (Section 4.7); for Mesozoic and older cyclostratigraphy
the single-frequency metronome should be assumed.

s0025 4.4. ASTRONOMICALLY FORCED
INSOLATION

p0060 The orbital parameters affect changes in the intensity and
timing of the incoming solar radiation, or insolation, at all

points on the Earth. When considered at interannual time
scales, these insolation changes comprise the well-known
Milankovitch cycles (Milankovitch, 1941; reissued in English
in 1998). Figure 4.5 compares Milankovitch’s original
calculation of northern summer insolation at 65�N with
a modern calculation based on La2004. Geographical loca-
tion, time of year, and even the time of day all determine the
relative contributions of the orbital parameters to the inter-
annual insolation (e.g., Berger et al., 1993; Berger et al.,
2010). For example, Figure 4.6 depicts the globally available
spectral power of orbitally forced daily insolation at the top of
the atmosphere on June 21 (solstice) and March 21 (equinox).
These examples are idealized in the sense that it is unlikely
that climate responds to insolation on only one day of the
year, but rather integrates insolation over certain times of the
year and collectively over specific geographic areas, possibly
over different areas at different times. This “climatic
filtering” alters the relative contributions of the orbital
parameters to the total output climate response, this even prior
to internal climate system responses to the insolation. Thus, it
is left to the discretion of the paleoclimatologist to determine
which time(s) of the year and at which location(s) a prevailing
climate has responded to insolation; this can require consid-
erable insight into the infinite number of ways that one can
sample insolation in space-time (Rubincam, 1994).

s00304.5. CYCLOSTRATIGRAPHY THROUGH
GEOLOGIC TIME

p0065The prospect that Earth’s astronomical variations have exer-
ted large-scale climatic changes that could be detected in the
geologic record was already being debated in the 19th century
(e.g., Herschel, 1830; Adhémar, 1842; Lyell, 1867; Croll,
1875). Early attempts to link astronomical effects to paleo-
climate are reviewed in Hilgen (2010). Gilbert (1895) was the
first to attribute the origin of limestone/shale cyclic strata of
the Cretaceous Niobrara chalks (Colorado, USA) to astro-
nomical forcing. Bradley (1929) counted varves in the
lacustrine oil shale/marl cycles of the Eocene Green River
formation (Utah, USA) estimating an average 21,630-year
time scale for the cycles, and pointing to the precession of the
equinoxes as a potential cause. The first correlation between
astronomically calculated insolation minima and Late
Quaternary ice age deposits of the Alps was made by Köppen
and Wegener (1924), who used insolation as calculated by
Milankovitch for critical latitudes and seasons (i.e. , similar to
65�N Summer); this correlation and tuning was also dis-
cussed at length in Milankovitch (1941). Milankovitch (1941)
was the first to attempt a quantitative correlation between
astronomically calculated insolation minima and Late
Quaternary ice age deposits of the Alps. However, later
radiocarbon studies of glaciation timings in North America
did not clearly corroborate Milankovitch’s insolation
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calculations, and the astronomical theory fell into disfavor
(review in Imbrie and Imbrie, 1979; update in Broecker and
Denton, 1989).

p0070 At the same time, significant progress had been made in
understanding the origins of the prevalent rhythmic stratifi-
cation of Mesozoic Alpine limestones (e.g., Schwarzacher,
1947, 1954). This research culminated in the seminal work of
Fischer (1964), who found that the meter-scale beds (the so-
called Lofer cyclothems) of the Triassic Dachstein Limestone
contained vertically repeating facies indicative of shallow
marine environments exposed to oscillating sea levels, with

a ca. 40 kyr timing. However, glaciations were unknown for
the Triassic, raising doubts about the mechanisms by which
such sea level oscillations could have occurred; the origin of
the Lofer cyclothems continues to be debated today
(e.g., Schwarzacher, 1993; Enos and Samankassou, 1998;
Cozzi et al., 2005).

p0075It was not until investigation of the Late Quaternary deep-
sea sedimentary record that Milankovitch’s theory of climate
change was firmly validated. Emiliani (1955, 1966) explained
oxygen isotope fractionation in marine calcareous micro-
fauna as a function of ocean temperature and salinity;
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f0025
FIGURE 4.4 The 405-kyr eccentricity metronome. The nominal La2004 eccentricity series was subjected to Taner bandpass filtering (Taner, 2000) centered

at 1/(405.091 kyr), with cutoff frequencies set at �0.000001 cycles/kyr on either side of this center frequency. The filtered output was normalized to unity; this

constitutes the “single-frequency” 405-kyr metronome. Excerpts are displayed in (a)-(d) (red curve) and illustrate maintenance of phasing through the full

