
CHAPTER III

ELLIPTIC CURVE ALGORITHMS

3.1 Terminology and notation

For reference in the following sections, we collect here the notation, terminology and formulae
concerning elliptic curves which we will use throughout this chapter.

An elliptic curve E defined over Q has an equation or model of the form

(3.1.1) E: y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the coefficients ai ∈ Q. We call such an equation a Weierstrass equation for E, and
denote this model by [a1, a2, a3, a4, a6]. We say that (3.1.1) is integral or defined over Z if all
the ai are in Z. From these coefficients we derive the auxiliary quantities

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4,

the invariants

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6,

the discriminant

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

and the j-invariant

j = c34/∆,

which are related by the identities

4b8 = b2b6 − b24 and 1728∆ = c34 − c26.

The discriminant ∆ must be non-zero for the curve defined by equation (3.1.1) to be non-
singular and hence an elliptic curve. The j-invariant is (as its name suggests) invariant under
isomorphism; elliptic curves with the same j are called twists: they are isomorphic over an
algebraic extension, but not necessarily over Q. The invariants c4 and c6 are sufficient to
determine E up to isomorphism (over Q) since E is isomorphic to

Y 2 = X3 − 27c4X − 54c6.

The most general isomorphism from E to a second curve E ′ given by an equation of the
form (3.1.1), which we usually think of as a change of coordinates on E itself, is T (r, s, t, u),
given by

(3.1.2)
x = u2x′ + r

y = u3y′ + su2x′ + t
62



3.1 TERMINOLOGY AND NOTATION 63

where r, s, t ∈ Q and u ∈ Q∗. The effect of T (r, s, t, u) on the coefficients ai is given by

(3.1.3)

ua′1 = a1 + 2s

u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

so that
u4c′4 = c4, u6c′6 = c6, u12∆′ = ∆ and j′ = j.

The transformations T (0, 0, 0, u) we will refer to as scaling transformations; these have the effect
of dividing each coefficient ai by ui, and similarly for each of the other quantities, according
to its weight. Here ai, bi and ci have weight i, while ∆ has weight 12 and j has weight 0.
By applying T (0, 0, 0, u) for suitable u we can always transform to an integral model; all the
invariants are then integral, except (possibly) for j. Among such integral models, those for
which the positive integer |∆| is minimal are called global minimal models for E. We will give
in the next section a simple algorithm for finding such a model, given the invariants c4 and c6 of
any model. Clearly, isomorphisms between minimal models must have u = ±1 and r, s, t ∈ Z.
We may normalize so that a1, a3 ∈ {0, 1} and a2 ∈ {−1, 0, 1}, by suitable choice of s, r and t
(in that order), as may be seen from (3.1.3). Such an equation will be called reduced , and it is
not hard to show that it is unique: the only transformation other than the identity T (0, 0, 0, 1)
from a reduced model to any another reduced model is the transformation T (0,−a1,−a3,−1),
which takes any model to itself; this is just the negation map (x, y) 7→ (x, y − a1x− a3) from
the curve to itself. Thus every elliptic curve E defined over Q has a unique reduced minimal
model. This fact makes it very easy to recognize curves: in Table 1 we give the coefficients of
such a model for each of the curves there.

Given integers c4 and c6, two questions arise: is there a curve over Q with these invariants,
and is it minimal? Clearly we must have c34 − c26 = 1728∆ with ∆ 6= 0. A solution to the first
problem is given by Kraus in Proposition 2 of [30], which states the following.

Proposition 3.1.1. Let c4, c6 be integers such that ∆ = (c34 − c26)/1728 is a non-zero integer.
In order for there to exist an elliptic curve E with a model (3.1.1) defined over Z having
invariants c4 and c6, it is necessary and sufficient that
(1) c6 6≡ ±9 (mod 27);
(2) either c6 ≡ −1 (mod 4), or c4 ≡ 0 (mod 16) and c6 ≡ 0, 8 (mod 32).

