M6140 Topology Exercises - 8th Week (2020)

1 Mapping Spaces

Definition 1. By $\mathcal{C}(X, Y)$ we denote the set of all continuous maps from a topological space X to a topological space Y.

Exercise 1. Suppose that X is a non-empty topological space and Y is a topological space. Show that $\mathcal{C}(X,Y)$ is a singleton iff Y is a singleton.

Exercise 2. Suppose that X is a non-empty topological space and Y is a topological space. Prove that the cardinality of Y is less or equal to the cardinality of $\mathcal{C}(X, Y)$.

Definition 2. Let $A \subseteq X$, $B \subseteq Y$ be subsets in topological spaces X, Y. Define

$$W(A,B) := \{ f \in \mathcal{C}(X,Y) \mid f(A) \subseteq B \}.$$

Exercise 3. Suppose that X is a non-empty topological space and Y is a topological space. Prove that

$$\mathscr{S}^{\mathrm{pw}} := \{ W(a, U) \mid a \in X, U \text{ is an open set in } Y \}$$

is a cover of $\mathcal{C}(X, Y)$.

Definition 3. The set \mathscr{S}^{pw} can be viewed as a subbase, the generated topology is called the *topology* of pointwise convergence, and the resulting topological space is denoted by $\mathcal{C}^{pw}(X,Y)$.

Exercise 4. Suppose that X is a non-empty topological space and Y is a topological space. Prove that

 $\mathscr{S}^{co} := \{ W(K, U) \mid K \text{ is compact in } X, U \text{ is an open set in } Y \}$

is a cover of $\mathcal{C}(X, Y)$.

Definition 4. The set \mathscr{S}^{co} can be viewed as a subbase, the generated topology is called the *compact-open topology*, and the resulting topological space is denoted simply by $\mathcal{C}(X, Y)$.

Exercise 5. Prove that $\mathcal{T}(\mathcal{C}^{pw}(X,Y)) \subseteq \mathcal{T}(\mathcal{C}(X,Y))$ for each pair of topological spaces X, Y, where X is non-empty.

Exercise 6. Show that $\mathcal{T}(\mathcal{C}^{pw}(I,I)) \neq \mathcal{T}(\mathcal{C}(I,I))$.

Exercise 7. Suppose that X is a non-empty topological space and Y is a T₂ topological space. Prove that $\mathcal{C}^{pw}(X,Y)$ and $\mathcal{C}(X,Y)$ are both T₂.

Exercise 8. Suppose that X, Y, X', Y' are topological spaces and $g: X' \to X, h: Y \to Y'$ are continuous maps. Show that $\varphi: \mathcal{C}(X, Y) \to \mathcal{C}(X', Y')$ given by $\varphi(f) := h \circ f \circ g$ is continuous.

Exercise 9. Prove that $\mathcal{C}^{pw}(I, I)$, $\mathcal{C}(I, I)$ aren't homeomorphic.

Exercise 10. Suppose that X is a T₂ space, Y is a T₂ locally compact space, and Z is a topological space. Show that there exists a homeomorphism $\mathcal{C}(X \times Y, Z) \cong \mathcal{C}(X, \mathcal{C}(Y, Z))$.