La2004 eccentricity solution (black curve) back to 249 Ma (the La2004 model terminous). The number labels indicate 405-kyr cycle number relative to the

present. This metronome may be accessed from TSCreator (Ogg et al., 2011), which can be downloaded from the website: http://www.tscreator.com/. Filtering

with cutoff frequencies set at �0.001 cycles/kyr on either side of the center frequency provides a “wide-band” 405-kyr metronome (green curve) for tuning the

cyclostratigraphic record from 0e40 Ma with La2004 (0e50 Ma with La2010).
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subsequently, Shackleton (1967) demonstrated that the
majority of change in the marine oxygen isotope fractionation
was linked to ocean volume (see also Dansgaard and Tauber,
1969). This result was followed by the landmark study of
Hays et al. (1976) in which the oxygen isotope record was
quantitatively linked to the Milankovitch cycles. Bolstered by
the advent of global paleomagnetic stratigraphy in combi-
nation with new radioisotopic dates, it was subsequently
discovered that the same isotope signal, now encompassing
the entire Brunhes chron (0 to 0.78 Ma), was present in all of
the major oceans (Imbrie et al., 1984). Finally, calibration of
this proxy for global ocean volume to geological evidence for
large sea level changes (e.g., Chappell and Shackleton, 1986;
Waelbroeck et al., 2002) established, albeit indirectly, the
connection between the Quaternary ice ages and Milanko-
vitch cycles. Later research into polar ice stratigraphy
uncovered other isotope signals with strong orbital frequen-
cies, providing additional, overwhelming support for the
astronomical forcing theory (e.g., Petit et al., 1999; EPICA
Community Members, 2004).

p0080 Meanwhile, it was shown convincingly that the astro-
nomical tuning approach, using both oxygen isotopes and
sedimentary cycles, could be extended well beyond 800 ka,
i.e. the time of the last major glaciations (Shackleton et al.,
1990; Hilgen, 1991a, b). These milestone studies touched off
multiple initiatives to search for astronomical cycles in stra-
tigraphy back through geologic time, using isotopes as well as
other climate proxies, including facies stratigraphy, percent
carbonate, biogenic silica, magnetic susceptibility, wireline
logs, and grayscale scans (Table 4.1). Continental Pliocene-
Pleistocene sediments recovered from Lake Baikal revealed

a strong biogenic silica signal closely mimicking that of the
marine isotope record (e.g., Williams et al., 1997; Proko-
penko et al., 2006), as do the long Chinese loess sequences
(e.g., Sun et al., 2006). Deep sea drilling yielded a continuous
oxygen isotope signal spanning 0e6 Ma (Shackleton et al.,
1995), and today, there is near-continuous Milankovitch cycle
coverage back to the start of the Cenozoic Era from combi-
nations of marine climate proxies from deep sea drilling and
outcrop studies (Chapters 28 and 29 of this volume). The
Cretaceous/Paleogene boundary was recently the subject of
a rigorous intercalibration effort between astrochronology
and geochronology (Section 4.8).

p0085Strong evidence for astronomical forcing continues back
into the Mesozoic Era. Multi-million year long cyclostrati-
graphic successions from all three periods have been tapped
for astrochronology and are used in GTS2012 (Chapters 25,
26 and 27). The thick Upper Triassic continental lacustrine
deposits of eastern North America contain a nearly perfect
eccentricity signal that modulates facies successions linked to
wetting-drying climate cycles at precessional time scales.
Several of the Mesozoic successions which are now available
provide records of continuous astronomical signals that are 20
million years long or more; these include the Aptian-Albian
Piobbico core Tethyan sequence (Herbert et al., 1995) and the
Carnian-Hettangian Pangean sequence from the Newark
Basin Coring Project (Olsen and Kent, 1999), and most
recently, the Smithian-Carnian Panthalassic chert sequences
of Japan (Ikeda et al., 2010). For geologic times prior to the
late Triassic, the evidence for astronomically forced stratig-
raphy is generally less clear. One reason is that pre-Jurassic
oceanic sediments are not composed of the abundant,
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f0030 FIGURE 4.5 Milankovitch cycles for summer half-year mean insolation at 65� North, 0e600 ka, as originally calculated by Milankovitch (1941; table XXV,

p. 513e519) compared with the same calculated with the La2004 nominal model (Analyseries 2.4.2).
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continuous rain of pelagic oozes as are the post-Jurassic ones.
Therefore, research is focused more on the prolific shallow
marine record, for which the primary evidence of Milanko-
vitch forcing is more a systematic “interruption” rather than
a continuous recording (Fischer, 1995).

p0090 Paleozoic formations show clear evidence for astronom-
ical forcing, but none have been integrated into GTS2012.
The Permian Castile Formation, a varved marine evaporite

sequence, shows a strong, but short-lived Milankovitch signal
(Anderson, 1982, 2010). The spectacular shelf carbonate
cycles of the Pennsylvanian Paradox Basin (Utah, USA)
indicate high-frequency sea level oscillations with some
astronomical signal characteristics (Goldhammer et al.,
1994). The classic transgressive-regressive cyclothems of
the Pennsylvanian world (e.g., Heckel, 2008) and the
rhythmic Mississippian hemipelagic limestones of Ireland
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f0035 FIGURE 4.6 Frequency distribution of interannual insolation over 0e5 million years ago, sampled at 1ekyr intervals (Analyseries; Paillard et al., 1996) and

displayed as multi-tapered amplitude spectra with respect to geographic latitude. (a) Daily mean insolation on June 21 (solstice). Latitudes south of ca. 66�S
receive no insolation on this day. Maximum daily insolation occurs in the northern polar regions, which experiences 24-hour exposure. (b) Daily mean

insolation on March 21 (equinox). Insolation strength is a function of local solar altitude, highest at the Equator on this day of equal-time exposure everywhere.