The conditions of Proposition 3.1.1 will be referred to as Kraus’s conditions. If we are given
integers c4 and c6 satisfying these conditions, we can recover the coefficients ai of the reduced
model of the curve with c4 and c6 as invariants, using the formulae already given in Chapter 2,
Section 14, which we repeat here for convenience:

b2 = −c6 mod 12 ∈ {−5, . . . , 6};
b4 = (b22 − c4)/24;

b6 = (−b32 + 36b2b4 − c6)/216;

a1 = b2 mod 2 ∈ {0, 1};
a3 = b6 mod 2 ∈ {0, 1};
a2 = (b2 − a1)/4;

a4 = (b4 − a1a3)/2;

a6 = (b6 − a3)/4.



64 III. ELLIPTIC CURVE ALGORITHMS

To see this, we may assume that we are seeking coefficients of a reduced model; then b2 ∈
{−4,−3, 0, 1, 4, 5}, and we have −c6 ≡ b32 ≡ b2 (mod 12). The rest is easy; provided that c4
and c6 satisfy Kraus’s conditions, all the divisions will be exact.

In the following section we answer the second question by giving an algorithm for computing
the reduced coefficients of a minimal model for any curve E, given either integral invariants
satisfying Kraus’s conditions, or any integral model for E. We simply determine the maximal
integer u such that c′4 = c4/u

4 and c′6 = c6/u
6 satisfy Kraus’s conditions, and then compute

the reduced coefficients a′i from these. As with many questions concerning elliptic curves, most
of the work goes into determining the powers of 2 and 3 which divide u.

We will assume without further discussion that on any given curve E, points may be added
and multiples taken, using standard formulae. The Mordell–Weil group of all rational points
on E will be denoted E(Q) as usual. If n is a positive integer, we denote by E(Q)[n] the
subgroup of rational points of order dividing n, which is the kernel of the multiplication map
from E to itself.

3.2 The Kraus–Laska–Connell algorithm and Tate’s algorithm

In this section we give two algorithms. The first was originally given by Laska in [34],
and finds a minimal model for a curve E, starting from an integral equation. Essentially the
algorithm was to test all positive integers u such that u−4c4 and u−6c6 are integral, to see if they
are the invariants of a curve defined over Z. Using Kraus’s conditions (see Proposition 3.1.1
above), this procedure can be simplified, since it is possible to compute in advance the exponent
dp of each prime p in the minimal discriminant, and hence compute u at the start. The usual
formulae then give the coefficients ai of the reduced model. Our formulation of the resulting
algorithm over Z is similar to that given in [10], where more general rings are considered: in
particular an explicit algorithm is given there for finding local minimal models over arbitrary
number fields, and hence global minimal models where they exist. Over Z, the algorithm is
extremely simple.

In the pseudocode below,
ord(p,n) gives the power of the prime p which divides the non-zero integer n;
floor(x) gives the integral part of the real number x;
a mod p gives the residue of a modulo p lying in the range − 1

2p < a ≤ 1
2p; in particular,

when p = 2 or 3 this gives a residue in {0, 1} or {−1, 0, 1} respectively. Also inv(a,p) gives
the inverse of a modulo p, assuming that gcd(a,p)=1.

The Laska–Kraus–Connell Algorithm

INPUT: c4, c6 (integer invariants of an elliptic curve E).

OUTPUT: a1, a2, a3, a4, a6 (coefficients of a reduced minimal model for E).

1. BEGIN

2. ∆=(c43-c62)/1728;

(Compute scaling factor u)

3. u = 1; g = gcd(c62,∆);

4. p list = prime divisors(g);

5. FOR p IN p list DO

6. BEGIN

7. d = floor(ord(p,g)/12);

8. IF p=2 THEN

9. a = c4/2(4*d) mod 16; b = c6/2(6*d) mod 32;

10. IF (b mod 4 6= -1) AND NOT (a=0 AND (b=0 OR b=8))



3.2 THE KRAUS–LASKA–CONNELL ALGORITHM AND TATE’S ALGORITHM 65

11. THEN d = d-1

12. FI

13. ELIF p=3 THEN IF ord(3,c6)=6*d+2 THEN d = d-1 FI

14. FI;

15. u = u*pd

16. END;

(Compute minimal equation)

