
Tutorial 7-8—Global Analysis

1. Suppose E → M is a (smooth) vector bundle of rank k over a manifold M . Then
E is called trivializable, if it isomorphic to the trivial vector bundle M ×Rk →M .

(a) Show that E → M is trivializable ⇐⇒ E → M admits a global frame, i.e.
there exist (smooth) sections s1, ..., sk of E such that s1(x), ..., sk(x) span Ex
for any x ∈M .

(b) Show that the tangent bundle of any Lie group G is trivializable.

(c) Recall that Rn has the structure of a (not necessarily associative) division al-
gebra over R for n = 1, 2, 4, 8. Use this to show that the tangent bundle of the
spheres S1 ⊂ R2, S3 ⊂ R4 and S7 ⊂ R8 is trivializable.

2. Let V be a finite dimensional real vector space and consider the subspace of r-
linear alternating maps ΛrV ∗ = Lralt(V,R) of the vector space of r-linear maps
Lr(V,R) = (V ∗)⊗r. Show that for ω ∈ Lr(V,R) the following are equivalent:

(a) ω ∈ ΛrV ∗

(b) For any vectors v1, ..., vr ∈ V one has

ω(v1, ..., vi, ..., vj, ..., vk) = −ω(v1, ..., vj, ..., vi, ..., vk)

(c) ω is zero whenever one inserts a vector v ∈ V twice.

(d) ω(v1, ..., vk) = 0, whenever v1, ..., vk ∈ V are linearly dependent vectors.

3. Let V be a finite dimensional real vector space. Show that the vector space Λ∗V ∗ :=⊕
r≥0 ΛrV ∗ is an associative, unitial, graded-anticommutative algebra with respect

to the wedge product ∧, i.e. show that the following holds:

(a) (ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ) for all ω, η, ζ ∈ Λ∗V ∗.

(b) 1 ∈ R = Λ0V ∗ satisfies 1 ∧ ω = ω ∧ 1 = 1 for all ω ∈ Λ∗V ∗.

(c) ΛrV ∗ ∧ ΛsV ∗ ⊂ Λr+sV ∗.

(d) ω ∧ η = (−1)rsη ∧ ω for ω ∈ ΛrV ∗ and η ∈ ΛsV ∗.

Moreover, show that for any linear map f : V → W the linear map f ∗ : Λ∗W ∗ →
Λ∗V ∗ is a morphism of graded unitlal algebras, i.e. f ∗1 = 1, f ∗(ΛrW ∗) ⊂ ΛrV ∗

and f ∗(ω ∧ η) = f ∗ω ∧ f ∗η.
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4. Let V be a finite dimensional real vector space. Show that:

(a) If ω1, ..., ωr ∈ V ∗ and v1, ..., vr ∈ V , then

ω1 ∧ ... ∧ ωr(v1, ..., vr) = det((ωi(vj))1≤i,j≤r).

In particular, ω1, ..., ωr are linearly independent ⇐⇒ ω1 ∧ ... ∧ ωr 6= 0.

(b) If {λ1, ..., λn} is a basis of V ∗, then

{λi1 ∧ ... ∧ λir : 1 ≤ i1 < ... < ir ≤ n}

is a basis of ΛrV ∗.

5. Let V be a finite dimensional real vector space. An element µ ∈ Lr(V,R) is called
symmetric, if µ(v1, ..., vr) = µ(vσ(1), ..., vσ(r)) for any vectors v1, ..., vr ∈ V and any
permutation σ ∈ Sr. Denote by SrV ∗ ⊂ µ ∈ Lr(V,R) the subspace of symmetric
elements in the vector space Lr(V,R).

(a) For µ ∈ Lr(V,R) show that

µ ∈ SrV ∗ ⇐⇒ µ(v1, ..., vi, ..., vj, ..., vk) = µ(v1, ..., vj, ..., vi, ..., vk),

for any vectors v1, ..., vr ∈ V .