Contributions from the obliquity variation are absent. [Additional notes: Insolation for the December 21 solstice similar to (a), but with reversed latitudes; and

the September 21 equinox is practially identical to (b). Also, the precession component of variation in (a) is at all locations 90� out of phase with the precession
component in (b). Additional examples are given in Berger et al., 1993.]
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(Schwarzacher, 1993) appear to express the dominant 405-kyr
eccentricity cycle,

½AU2�

conclusions that have recently been sup-
ported by high-precision geochronology and cyclo-
stratigraphy of the Donets Basin, Ukraine (Davydov et al.,
2010). There are reports of astronomical-scale cycles in
Devonian formations (review in Tucker and Garland, 2010),
and for the Silurian (e.g., Crick et al., 2001; Nestor et al.,
2001, 2003). Stratigraphers have attempted to develop inte-
grated stratigraphy and some astrochronology for the Ordo-
vician (Kim and Lee, 1998; Gong and Droser, 2001;
Rodionov et al., 2003) but these efforts remain uncoordinated
and largely incomplete. The thick Cambrian-Ordovician
cyclic carbonate banks found worldwide show abundant
evidence of Milankovitch-scale forcing, although the origins
of these high-frequency cyclic sequences remains unsettled
(e.g., Osleger, 1995). Research on Cambrian cyclo-
stratigraphy, although off to a productive start several decades
ago (e.g., Read, 1995), is presently inactive.

p0095 Precambrian cyclostratigraphy also has evidence for
astronomical-like signals. Several shallow marine carbonate
successions have been examined, including the meter-scale
shallowing upward cycles of the Rocknest Formation, the
relict of an early Proterozoic (1.89 Ga) passive margin
carbonate platform in the Northwest Territories, Canada
(Grotzinger, 1986), and the platform sequence of the late
Archean (2.65 Ga) Cheshire Formation, Zimbabwe (Hof-
mann et al., 2004). However, these records have not been
assessed with a specific astronomical model. It has also long
been speculated that the banded iron formations (BIFs), with
their strong, compound and sustained depositional cyclicity,
might have recorded early Milankovitch cycles (e.g., Ito et al.,
1993; Hälbich et al., 1993; Simonson and Hassler, 1996).
Thus far only one study has attempted to quantify BIF
Milankovitch-band cyclicity (Franco and Hinnov, 2008).

s00354.6. CONSTRUCTING
ASTROCHRONOLOGIES AND THE ATS

p0100The time predictability of the Earth’s astronomical parame-
ters invites the practice of using cyclostratigraphy as a high-
resolution geochronometer. While this application was
already considered by Croll (1867), it was Köppen and
Wegener (1924), using insolation curves calculated by
Milankovitch, who first calibrated theoretical astronomical-
band insolation (“canon of insolation”) directly to the
geologic record, adjusting approximately known ages of the
Late Quaternary Alpine ice ages to the insolation minima of
the calculated curves. Significant advances in astrochronol-
ogy began during the latter half of the 20th century with the
development of high-resolution global marine oxygen isotope
stratigraphy and magnetostratigraphy for the Pleistocene
epoch (review in Kent, 1999).

p0105Absolute astrochronologies recovered from cyclo-
stratigraphy are explicitly connected to the time scale of the
astronomical model. For GTS2012, a composite, continuous
cyclostratigraphy has provided an absolute astrochronology
from the present day back to the Oligocene/Eocene transition
(0e34 Ma). Calibration of a cyclostratigraphic sequence
begins with the assumption of a target astronomical curve.
This may take the form of an insolation signal that most likely
affected the climate that influenced sedimentation (e.g., 65�N
summer insolation assumed for Pleistocene astrochronology,
see Chapter 29), or it can be as simple as the sum of the
standardized orbital parameters (e.g., the ETP curve of Imbrie
et al., 1984). This assumption introduces a basic uncertainty,
because the true nature of the astronomical forcing of the
sediment is not known exactly. Hilgen et al. (2000), for
example, calibrated Miocene marl-clay deep sea cycles to two
possible target curves, 65�N summer insolation and the

t0010
TABLE 4.1

Sedimentary Parameter Associated Climate Conditions

EXTRINSIC (independent of sedimentation rate) Oxygen isotopes
Carbon isotopes
Clay assemblages
Microfossil assemblages

Temperature/salinity/precipitation/eustasy
Productivity/C-sequestration/redox conditions
Surface hydrology
Salinity/temperature

INTRINSIC (directly related to and/or influenced
by sedimentation rate)

Percent CaCO3, Si, Corg

Magnetic susceptibility
Microfossil abundance
Clay/dust abundance
Lithofacies
Sediment color
Grain size

Productivity
Sedimentation rate
Productivity
Surface hydrology/atmospheric circulation
Depositional environment
Productivity/redox conditions
Erosion intensity/hydrodynamics

