M6140 Topology Exercises - 8th Week (2020)

1 Mapping Spaces

Definition 1. By $\mathcal{C}(X, Y)$ we denote the set of all continuous maps from a topological space X to a topological space Y.

Exercise 1. Suppose that X is a non-empty topological space and Y is a topological space. Show that $\mathcal{C}(X, Y)$ is a singleton iff Y is a singleton.

Exercise 2. Suppose that X is a non-empty topological space and Y is a topological space. Prove that the cardinality of Y is less or equal to the cardinality of $\mathcal{C}(X, Y)$.

Definition 2. Let $A \subseteq X, B \subseteq Y$ be subsets in topological spaces X, Y. Define

$$
W(A, B):=\{f \in \mathcal{C}(X, Y) \mid f(A) \subseteq B\}
$$

Exercise 3. Suppose that X is a non-empty topological space and Y is a topological space. Prove that

$$
\mathscr{S}^{\mathrm{pw}}:=\{W(a, U) \mid a \in X, U \text { is an open set in } Y\}
$$

is a cover of $\mathcal{C}(X, Y)$.
Definition 3. The set $\mathscr{S}^{\text {pw }}$ can be viewed as a subbase, the generated topology is called the topology of pointwise convergence, and the resulting topological space is denoted by $\mathcal{C}^{\mathrm{pw}}(X, Y)$.

Exercise 4. Suppose that X is a non-empty topological space and Y is a topological space. Prove that

$$
\mathscr{S}^{\mathrm{co}}:=\{W(K, U) \mid K \text { is compact in } X, U \text { is an open set in } Y\}
$$

is a cover of $\mathcal{C}(X, Y)$.
Definition 4. The set $\mathscr{S}^{\text {co }}$ can be viewed as a subbase, the generated topology is called the compactopen topology, and the resulting topological space is denoted simply by $\mathcal{C}(X, Y)$.

Exercise 5. Prove that $\mathcal{T}\left(\mathcal{C}^{\mathrm{pw}}(X, Y)\right) \subseteq \mathcal{T}(\mathcal{C}(X, Y))$ for each pair of topological spaces X, Y, where X is non-empty.

Exercise 6. Show that $\mathcal{T}\left(\mathcal{C}^{\text {pw }}(I, I)\right) \neq \mathcal{T}(\mathcal{C}(I, I))$.
Exercise 7. Suppose that X is a non-empty topological space and Y is a T_{2} topological space. Prove that $\mathcal{C}^{\text {pw }}(X, Y)$ and $\mathcal{C}(X, Y)$ are both T_{2}.

Exercise 8. Suppose that $X, Y, X^{\prime}, Y^{\prime}$ are topological spaces and $g: X^{\prime} \rightarrow X, h: Y \rightarrow Y^{\prime}$ are continuous maps. Show that $\varphi: \mathcal{C}(X, Y) \rightarrow \mathcal{C}\left(X^{\prime}, Y^{\prime}\right)$ given by $\varphi(f):=h \circ f \circ g$ is continuous.

Exercise 9. Prove that $\mathcal{C}^{\text {pw }}(I, I), \mathcal{C}(I, I)$ aren't homeomorphic.
Exercise 10. Suppose that X is a T_{2} space, Y is a T_{2} locally compact space, and Z is a topological space. Show that there exists a homeomorphism $\mathcal{C}(X \times Y, Z) \cong \mathcal{C}(X, \mathcal{C}(Y, Z))$.