17. c4 = c4/u4; c6 = c6/u6;

18. b2 = -c6 mod 12; b4 = (b22-c4)/24; b6 = (-b23+36*b2*b4-c6)/216;

19. a1 = b2 mod 2;

20. a3 = b6 mod 2;

21. a2 = (b2-a1)/4;

22. a4 = (b4-a1*a3)/2;

23. a6 = (b6-a3)/4

24. END

Next we turn to Tate’s algorithm itself. The standard reference for this is Tate’s ‘letter to
Cassels’ [65], which appeared in the Antwerp IV volume [2]. There is also a full account in the
second volume of Silverman’s book [61, Section IV.9]. It may be applied to an integral model
of a curve E and a prime p, to give the following data:

• The exponent fp of p in the conductor N of E (see below);
• the Kodaira symbol of E at p, which classifies the type of reduction of E at p (see [47] or

[61, Section IV.9]); these are: I0 for good reduction; In (n > 0) for bad multiplicative reduction;
and types I∗n, II, III, IV, II∗, III∗ and IV∗ for bad additive reduction.

• the local index cp = [E(Qp) : E0(Qp)], where E0(Qp) is the subgroup of the group E(Qp)
of p-adic points of E, consisting of those points whose reduction modulo p is non-singular.
(That this index is finite is implied by the correctness of the algorithm, as observed by Tate
in [65].)

In addition, the algorithm detects whether the given model is non-minimal at p, and if so,
returns a model which is minimal at p. Thus by applying it in succession with all the primes
dividing the discriminant of the original model, one can compute a minimal model at the same
time as computing the conductor and the other local reduction data. In practice this makes
the Laska–Kraus–Connell algorithm redundant, though much simpler to implement and use if
all one needs is the standard model for a curve E.

The conductor N of an elliptic curve E defined over Q is defined to be

N =
∏

p

pfp

where fp = ordp(∆) + 1 − np and np is the number of irreducible components on the special
fibre of the minimal Néron model of E at p. This Néron model is a more sophisticated object
than we wish to discuss here (see [47] or [61] for details): one has to consider E as a scheme
over Spec(Zp), and then resolve the singularity at p, to obtain a scheme whose generic fibre is
E/Qp and whose special fibre is a union of curves over Z/pZ. In terms of a minimal model for
E over Z, all may be computed very simply except when p = 2 or p = 3 as follows:
fp = 0 if p - ∆;
fp = 1 if p | ∆ and p - c4 (then np = ordp(∆));
fp ≥ 2 if p | ∆ and p | c4; moreover, fp = 2 in this case when p 6= 2, 3.
To obtain the value of fp in the remaining cases, and to obtain the Kodaira symbol and the

local index cp, we use Tate’s algorithm itself.



66 III. ELLIPTIC CURVE ALGORITHMS

In [65], the algorithm is given for curves defined over an arbitrary discrete valuation ring.
To apply it to a curve defined over the ring of integers R of a number field K at a prime ideal p,
one would in general have to work in the localization of R at p; here we can work entirely over
Z, since Z is a principal ideal domain. We have added to the presentation in [65] the explicit
coordinate transformations T (r, s, t, u) which are required during the course of the algorithm
to achieve divisibility of the coefficients ai by various power of p. In practice one would ignore
the transformations which had taken place while processing each p, unless a scaling by p had
taken place on discovering that the model was non-minimal. The most complicated part of
the algorithm is the branch for reduction type I∗m, where one successively refines the model
p-adically until certain auxiliary quadratics have distinct roots modulo p. This requires careful
book-keeping. The presentation given here closely follows our own implementation of the
algorithm, which in turn owes much to an earlier Fortran program written by Pinch. The
following sub-procedures are used:

compute invariants computes the bi, ci and ∆ from the coefficients ai. Note that c4, c6
and ∆ do not change unless a scaling is required, since all other transformations have u = 1.

transcoord(r,s,t,u) applies the coordinate transformation formulae of the previous sec-
tion to obtain new values for the ai and other quantities. All calls to this procedure have u = 1
except when rescaling a non-minimal equation. In each case we first compute suitable values
of r, s and t; usually this requires a separate branch if p = 2 or p = 3.

quadroots(a,b,c,p) returns TRUE if the quadratic congruence ax2 + bx + c ≡ 0 (mod p)
has a solution, and FALSE otherwise. This is used in determining the value of the index cp.

nrootscubic(b,c,d,p) returns the number of roots of the cubic congruence x3 +bx2 +cx+
d ≡ 0 (mod p).