Commonly measured sedimentary parameters that have been linked to orbitally forced climate change, and the inferred climate conditions. Extrinsic parameters vary
independently from sediment supply; intrinsic parameters are directly related to sediment supply, and their signals tend to be more dramatically influenced (distorted)
by changes in sedimentation rate (Herbert, 1994).
Hinnov & Hilgen
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precession index, correlating the mid-points of the marls to
the centers of the insolation maxima and precession minima.
These two calibrations produced chronologies that differ by
several thousand years for any given cycle; this was taken as
a fair representation of astrochronologic uncertainty. Other
questions persist about which model produces the most
accurate astrochronologies back through time related to
Earth’s tidal dissipation and dynamical ellipticity, which to
date have been assessed only in Neogene data (Section 4.7).

p0110 Floating astrochronologies are disconnected from abso-
lute time but are anchored to an independent geochronometer
(e.g., a radioisotope-dated horizon, magnetic reversal, or
biozone boundary). The astronomical calibration is based
upon the assumption that the signal frequencies observed in
cyclostratigraphy can be related to one or several frequencies
predicted by astronomical modeling, for example, the 405-
kyr eccentricity cycle. It is assumed that planetary motions
are stable enough to be recognizable back to the geological
age represented by the data. This assumption holds reason-
ably well at least as far back as the Cretaceous/Paleogene
boundary (Westerhold et al., 2008, 2009), and there are
numerous key similarities between the cyclostratigraphic
record and astronomical modeling at times as remote as
Triassic (examples in Hinnov and Ogg, 2007).

p0115 The stratigraphic coverage of the ATS that has been
assembled for GTS2012 is summarized in Figure 4.7.
Considerable progress has been made in the Cenozoic ATS
since GTS2004. Astrochronology for the interval between
10e12 Ma that had been based on the continental Orera
section in Spain is now replaced by the deep marine Monte
dei Corvi section (Hüsing et al., 2007). The downward
extension of Monte dei Corvi near La Vedova is used for the
interval between 13.5e14.3 Ma (Hüsing et al., 2010; Mourik
et al., 2010). Unfortunately, magnetization in the interval
between 12e13.5 Ma is too weak, and reversal ages still have
to be calculated from marine anomaly profiles. The same is
true for the interval 16e23 Ma, but high-resolution studies of
ODP sites from Leg 208 (Walvis Ridge; Liebrand et al., 2011)
and IODP Leg 320 (equatorial Pacific) offer bright prospects
for solving the remaining problems in the Early Miocene
ATS, including that of the Oligocene-Miocene boundary,
because the cores have reliable magnetostratigraphic records.

p0120 The tuning of the Eocene-Oligocene boundary interval
has also improved, in large part from analysis of the Eocene-
Oligocene boundary section at Massignano in Italy
(e.g., Brown et al., 2009). Part of the Middle Eocene has also
been tuned using the classical Contessa section (Jovane et al.,
2010). Finally, much progress has been made in constructing
an ATS for the entire Paleocene and Early Eocene (Lourens
et al., 2005; Westerhold et al., 2007, 2008; Westerhold and
Röhl, 2009; Hilgen et al., 2010). This has used the intercal-
ibration of 40Ar/39Ar radioisotope dating and astronomical
tuning to constrain a first-order tuning (Kuiper et al., 2008). In
principle, astronomical tuning prior to 40e50 Ma can only be

carried out at the 405-kyr eccentricity scale in view of limi-
tations in the accuracy of the astronomical solution (Section
4.7). Uncertainties still exist in the number of 405-kyr
eccentricity-related cycles in the Paleocene, and several
tuning options have been presented that reflect the uncertainty
(Westerhold et al., 2008; Hilgen et al., 2010). These problems
will likely be resolved in the coming years when high-
precision state-of-the-art single crystal 40Ar/39Ar sanidine
and U-Pb zircon ages become available from key strati-
graphic levels such as the Cretaceous-Paleogene, Paleogene-
Eocene and Eocene-Oligocene boundaries.

p0125The ATS has been extended, in “floating” form, into the
Mesozoic Era, spanning more than 75 percent of the Meso-
zoic time scale (Figure 4.7). The entire Maastrichtian has now
been tuned (Husson et al., 2011); two options are presented,
reflecting the ongoing uncertainty in the initial tuning to the
orbital eccentricity. Aside from longstanding gaps in the
lower Campanian and Turonian, there is continuous strati-
graphic coverage to the base of the Oxfordian. Bajocian-
Bathonian cyclostratigraphic analysis is ongoing (Zió1kowski
and Hinnov, 2010); the Callovian and Sinemurian stages are
the only gaps remaining in the Jurassic ATS. The Triassic
ATS continues to be dominated by the continental Newark
series record (Olsen and Kent, 1996). The Lower Triassic of
the Germanic Basin has now been analyzed by several groups
(e.g., Bachmann and Kozur, 2004; Menning et al., 2005); the
Middle Triassic remains unresolved, in part due to the
“Latemar controversy” (Tanner, 2010).

