Tutorial 7-8—Global Analysis

- 1. Suppose $E \to M$ is a (smooth) vector bundle of rank k over a manifold M. Then E is called *trivializable*, if it isomorphic to the trivial vector bundle $M \times \mathbb{R}^k \to M$.
	- (a) Show that $E \to M$ is trivializable $\iff E \to M$ admits a global frame, i.e. there exist (smooth) sections $s_1, ..., s_k$ of E such that $s_1(x), ..., s_k(x)$ span E_x for any $x \in M$.
	- (b) Show that the tangent bundle of any Lie group G is trivializable.
	- (c) Recall that \mathbb{R}^n has the structure of a (not necessarily associative) division algebra over $\mathbb R$ for $n = 1, 2, 4, 8$. Use this to show that the tangent bundle of the spheres $S^1 \subset \mathbb{R}^2$, $S^3 \subset \mathbb{R}^4$ and $S^7 \subset \mathbb{R}^8$ is trivializable.
- 2. Let V be a finite dimensional real vector space and consider the subspace of r linear alternating maps $\Lambda^r V^* = L^r_{\text{alt}}(V, \mathbb{R})$ of the vector space of r-linear maps $L^r(V,\mathbb{R}) = (V^*)^{\otimes r}$. Show that for $\omega \in L^r(V,\mathbb{R})$ the following are equivalent:
	- (a) $\omega \in \Lambda^r V^*$
	- (b) For any vectors $v_1, ..., v_r \in V$ one has

$$
\omega(v_1, ..., v_i, ..., v_j, ..., v_k) = -\omega(v_1, ..., v_j, ..., v_i, ..., v_k)
$$

- (c) ω is zero whenever one inserts a vector $v \in V$ twice.
- (d) $\omega(v_1, ..., v_k) = 0$, whenever $v_1, ..., v_k \in V$ are linearly dependent vectors.
- 3. Let V be a finite dimensional real vector space. Show that the vector space $\Lambda^* V^* :=$ $\bigoplus_{r\geq 0} \Lambda^r V^*$ is an associative, unitial, graded-anticommutative algebra with respect to the wedge product \wedge , i.e. show that the following holds:
	- (a) $(\omega \wedge \eta) \wedge \zeta = \omega \wedge (\eta \wedge \zeta)$ for all $\omega, \eta, \zeta \in \Lambda^* V^*$.
	- (b) $1 \in \mathbb{R} = \Lambda^0 V^*$ satisfies $1 \wedge \omega = \omega \wedge 1 = 1$ for all $\omega \in \Lambda^* V^*$.
	- (c) $\Lambda^r V^* \wedge \Lambda^s V^* \subset \Lambda^{r+s} V^*$.
	- (d) $\omega \wedge \eta = (-1)^{rs} \eta \wedge \omega$ for $\omega \in \Lambda^r V^*$ and $\eta \in \Lambda^s V^*$.

Moreover, show that for any linear map $f: V \to W$ the linear map $f^* : \Lambda^* W^* \to W$ Λ^*V^* is a morphism of graded unitlal algebras, i.e. $f^*1 = 1$, $f^*(\Lambda^r W^*) \subset \Lambda^r V^*$ and $f^*(\omega \wedge \eta) = f^*\omega \wedge f^*\eta$.

- 4. Let V be a finite dimensional real vector space. Show that:
	- (a) If $\omega_1, ..., \omega_r \in V^*$ and $v_1, ..., v_r \in V$, then

$$
\omega_1 \wedge \ldots \wedge \omega_r(v_1, \ldots, v_r) = \det((\omega_i(v_j))_{1 \le i, j \le r}).
$$

In particular, $\omega_1, ..., \omega_r$ are linearly independent $\iff \omega_1 \land ... \land \omega_r \neq 0$.

(b) If $\{\lambda_1, ..., \lambda_n\}$ is a basis of V^* , then

$$
\{\lambda_{i_1} \wedge \ldots \wedge \lambda_{i_r} : 1 \le i_1 < \ldots < i_r \le n\}
$$

is a basis of $\Lambda^r V^*$.

- 5. Let V be a finite dimensional real vector space. An element $\mu \in L^r(V, \mathbb{R})$ is called *symmetric*, if $\mu(v_1, ..., v_r) = \mu(v_{\sigma(1)}, ..., v_{\sigma(r)})$ for any vectors $v_1, ..., v_r \in V$ and any permutation $\sigma \in S^r$. Denote by $S^rV^* \subset \mu \in L^r(V,\mathbb{R})$ the subspace of symmetric elements in the vector space $L^r(V, \mathbb{R})$.
	- (a) For $\mu \in L^r(V, \mathbb{R})$ show that

$$
\mu \in S^{r}V^{*} \iff \mu(v_{1},...,v_{i},...,v_{j},...,v_{k}) = \mu(v_{1},...,v_{j},...,v_{i},...,v_{k}),
$$

for any vectors $v_1, ..., v_r \in V$.