Tate’s Algorithm

INPUT: a1, a2, a3, a4, a6 (integer coefficients of E); p (prime).

OUTPUT: Kp (Kodaira symbol)

fp (Exponent of p in conductor)

cp (Local index)

1. BEGIN

2. compute invariants(b2,b4,b6,b8,c4,c6,∆);

3. n = ord(p,∆);

(Test for type I0)

4. IF n=0 THEN Kp = "I0"; fp = 0; cp = 1; EXIT FI;

(Change coordinates so that p | a3, a4, a6)

5. IF p=2 THEN

6. IF p|b2
7. THEN r = a4 mod p; t = r*(1+a2+a4)+a6 mod p

8. ELSE r = a3 mod p; t = r+a4 mod p

9. FI

10. ELIF p=3 THEN

11. IF p|b2 THEN r = -b6 mod p ELSE r = -b2*b4 mod p FI;

12. t = a1*r+a3 mod p

13. ELSE

14. IF p|c4 THEN r = -inv(12,p)*b2 ELSE r = -inv(12*c4,p)*(c6+b2*c4) FI;

15. t = -inv(2,p)*(a1*r+a3);

16. r = r mod p; t = t mod p

17. FI;



3.2 THE KRAUS–LASKA–CONNELL ALGORITHM AND TATE’S ALGORITHM 67

18. transcoord(r,0,t,1);

(Test for types In, II, III, IV)

19. IF p-c4 THEN

20. IF quadroots(1,a1,-a2,p) THEN cp = n ELIF 2|n THEN cp = 2 ELSE cp = 1 FI;

21. Kp = "In"; fp = 1; EXIT

22. FI;

23. IF p2-a6 THEN Kp = "II"; fp = n; cp = 1; EXIT;

24. IF p3-b8 THEN Kp = "III"; fp = n-1; cp = 2; EXIT;

25. IF p3-b6 THEN

26. IF quadroots(1,a3/p,-a6/p2,p) THEN cp = 3 ELSE cp = 1 FI;

27. Kp = "IV"; fp = n-2; EXIT

28. FI;

(Change coordinates so that p | a1, a2; p
2 | a3, a4; p

3 | a6)

29. IF p=2

30. THEN s = a2 mod 2; t = 2*(a6/4 mod 2)

31. ELSE s = -a1*inv(2,p); t = -a3*inv(2,p)

32. FI;

33. transcoord(0,s,t,1);

(Set up auxiliary cubic T 3 + bT 2 + cT + d)

34. b = a2/p; c = a4/p2; d = a6/p3;

35. w = 27*d2-b2*c2+4*b3*d-18*b*c*d+4*c3;

36. x = 3*c-b2;

(Test for distinct roots: type I∗0)

37. IF p-w THEN Kp = "I*0"; fp = n-4; cp = 1+nrootscubic(b,c,d,p); EXIT

(Test for double root: type I∗m)

38. ELIF p-x THEN

(Change coordinates so that the double root is T ≡ 0)

39. IF p=2 THEN r = c ELIF p=3 THEN r = b*c ELSE r = (b*c-9*d)*inv(2*x,p) FI;

40. r = p*(r mod p);

41. transcoord(r,0,0,1);

(Make a3, a4, a6 repeatedly more divisible by p)

42. m = 1; mx = p2; my = p2; cp = 0;

43. WHILE cp=0 DO

44. BEGIN

45. xa2 = a2/p; xa3 = a3/my; xa4 = a4/(p*mx); xa6 = a6/(mx*my);