s00404.7. PRECISION AND ACCURACY OF THE
ATS

p0130A number of significant factors have been identified that limit
the precision and accuracy of the ATS. There are uncertainties
in the climatic forcing leading to any given cyclostratigraphic
record, and of the geophysical effects on the past precession
of the Earth, and in modeling Solar System diffusion prior to
40e50 Ma, as follows.

s00454.7.1. Seasonal Phase Relations

p0135Tuning to the wrong insolation target curve can result in
tuning errors of up to 10e12 kyr (half a precession cycle). For
example, consider a marine sedimentary system that experi-
ences depositional cyclicity as the result of dilution of pelagic
carbonate from terrestrial run-off that peaks annually in early
spring (month of March) (Figure 4.8a); when insolation is
low, terrestrial run-off is correspondingly low, and pelagic
carbonate deposition is relatively high (Figure 4.8b). Thus,
tuning should match insolation minima with carbonate
maxima. Suppose that in error it is assumed that peak
summer-time ocean productivity was the cause of the pelagic
carbonate cyclicity (Figure 4.8c), and that a mid-summer
(month of July) insolation target is used to match carbonate
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ü
si
ng

et
al
.
(2
0
0
9
);
4
d
H
il
g
en

et
al
.
(2
0
0
3
);
5
d
H
o
lb
u
rn

et
al
.
(2
0
0
7)
;
6
d
H
ü
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maxima to insolation maxima (Figure 4.8d). This results in
a systematic error in chronology that is on the order of ~3 kyr.
In sum, if very little to nothing is understood about the
conditions of sedimentary deposition relative to the local
seasonal climate, the seasonal uncertainty can be as large
as� 10e12 kyrs (half a precession cycle).

s0050 4.7.2. Tidal Dissipation, Dynamical
Ellipticity and Climate Friction

p0140 Through geologic time, the Earth’s rotation rate has
progressively decelerated as a result of tidal energy dissipa-
tion. Tidal dissipation results in an exchange of angular
momentum between the Earth and Moon, a decreasing Earth
rotation, increasing EartheMoon distance, and lunar reces-
sion (Figure 4.9a). Lunar laser ranging from August, 1969 e
December, 1993 indicates a lunar recession rate of 3.82 cm/
yr, which corresponds to a change in length-of-day of 2.3 ms/
century. Geological data confirm that Earth’s rotation was
faster in the geological past, with apparently a 19-hour
length-of-day 1 billion years ago (Figure 4.9b). Changes in
rotation rate have not been uniform through time, with greater
deceleration occurring after 500 Ma.

p0145 The rotational deceleration increases the Earth’s preces-
sion rate p, and in turn, the obliquity and precession periods

(Berger et al., 1992; Laskar et al., 1993a; Ito et al., 1993;
Berger and Loutre, 1994). Table 4.2 shows the principal
obliquity and precession periods over the past 250 Ma
according to the La2004 nominal model, which assumes
a length-of-day evolution of 2.68 ms/century, close to the
2.3 ms/century measured by lunar laser ranging (Dickey et al.,
1994). In addition, Earth’s shape, or dynamical ellipticity,
also contributes to p.

p0150Several pioneering studies have assessed Earth’s decel-
eration from the cyclostratigraphic record. Lourens et al.
(1996) compared astronomical models with different tidal
dissipation and dynamical ellipticity values to cyclostrati-
graphic (oxygen isotope) data from the Mediterranean,
Atlantic and Pacific oceans, concluding that the best fit was to
a model based on present-day values of dynamical ellipticity
and tidal dissipation. Likewise, Pälike and Shackleton (2000)
showed that present-day dynamical ellipticity and tidal
dissipation applied to astronomical tuning target curves for
the past 23 million years produced the best fit with ODP Leg
154 (Ceara Rise) cyclostratigraphy based on magnetic
susceptibility. However, in a study of an extremely high-
resolution cyclostratigraphic series from 2.4e2.9 Ma,
Lourens et al. (2001) found that half of present-day tidal
dissipation produced an astronomical model with the best fit.
As the global cyclostratigraphic database improves and
extends further back in geologic time, renewed investigation
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f0045 FIGURE 4.8 Example of seasonal uncertainty in astrochronology. (a) A northern mid-latitude marine depositional system in which the source of sedimentary

(carbonate-noncarbonate) cyclicity is dilution of pelagic carbonate by terrestrial-derived siliciclastics during early spring (month of March) melt season. (b) The

spring run-off depicted in (a) varies with March insolation, such that low insolation corresponds to decreased run-off, hence to pelagic carbonate maxima in the

interannual stratigraphic record. (c) An incorrect model in which marine productivity during the summer (month of July) is the source of sedimentary cyclicity.