(b) Consider the map Sym : $L^r(V, \mathbb{R}) \to L^r(V, \mathbb{R})$ given by

$$
Sym(\mu)(v_1, ..., v_r) = \frac{1}{r!} \sum_{\sigma \in S^r} \mu(v_{\sigma(1)}, ..., v_{\sigma(r)}).
$$

Show that Image(Sym) = S^rV^* and that $\mu \in S^rV^* \iff Sym(\mu) = \mu$.

6. Let V be a finite dimensional real vector space and set $S(V^*) := \bigoplus_{r=0}^{\infty} S^r V^*$ with the convention $S^0V^* = \mathbb{R}$ and $S^1V^* = V^*$. For $\mu \in S^rV^*$ and $\nu \in S^tV^*$ define their symmetric product by

$$
\mu \odot \nu := \text{Sym}(\mu \otimes \nu) \in S^{r+t}V^*.
$$

By blinearity, we extend this to a R-bilinear map $\odot : S(V^*) \times S(V^*) \rightarrow S(V^*)$. Show that $S(V^*)$ is an unitial, associative, commutative, graded algebra with respect to the symmetric product \odot .

- 7. Suppose $p : E \to M$ and $q : F \to M$ are vector bundles over M. Show that their direct sum $E \oplus F := \sqcup_{x \in M} E_x \oplus F_x \rightarrow M$ and their tensor product $E \otimes F :=$ $L_{x\in M}E_x \otimes F_x \to M$ are again vector bundles over M.
- 8. Suppose $E \subset TM$ is a smooth distribution of rank k on a manifold M of dimension n and denote by $\Omega(M)$ the vector space of differential forms on M.
	- (a) Show that locally around any point $x \in M$ there exists (local) 1-forms $\omega^1, ..., \omega^{n-k}$ such that for any (local) vector field ξ one has: ξ is a (local) section of $E \iff$ $\omega_i(\xi) = 0$ for all $i = 1, ..., n - k$.

(b) Show that E is involutive \iff whenever $\omega^1, ..., \omega^{n-k}$ are local 1-forms as in (a) then there exists local 1-forms $\mu^{i,j}$ for $i, j = 1, ..., n - k$ such that

$$
d\omega^i = \sum_{j=1}^{n-k} \mu^{i,j} \wedge \omega^j.
$$

(c) Show

$$
\Omega_E(M) := \{ \omega \in \Omega(M) : \omega|_E = 0 \} \subset \Omega(M)
$$

is an ideal of the algebra $(\Omega(M), \wedge)$. Here, $\omega|_E = 0$ for a ℓ -form ω means that $\omega(\xi_1, ..., \xi_\ell) = 0$ for any sections $\xi_1, ..., \xi_\ell$ of E.

- (d) An ideal $\mathcal J$ of $(\Omega(M), \wedge)$ is called differential ideal, if $d(\mathcal J) \subset \mathcal J$. Show that $\Omega_E(M)$ is a differential ideal $\iff E$ is involutive.
- 9. Suppose M is a manifold and D_i : $\Omega^k(M) \to \Omega^{k+r_i}(M)$ for $i = 1, 2$ a graded derivation of degree r_i of $(\Omega(M), \wedge)$.
	- (a) Show that

$$
[D_1, D_2] := D_1 \circ D_2 - (-1)^{r_1 r_2} D_2 \circ D_1
$$

is a graded derivation of degree $r_1 + r_2$.

(b) Suppose D is a graded derivation of $(\Omega(M), \wedge)$. Let $\omega \in \Omega^k(M)$ be a differential form and $U \subset M$ an open subset. Show that $\omega|_U = 0$ implies $D(\omega)|_U = 0$.

Hint: Think about writing 0 as $f\omega$ for some smooth function f and use the defining properties of a graded derivation.

- (c) Suppose D and \tilde{D} are two graded derivations such that $D(f) = \tilde{D}(f)$ and $D(df) = \tilde{D}(df)$ for all $f \in C^{\infty}(M,\mathbb{R})$. Show that $D = \tilde{D}$.
- 10. Suppose M is a manifold and $\xi, \eta \in \Gamma(TM)$ vector fields.
	- (a) Show that the insertion operator $i_{\xi} : \Omega^k(M) \to \Omega^{k-1}(M)$ is a graded derivation of degree -1 of $(\Omega(M), \wedge)$.
	- (b) Recall from class that $[d, d] = 0$. Verify (the remaining) graded-commutator relations between $d, \mathcal{L}_{\xi}, i_n$:
		- (i) $[d, \mathcal{L}_{\xi}] = 0.$
		- (ii) $[d, i_{\xi}] = d \circ i_{\xi} + i_{\xi} \circ d = \mathcal{L}_{\xi}$.
		- (iii) $[\mathcal{L}_{\xi}, \mathcal{L}_{\eta}] = \mathcal{L}_{[\xi, \eta]}.$
		- (iv) $[\mathcal{L}_{\xi}, i_{\eta}] = i_{[\xi, \eta]}.$
		- (v) $[i_{\xi}, i_{\eta}] = 0.$

Hint: Use (c) from 2.