46. IF p-(xa32+4*xa6) THEN

47. IF quadroots(1,xa3,-xa6,p) THEN cp = 4 ELSE cp = 2 FI

48. ELSE

49. IF p=2 THEN t = my*xa6 ELSE t = my*((-xa3*inv(2,p)) mod p) FI;

50. transcoord(0,0,t,1);

51. my = my*p; m = m+1;

52. xa2 = a2/p; xa3 = a3/my; xa4 = a4/(p*mx); xa6 = a6/(mx*my);

53. IF p-(xa42-4*xa2*xa6) THEN

54. IF quadroots(xa2,xa4,xa6,p) THEN cp = 4 ELSE cp = 2 FI

55. ELSE

56. IF p=2 THEN r = mx*(xa6*xa2 mod 2)



68 III. ELLIPTIC CURVE ALGORITHMS

57. ELSE r = mx*(-xa4*inv(2*xa2,p) mod p)

58. FI;

59. transcoord(r,0,0,1);

60. mx = mx*p; m = m+1

61. FI

62. FI

63. END;

64. fp = n-m-4; Kp = "I*m"; EXIT

65. ELSE

(Triple root case: types II∗, III∗, IV∗ or non-minimal)
(Change coordinates so that the triple root is T ≡ 0)

66. IF p=3 THEN rp = -d ELSE rp = -b*inv(3,p) FI;

67. r = p*(rp mod p);

68. transcoord(r,0,0,1);

69. x3 = a3/p2; x6 = a6/p4;

(Test for type IV∗)

70. IF p-(x32+4*x6) THEN

71. IF quadroots(1,x3,-x6,p) THEN cp = 3 ELSE cp = 1 FI;

72. Kp = "IV*"; fp = n-6; EXIT

73. ELSE

(Change coordinates so that p3 | a3, p
5 | a6)

74. IF p=2 THEN t = x6 ELSE t = x3*inv(2,p) FI;

75. t = -p2*(t mod p);

76. transcoord(0,0,t,1);

(Test for types III∗, II∗)

77. IF p4-a4 THEN Kp = "III*"; fp = n-7; cp = 2; EXIT

78. ELIF p6-a6 THEN Kp = "II*"; fp = n-8; cp = 1; EXIT

79. ELSE

(Equation non-minimal: divide each ai by pi and start again)

80. transcoord(0,0,0,p); restart

81. FI

82. FI

83. END

In Table 1 we will give the local reduction data for each curve at each ‘bad’ prime (dividing
the discriminant of the minimal model). We also give the factorization of the minimal discrim-
inant and of the denominator of j, as in the earlier tables. To save space we omit the c4 and
c6 invariants, which are easily computable from the coefficients ai.

3.3 Computing the Mordell–Weil group I: finding torsion points

In this and the next three sections we will discuss the question of determining the Mordell–
Weil group E(Q) of rational points on an elliptic curve E defined over Q. This group is finitely
generated, by Mordell’s Theorem, and hence has the structure

E(Q) = T × F



3.3 COMPUTING THE MORDELL–WEIL GROUP I: FINDING TORSION POINTS 69

where T is the finite torsion subgroup E(Q)tors of E(Q) consisting of the points of finite order,
and F is free abelian of some rank r ≥ 0:

F ∼= Zr.

The problem of computing E(Q) thus subdivides into several parts:
• computing the torsion T ;
• computing the rank r;
• finding r independent points of infinite order;
• computing a Z-basis for the free part F .
A related task is to compute the regulator R(E(Q)) (defined below); for this and for the

latter two steps we will also need to compute the canonical height ĥ(P ) of points P ∈ E(Q),

and hence the height pairing ĥ(P,Q).
In this section we will treat the easiest of these problems, that of finding the torsion points.

In fact, these can be found as a byproduct of the more general search for points on the curve,
since their naive height can be bounded (see the remark before Lemma 3.5.2). However, it is
also useful to have a self-contained method for determining the torsion.

