Tutorial 9—Global Analysis

- 1. Suppose M is a manifold and D_i : $\Omega^k(M) \to \Omega^{k+r_i}(M)$ for $i = 1, 2$ a graded derivation of degree r_i of $(\Omega(M), \wedge)$.
	- (a) Show that

$$
[D_1, D_2] := D_1 \circ D_2 - (-1)^{r_1 r_2} D_2 \circ D_1
$$

is a graded derivation of degree $r_1 + r_2$.

(b) Suppose D is a graded derivation of $(\Omega(M), \wedge)$. Let $\omega \in \Omega^k(M)$ be a differential form and $U \subset M$ an open subset. Show that $\omega|_U = 0$ implies $D(\omega)|_U = 0$.

Hint: Think about writing 0 as $f\omega$ for some smooth function f and use the defining properties of a graded derivation.

- (c) Suppose D and \tilde{D} are two graded derivations such that $D(f) = \tilde{D}(f)$ and $D(df) = \tilde{D}(df)$ for all $f \in C^{\infty}(M,\mathbb{R})$. Show that $D = \tilde{D}$.
- 2. Suppose M is a manifold and $\xi, \eta \in \Gamma(TM)$ vector fields.
	- (a) Show that the insertion operator $i_{\xi} : \Omega^k(M) \to \Omega^{k-1}(M)$ is a graded derivation of degree -1 of $(\Omega(M), \wedge)$.
	- (b) Recall from class that $[d, d] = 0$. Verify (the remaining) graded-commutator relations between $d, \mathcal{L}_{\xi}, i_n$:
		- (i) $[d, \mathcal{L}_{\xi}] = 0.$
		- (ii) $[d, i_{\xi}] = d \circ i_{\xi} + i_{\xi} \circ d = \mathcal{L}_{\xi}$.
		- (iii) $[\mathcal{L}_{\xi}, \mathcal{L}_{\eta}] = \mathcal{L}_{[\xi, \eta]}.$
		- (iv) $[\mathcal{L}_{\xi}, i_{\eta}] = i_{[\xi, \eta]}.$
		- (v) $[i_{\xi}, i_n] = 0.$

Hint: Use (c) from 2.

3. Prove the **Poincaré Lemma**: Suppose $\omega \in \Omega^k(\mathbb{R}^n)$ is a closed k-form, where $k \geq 1$. Show that there exists $\tau \in \Omega^{k-1}(\mathbb{R}^n)$ such that $d\tau = \omega$.

Hint:

Consider the vector field $\xi \in \Gamma(\mathbb{R}^n)$ on \mathbb{R}^n given by $\xi(x) = x \in T_x \mathbb{R}^n \cong \mathbb{R}^n$ and let $\alpha : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be the smooth map $\alpha(t, x) = \alpha_t(x) = tx$. Then the flow of ξ is given by $\mathrm{Fl}^{\xi}_t = \alpha(e^t, x)$.

- Show that $\left(\frac{1}{t}\right)$ $\frac{1}{t} \alpha_t^* i_{\xi} \omega(x)$ is smooth in (t, x) for all $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$. Hence, $t \mapsto \frac{1}{t} \alpha_t^* i_{\xi} \omega$ is a smooth family of $(k-1)$ -forms on \mathbb{R}^n .
- Show that $\frac{d}{dt}\alpha_t^* \omega = d(\frac{1}{t})$ $\frac{1}{t} \alpha_t^* i_{\xi} \omega$ and that $\omega = d\tau$, where $\tau = \int_0^1$ 1 $\frac{1}{t} \alpha_t^* i_{\xi} \omega dt \in$ $\Omega^{k-1}(\mathbb{R}^n)$.
- 4. Show that *n*-dimensional projective space $\mathbb{R}P^n$ is orientable \iff *n* is odd.
- 5. Suppose $(M, g) \subset (\mathbb{R}^{n+1}, g_{\text{euc}} = \langle \cdot, \cdot \rangle)$ is a hypersurface. Show that M is orientable if and only if it admits a global unit normal vector field.