(d) The model in (c)would be assumed to vary with July insolation, such that high insolation corresponds to higher productivity, and to carbonate maxima in the

stratigraphic record. In sum, assuming (a)e(b) would result in an accurate tuning of stratigraphy to a March insolation target curve; assuming (c)e(d) would

introduce a systematic ~3 kyr error in the tuning, due to an incorrect description of the sedimentary system response to climate change.
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should clarify the long-term evolution of Earth’s tidal dissi-
pation and dynamical ellipticity, which are thought to change
as a function of continent/ocean configuration, core-mantle
processes and crustal loading (e.g., ice sheets).

p0155 Glacial loading of the Earth’s crust, i.e., climate friction, is
thought to engender “obliquity-oblateness feedback” and
secular change in Earth’s obliquity (tilt) angle (Bills, 1994;
Rubincam, 1995; Ito et al., 1995; Levrard and Laskar, 2003).
Thomson (1990) noticed systematic differences between the
spectral lines of the Pleistocene SPECMAP stack (Imbrie
et al., 1984) and those of the astronomical parameters, sug-
gesting that the recorded signal was perturbed as a result of

the repeated massive ice sheet loading/unloading in the
Northern Hemisphere. Thomson discovered a differential
phasing in the obliquity and precession bands of SPECMAP
that could be explained by varying the precession rate p
by� 10% at 100,000-year timescales (the scale of the glaci-
ations). Laskar et al. (1993a, b) point out that such a change
could allow for passage of p into resonance with the
s6� g6þg5 precession term and induce a ~0.5� increase in
maximum obliquity. Modeling shows that predicted longer
length-of-day in the near future will force precession into this
resonance (see Figure 14 in Laskar et al., 2004). However,
thus far, no evidence has been presented that Earth’s
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f0050 FIGURE 4.9 Earth rotation deceleration from tidal energy dissipation. (a) The Moon raises a tidal bulge that is delayed due to friction between the oceans

and crust, and within the solid Earth, by an angle d, which is 0.2� for the solid M2 tide and ~65� for the net ocean M2 tide (Munk, 1997; Ray et al., 2001).

Gravitational force from the Moon acts on the offset bulge, producing a torque on the Earth in a direction opposite from the rotation, causing the Earth to

decelerate. (b) Deceleration of the Earth over the past 2 billion years based on geological data. The data shown are from Williams (2000). Corals, bivalves and

brachiopods secrete daily growth bands that modulate annually; fossils indicate more growth bands per year back in time. Stromatolite laminations have been

interpreted similarly. Tidalites are an alternate, relatively rare source of information. The red dashed line indicates the length-of-day model used in the nominal

La2004 solution of Laskar et al. (2004), which assumes present-day tidal dissipation and dynamical ellipticity. Table 4.2 lists obliquity and precession peri-

odicities for key geological times.
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precession

½AU3�

has undergone resonance as the result of climate
friction.

s0055 4.7.3. Solar System Diffusion

p0160 Modeling experiments demonstrate that the inner planets of
the Solar System experienced significant chaotic diffusion
throughout the remote past (Laskar 1990; Laskar et al., 1992;
Laskar, 1994). Over the past ~40 million years, the Earth and
Mars orbits have been in 2:1 secular resonance, described by
the argument q¼ (s4es3)� 2(g4eg3), where s3 and s4 are
secular frequencies defining the rotation of the ascending
nodes of the orbits, and g3 and g4 are secular frequencies for
the rotation of orbital perihelia of Earth and Mars (Matthews
et al., 1997; Laskar, 1999; Laskar et al., 2004). Prior to 40
million years ago, modeling indicates that the two orbits
experienced intermittent chaotic transitions, and 1:1 reso-
nance states, i.e. , q¼ (s4es3)� (g4eg3) (e.g., Figure 23 in
Laskar et al., 2004). These resonance states may be observed
indirectly in paleoclimate data in long-period modulations of
Earth’s obliquity and precession index, in the beat frequencies
produced by the terms pþs3 (1/41 kyr) and pþs4 (1/39 kyr) in

the obliquity, and pþg3 (1/19.1 kyr) and pþg4 (1/18.9 kyr) in
the precession index, where p¼ 50.4467718”/yr is the Earth
precession rate (variable through time due to tidal dissipation
and dynamical ellipticity). The term g4eg3 is also present in
Earth’s orbital eccentricity as a long-period modulation in the
~100 kyr variation, e.g., the beat frequency raised by g4eg5
(1/94.9 kyr) and g3eg5 (1/98.8 kyr).

p0165Figure 4.10 shows s4es3 and g4eg3 in the modulation
envelopes of the La2004 obliquity and eccentricity, for which
the former has a ~1.2 myr periodicity, and the latter, a ~2.4
myr periodicity, over 0e10 Ma; also shown are the modula-
tions over 85e95 Ma to illustrate transient shortening of the
modulations from chaotic diffusion. These modulations have
been confirmed in Cenozoic stratigraphy, notably across the
Miocene-Oligocene transition in deep-sea sedimentary
sequences recovered by the Ocean Drilling Program
(Shackleton et al., 1999; Pälike et al., 2004). In the future, the
documentation of Earth-Mars secular resonance states
throughout the Mesozoic Era will provide key constraints on
the gravitational parameters used in Solar System modeling
(Laskar 2003; Laskar et al., 2004).