Using the fact that E(R) is isomorphic either to the circle group S1 (when ∆ < 0) or to
S1 ×C2 (when ∆ > 0), where Ck denotes a cyclic group of order k, together with the fact that
all finite subgroups of S1 are cyclic, we see that T is isomorphic either to Ck or to C2k ×C2 for
some k ≥ 1, the latter only being possible when ∆ is positive. The number of possible values
of k is finite: by a theorem of Mazur [39],[40], a complete list of possible structures of T is

Ck for 1 ≤ k ≤ 10 or k = 12;

C2k × C2 for 1 ≤ k ≤ 4.

To determine the torsion subgroup of an elliptic curve defined over Q, we may use a form
of the Lutz–Nagell Theorem. (The situation is more complicated over number fields other
than Q, on account of the ramified primes.) The first step is to find a model for the curve in
which all torsion points are integral. For this it suffices to complete the square (if necessary)
to eliminate the xy and y terms, at the expense of a scaling by u = 2. Then for P = (x, y)
a torsion point, we can use the fact that both P and 2P are integral to bound y. For the
first step, the following result may be found in [33, Section III.1] and [28, Theorem 5.1]. The
original form of this result, due independently to Lutz [36] and Nagell [46], was for curves of
the form y2 = x3 + ax + b, with no x2 term. While such an equation may be obtained by
completing the cube, this would involve a further scaling of coordinates, and so would lead
to larger numbers. If a1 = a3 = 0 we can apply the following result directly; otherwise, put
a = b2, b = 8b4 and c = 16b6.

Proposition 3.3.1. Let E be an elliptic curve defined over Q, given by an equation

(3.3.1) y2 = f(x) = x3 + ax2 + bx+ c

where a, b, c ∈ Z. If P = (x, y) ∈ E(Q) has finite order, then x, y ∈ Z.

Next we bound the y coordinate of a torsion point P = (x, y) (see [33, Theorem 1.4]).

Proposition 3.3.2. Let E be as in (3.3.1). If P = (x1, y1) has finite order in E(Q) then
either y1 = 0 or y2

1 | ∆0, where

∆0 = 27c2 + 4a3c+ 4b3 − a2b2 − 18abc.



70 III. ELLIPTIC CURVE ALGORITHMS

Proof. If 2P = 0 then y1 = 0, since −P = (x1,−y1). Otherwise 2P = (x2, y2) with x2, y2 ∈ Z
by Proposition 3.3.1. Using the addition formula on E we find that 2x1 + x2 = m2 − a where
m = f ′(x1)/2y1 is the slope of the tangent to E at P . Hence m ∈ Z, so that y1 | f ′(x1). Using
y2
1 = f(x1), this implies that y2

1|∆0, since

∆0 = (−27f(x) + 54c+ 4a3 − 18ab)f(x) + (f ′(x) + 3b− a2)f ′(x)2. �

This gives us a finite number of values of y to check; for each, we attempt to solve the cubic
for x ∈ Z, to obtain all torsion points on E. Note that we are actually determining all points
P such that both P and 2P are integral (in the possibly scaled model for E), which includes
all torsion points, but may also include points of infinite order. To determine whether a given
integral point has finite or infinite order, we simply compute multiples mP successively until
either mP = 0, in which case P has order m, or mP is not integral, in which case P has infinite
order. This does not take long, as the maximum possible order for a torsion point is 12 by
Mazur’s theorem. If we find points of infinite order at this stage we keep a note of them for
later use (see Section 3.5).

The quantity ∆0 is related to the discriminant ∆ of the curve (3.3.1) by ∆ = −16∆0. If this
is large, there may be many values of y0 to check when we apply the preceding Proposition to
determine the torsion on a given curve. It is possible to save time by using a further result,
which states that for an odd prime p of good reduction (that is, p - 2∆), the reduction map
from E(Q)tors to E(Z/pZ) is injective. For more details, and worked examples, see either [58,
Section VIII.7] or [28, Section V.1].

If we want to know the structure of T and not just its order, note that from Mazur’s theorem
the only ambiguous cases are when T has order 4k = 4, 8 or 12 and ∆ > 0; we can always tell
apart the groups C4k and C2 × C2k as the former has only one element of order 2 while the
latter has three, and this number is the number of rational (integer) roots of f(x).