(b) Consider the map Sym : Lr(V,R)→ Lr(V,R) given by

Sym(µ)(v1, ..., vr) =
1

r!

∑
σ∈Sr

µ(vσ(1), ..., vσ(r)).

Show that Image(Sym) = SrV ∗ and that µ ∈ SrV ∗ ⇐⇒ Sym(µ) = µ.

6. Let V be a finite dimensional real vector space and set S(V ∗) := ⊕∞r=0S
rV ∗ with

the convention S0V ∗ = R and S1V ∗ = V ∗. For µ ∈ SrV ∗ and ν ∈ StV ∗ define
their symmetric product by

µ� ν := Sym(µ⊗ ν) ∈ Sr+tV ∗.

By blinearity, we extend this to a R-bilinear map � : S(V ∗) × S(V ∗) → S(V ∗).
Show that S(V ∗) is an unitial, associative, commutative, graded algebra with re-
spect to the symmetric product �.

7. Suppose p : E → M and q : F → M are vector bundles over M . Show that their
direct sum E ⊕ F := tx∈MEx ⊕ Fx → M and their tensor product E ⊗ F :=
tx∈MEx ⊗ Fx →M are again vector bundles over M .

8. SupposeE ⊂ TM is a smooth distribution of rank k on a manifoldM of dimension
n and denote by Ω(M) the vector space of differential forms on M .

(a) Show that locally around any point x ∈M there exists (local) 1-forms ω1, ..., ωn−k

such that for any (local) vector field ξ one has: ξ is a (local) section ofE ⇐⇒
ωi(ξ) = 0 for all i = 1, ..., n− k.
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(b) Show that E is involutive ⇐⇒ whenever ω1, ..., ωn−k are local 1-forms as in
(a) then there exists local 1-forms µi,j for i, j = 1, ..., n− k such that

dωi =
n−k∑
j=1

µi,j ∧ ωj.

(c) Show
ΩE(M) := {ω ∈ Ω(M) : ω|E = 0} ⊂ Ω(M)

is an ideal of the algebra (Ω(M),∧). Here, ω|E = 0 for a `-form ω means that
ω(ξ1, ..., ξ`) = 0 for any sections ξ1, ...ξ` of E.

(d) An ideal J of (Ω(M),∧) is called differential ideal, if d(J ) ⊂ J . Show that
ΩE(M) is a differential ideal ⇐⇒ E is involutive.

9. Suppose M is a manifold and Di : Ωk(M) → Ωk+ri(M) for i = 1, 2 a graded
derivation of degree ri of (Ω(M),∧).

(a) Show that
[D1, D2] := D1 ◦D2 − (−1)r1r2D2 ◦D1

is a graded derivation of degree r1 + r2.

(b) SupposeD is a graded derivation of (Ω(M),∧). Let ω ∈ Ωk(M) be a differen-
tial form and U ⊂M an open subset. Show that ω|U = 0 impliesD(ω)|U = 0.

Hint: Think about writing 0 as fω for some smooth function f and use the
defining properties of a graded derivation.

(c) Suppose D and D̃ are two graded derivations such that D(f) = D̃(f) and
D(df) = D̃(df) for all f ∈ C∞(M,R). Show that D = D̃.

10. Suppose M is a manifold and ξ, η ∈ Γ(TM) vector fields.

(a) Show that the insertion operator iξ : Ωk(M) → Ωk−1(M) is a graded deriva-
tion of degree −1 of (Ω(M),∧).

(b) Recall from class that [d, d] = 0. Verify (the remaining) graded-commutator
relations between d,Lξ, iη:
(i) [d,Lξ] = 0.

(ii) [d, iξ] = d ◦ iξ + iξ ◦ d = Lξ.
(iii) [Lξ,Lη] = L[ξ,η].
(iv) [Lξ, iη] = i[ξ,η].
(v) [iξ, iη] = 0.

Hint: Use (c) from 2.