s00604.7.4. Summary of Uncertainties

p0170In Figure 4.11 the “tidal uncertainty” refers to lack of
knowledge about Earth’s past tidal dissipation and its effect
on the precession rate, which presents as an accumulating
deficit of years in the recorded obliquity and precession
cycles back through time (Figure 20.7 in Lourens et al.,
2004). As this amount accumulates, at some point it becomes
necessary to tune instead to the orbital eccentricity; this is
depicted at 50 Ma. At times prior to 50 Ma, astronomical
models diverge as the combined result of initial condition
uncertainties and integration error, with close agreement only
for the 405-kyr eccentricity cycle back to 250 Ma. Sometime
between 50 and 100 Ma, modeling indicates that a “transi-
tion” occurred in the resonance state between the Earth and
Mars orbits, which would have affected the 100-kyr eccen-
tricity variation. This is shown by the shaded area labeled
“transition”, at which point it becomes necessary to restrict
tuning to the 405-kyr cycle only. The precise timing of the
transition will be determined through future, detailed exam-
ination of the cyclostratigraphic record (Laskar et al., 2011).

s00654.8. ASTROCHRONOLOGY-
GEOCHRONOLOGY INTERCALIBRATION

p0175The extension of the astronomical dating method into the
MiddleeEarly Pleistocene and Pliocene (Shackleton et al.,
1990; Hilgen, 1991a, b) stimulated much research directed at
the comparison of astronomical and radio-isotopic ages,
especially because astronomical ages proved to be signifi-
cantly older e by ~3 to 12% e than published K/Ar ages for
the same magnetic reversal boundaries. This discrepancy was

t0015
TABLE 4.2

(a)

Time (Ma) 54 kyr 41 kyr 39 kyr 29 kyr 28 kyr

0e5 53562 40917 39510 29727 28852

50e55 50710 39185 37975 28877 28003

100e105 47847 38865 36324 27910 27137

150e155 45188 35852 34807 27027 26233

200e205 42680 34211 33300 26130 25374

244e249 40502 32830 31949 25272 24582

(b)

Time (Ma) 24 kyr 22 kyr 19.0 kyr 18.9 kyr 16.5 kyr

0e5 23657 22336 19080 18947 16453

50e55 23052 21820 18716 18539 16168

100e105 22472 21304 18335 18090 15873

150e155 21863 20768 18077 17794 15574

200e205 21258 20206 17519 17391 15253

244e249 20691 19708 17129 17007 14968

Dissipation-induced changes in the main periods of the Earth’s obliquity
variation (a) and precession index (b) from 0 to 250 million years ago. Periods
are estimated over 5 million year intervals of the La2004 nominal solution
(Laskar et al., 2004) with 4p multi-taper amplitude spectra using Analyseries
(Paillard et al., 1996); values are in thousands of years.
Hinnov & Hilgen
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largely attributed to incomplete Ar degassing of basaltic bulk
rock samples used for dating the reversals (Hilgen et al.,
1991b). The switch to 40Ar/39Ar dating led to very accurate
and precise ages, but only the analytical error, leading in K/Ar
dating, was initially taken into account and not the full error of
~2.5% that included such factors as uncertainties in the decay
constants and mineral dating standards (Min et al., 2000). This
encouraged further research, as the error in astronomical
dating is comparatively small once the tuning itself is correct
(~0.1% between 5 and 10 Ma; e.g. Kuiper et al., 2008).

p0180 Following earlier attempts (e.g., Renne et al., 1994;
Hilgen et al., 1997), a direct½AU1� intercalibration was achieved

through a direct comparison of astronomical and Ar/Ar
ages of ash beds intercalated in astronomically tuned
marine sections in the Melilla Basin in Morocco (Kuiper
et al., 2008). This study revealed a systematic offset with
astronomical ages being ~0.7% older. This offset was
removed by fitting the 40Ar/39Ar ages to the astronomical
ages by adjusting the age of the Fish Canyon tuff sanidine
(FCs) dating standard from 28.02� 0.28 Ma (Renne et al.,
1998) to 28.201� 0.046 Ma. Consequently, the error in the
astronomically calibrated FCs age is greatly reduced due to
the fact that uncertainties related to decay constants and
the age of the primary dating standard which together
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f0055 FIGURE 4.10 Amplitude modulations (AM) of the eccentricity (blue lines) and obliquity (green lines). The eccentricity modulations have a dominant

~2.45 myr periodicity, and the obliquity modulations have a 1.2 myr periodicity. These AM curves were estimated by applying Hilbert transforms to Taner

bandpass filtered (Taner, 2000) La2004 eccentricity and obliquity series over 0e249 Ma with a passband of 0.01025 � 0.00075 cycles/kyr (short eccentricity)

and a passband of 0.0275 � 0.0045 cycles/kyr (main obliquity). The filtered series were Hilbert-transformed (Taner et al., 1979) to obtain the amplitude

modulations. The two excerpts illustrate (a) 2:1 secular resonance from 0e10 Ma, and (b) 1:1 resonance indicated by the frequency correspondence between

eccentricity and obliquity from 87e90 Ma.
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dominate the full error in 40Ar/39Ar dating are effectively
eliminated.

