Tutorial 6—Global Analysis

- 1. Suppose $M = \mathbb{R}^2$ with coordinates (x, y) . Consider the vector fields $\xi(x, y) = y \frac{\delta}{\delta x}$ ∂x and $\eta(x,y) = \frac{x^2}{2}$ 2 $\frac{\partial}{\partial y}$ on M. We computed in class their flows and saw that they are complete. Compute $[\xi, \eta]$ and its flow? Is $[\xi, \eta]$ complete?
- 2. Let M be a (smooth) manifold and $\xi, \eta \in \mathfrak{X}(M)$ two vector fields on M. Show that
	- (a) $[\xi, \eta] = 0 \iff (\text{Fl}^{\xi})^* \eta = \eta$, whenever defined $\iff \text{Fl}^{\xi}_t \circ \text{Fl}^{\eta}_s = \text{Fl}^{\eta}_s \circ \text{Fl}^{\xi}_t$, whenever defined.
	- (b) If N is another manifold, $f : M \to N$ a smooth map, and ξ and η are f-related to vector fields $\tilde{\xi}$ resp. $\tilde{\eta}$ on N, then $[\xi, \eta]$ is f-related to $[\tilde{\xi}, \tilde{\eta}]$.
- 3. Suppose α_j^i for $i = 1, ..., k$ and $j = 1, ..., n$ are smooth real-valued functions defined on some open set $U \subset \mathbb{R}^{n+k}$ satisfying

$$
\frac{\partial \alpha_j^i}{\partial x^k} + \alpha_k^\ell \frac{\partial \alpha_j^i}{\partial z^\ell} = \frac{\partial \alpha_k^i}{\partial x^j} + \alpha_j^\ell \frac{\partial \alpha_k^i}{\partial z^\ell},
$$

where we write $(x, z) = (x^1, ..., x^n, z^1, ..., z^k)$ for a point in \mathbb{R}^{n+k} . Show that for any point $(x_0, z_0) \in U$ there exists an open neighbourhood V of x_0 in \mathbb{R}^n and a unique C^{∞} -map $f: V \to \mathbb{R}^k$ such that

$$
\frac{\partial f^i}{\partial x^j}(x^1, ..., x^n) = \alpha_j^i(x^1, ..., x^n, f^1(x), ..., f^k(x)) \text{ and } f(x_0) = z_0.
$$

In the class/tutorial we proved this for $k = 1$ and $j = 2$.

- 4. Which of the following systems of PDEs have solutions $f(x, y)$ (resp. $f(x, y)$ and $g(x, y)$) in an open neighbourhood of the origin for positive values of $f(0, 0)$ (resp. $f(0, 0)$ and $g(0, 0)$?
	- (a) $\frac{\partial f}{\partial x} = f \cos y$ and $\frac{\partial f}{\partial y} = -f \log f \tan y$.
	- (b) $\frac{\partial f}{\partial x} = e^{xf}$ and $\frac{\partial f}{\partial y} = xe^{yf}$. (c) $\frac{\partial f}{\partial x} = f$ and $\frac{\partial f}{\partial y} = g$; $\frac{\partial g}{\partial x} = g$ and $\frac{\partial g}{\partial y} = f$.
- 5. Suppose $E \to M$ is a (smooth) vector bundle of rank k over a manifold M. Then E is called *trivializable*, if it isomorphic to the trivial vector bundle $M \times \mathbb{R}^k \to M$.
- (a) Show that $E \to M$ is trivializable $\iff E \to M$ admits a global frame, i.e. there exist (smooth) sections $s_1, ..., s_k$ of E such that $s_1(x), ..., s_k(x)$ span E_x for any $x \in M$.
- (b) Show that the tangent bundle of any Lie group G is trivializable.
- (c) Recall that \mathbb{R}^n has the structure of a (not necessarily associative) division algebra over $\mathbb R$ for $n = 1, 2, 4, 8$. Use this to show that the tangent bundle of the spheres $S^1 \subset \mathbb{R}^2$, $S^3 \subset \mathbb{R}^4$ and $S^7 \subset \mathbb{R}^8$ is trivializable.