p0185 The 28.201� 0.046 Ma FCs age has been independently
confirmed by 40Ar/39Ar dating of the A1 ashbed in the
astronomically tuned Faneromeni section, and U-Pb dating of
single zircon crystals in the Fish Canyon tuff and in ash beds
from the astronomically dated Monte dei Corvi section
(Rivera et al., in press; Wotzlaw et al., 2010). These results
suggest that the FCs age of 28.30 Ma based on 40Ar/39Ar-U-
Pb pairs and neglecting astronomical dating (Renne et al.,
2010) is too old, and that an FCs age of 27.93 Ma based on
40Ar/39Ar-astrochronologic intercalibration of the Matayuma/
Brunhes transition (Channell et al., 2010) is too young. The
28.201� 0.046 Ma FCs standard is further supported by
a three-way intercalibration of 40Ar/39Ar, U-Pb and astro-
chronology across the Cenomanian/Turonian boundary
(Meyers et al., in press), and by a direct comparison of U/Pb
and 40Ar/39Ar ages of two ash beds from the Eocene Green
River Formation, allowing a direct comparison with the
astronomical solution for the first time (Smith et al., 2010).
The intercalibration guarantees that astronomical and
40Ar/39Ar dating will produce the same age when the same
event in Earth history is dated. The astronomically calibrated
FCs standard provides unprecedented tight constraints for the
tuning of pre-Neogene successions. In this way, problems
such as the existing Eocene gap in the ATS or the reduced

reliability of the astronomical solution further back in time
can be circumvented.

s0070
4.9. A NEW ASTRONOMICAL SOLUTION

p0190A new solution, La2010, has now been made available
(Laskar et al., 2011). This solution is limited to the orbital
eccentricity, and uses the new, highly accurate ephemeris
solution INPOP10 over short time scales (Fienga et al., 2009,
2010). La2010 is reliable back to 50 Ma, as compared to 40
Ma for La2004. This is a major improvement, as the solution
must be one order more accurate in order to extend its reli-
ability by an additional 10 myr (Laskar et al., 2004). La2010
will play a major role in solving problems presently
encountered in the tuning of the Paleocene and early Eocene
(Westerhold et al., 2008; Hilgen et al., 2010). It will shed light
on the possibility of long-period eccentricity forcing of
Eocene hyperthermals (Lourens et al., 2005) and Mesozoic
black shales (Mitchell et al., 2008).
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Röhl, U., Bowles, J., Raffi, I., 2005. Astronomical pacing of late

Palaeocene to early Eocene global warming events. Nature 435,

1083e1087.

Lyell, C., 1867. Principles of Geology. Vol. 1, tenth ed. John Murray,

London, p. 670.

Matthews, R.K., Frohlich, C., Duffy, A., 1997. Orbital forcing of global

change throughout the Phanerozoic: a possible stratigraphic solution to

the eccentricity phase problem. Geology 25, 807e810.

Menning, M., Gast, R., Hagdorn, H., Kading, K.-C., Simon, T., Szurlies, M.,

Nitsch, E., 2005. Zeitskala für Perm und Trias in der Stratigraphischen

Tabelle von Deutschland 2002, zyklostratigraphische Kalibrierung von
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ungen zur Stratigraphischen Tabelle von Deutschland. Newsletters of

Stratigraphy, 41(1/3), pp. 173e210.

Meyers, S., Sageman, B., Hinnov, L.A., 2001. Integrated quantitative stra-

tigraphy of the Cenomanian-Turonian Bridge Creek Limestone member

using evolutive harmonic analysis and stratigraphic modeling. Journal of

Sedimentary Research 71, 627e643.

Meyers, S., Siewert, S.E., Singer, B.S., Sageman, B.B., Condon, D.J.,

Obradovich, J.D., Jicha, B.R., and Sawyer, D.A., in press, Intercali-

bration of radioisotopic and astrochronologic time scales for the

Cenomanian-Turonian Boundary interval, Western Interior Basin, USA.

Geology.

81Chapter | 4 Cyclostratigraphy and Astrochronology

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter

TNQ Books and Journals Pvt Ltd. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

10004-GRADSTEIN-9780444594259



Milankovitch, M., 1941. Kanon der Erdbestrahlung und seine Anwendung

auf das Eiszeitenproblem. Royal Serbian Academy, Section of Mathe-

matical and Natural Sciences, Belgrade, p. 633 [and 1998 reissue in

English: Canon of Insolation and the Ice-Age Problem. Belgrade:

Serbian Academy of Sciences and Arts, Section of Mathematical and

Natural Sciences, 634 pp.].

Min, K., Mundil, R., Renne, P.R., Ludwig, K.R., 2000. Systematic errors in
40Ar/39Ar geochronology through comparison with U/Pb analysis of

a 1.1-Ga rhyolite. Geochimica et Cosmochimica Acta 64, 73e98.

Mitchell, R.N., Bice, D.M., Montanari, A., Cleaveland, L.C.,

Christianson, K.T., Coccioni, R., Hinnov, L.A., 2008. Ocean anoxic

cycles? Prelude to the Livello Bonarelli (OAE 2). Earth and Planetary

Science Letters 267, 1e16.

Mourik, A.A., Bijkerk, J.F., Cascella, A., Hüsing, S.K., Hilgen, F.J.,
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