To solve the cubic equations f(x) = y2 for x, given y, we use the classical formula of Cardano
(see any algebra textbook) to find the complex roots (which we also need in computing the
periods in section 3.7 below), and if any of these are real and close to integers we check them
using exact integer arithmetic. Testing all divisors of the constant term can be too time-
consuming, as it involves factorization of the numbers y2 − c which may be very large.

Here is the algorithm in pseudocode; for simplicity we only give it for curves with no xy or
y terms; in the general case, one works internally with points on a scaled model (including the
calculation of the order), converting back to the original model on output. Since we know in
advance that no point will have order greater than 12, when computing the order of a point
we simply use repeated addition until we reach a non-integral point or the identity O. The
subroutine order(P) returns 0 for a point of infinite order. Also: square part(∆) returns
the largest integer whose square divides ∆; integer roots returns a list of the integer roots
of a cubic with integral coefficients; and integral(x) tests whether its (rational) argument is
integral.

Algorithm for finding all torsion points

INPUT: a,b,c (integer coefficients of a nonsingular cubic).

OUTPUT: A list of all torsion points on y2=x3+ax2+bx+c, with orders.

1. BEGIN

2. ∆=27*c2+4*a3*c+4*b3-a2*b2-18*a*b*c;

3. y list=positive divisors(square part(∆)) ∪ {0};
4. FOR y IN y list DO

5. BEGIN



3.4 HEIGHTS AND THE HEIGHT PAIRING 71

6. x list=integer roots(x3+a*x2+b*x+c-y2);

7. FOR x IN x list DO

8. BEGIN

9. P=point(x,y);

10. n=order(P);

11. IF n>0 THEN OUTPUT P,n FI

12. END

13. END

14. END

(Subroutine to compute order of a point)

SUBROUTINE order(P)

1. BEGIN

2. n=1; Q=P;

3. WHILE integral(x(Q)) AND Q6=O DO

4. BEGIN

5. n = n+1; Q = Q+P

6. END;

7. IF Q6=O THEN n=0 FI;

8. RETURN n

9. END

3.4 Heights and the height pairing

In this section we will show how to compute the canonical height ĥ(P ) of a point P ∈ E(Q),
and hence the height pairing

ĥ(P,Q) =
1

2
(ĥ(P +Q) − ĥ(P ) − ĥ(Q)).

We will use this in the following section to find dependence relations among finite sets of
points of infinite order, when we are computing a Z-basis {P1, . . . , Pr} for the free abelian
group E(Q)/T . Also, the regulator R(E) is given by the determinant of the height pairing
matrix:

R(E) =
∣

∣

∣
det(ĥ(Pi, Pj))

∣

∣

∣
.

The canonical height ĥ is a real-valued quadratic form on E(Q). It differs by a bounded amount
(with a bound dependent on E but not on the point P ) from the naive or Weil height h(P ).
For a point P = (x, y) = (a/c2, b/c3) ∈ E(Q) with a, b, c ∈ Z and gcd(a, c) = 1 = gcd(b, c), the
latter is defined to be

h(P ) = log max{|a|, c2}.

Now the canonical height may be defined as ĥ(P ) = limn→∞ 4−nh(2nP ), but this is not
practical for computational purposes. For the theory of heights on elliptic curves, see [58,
Chapter VIII]. Later (in the next section) we will need an explicit bound on the difference

between ĥ(P ) and h(P ).
The height algorithms in this section are taken from Silverman’s paper [59]. The global

height ĥ(P ) is defined as a sum of local heights:

(3.4.1) ĥ(P ) =
∑

p≤∞

ĥp(P ).



72 III. ELLIPTIC CURVE ALGORITHMS

Here the sum is over all finite primes p and the ‘infinite prime’ ∞ coming from the real
embedding of Q. (Over a general number field, there would in general be several of these
infinite primes, including complex ones, and the local heights need to be multiplied by certain
multiplicities: see [59]).

A remark about normalization1: the canonical height must be suitably normalized. In the
literature there are two normalizations used, one of which is double the other and is the one
appropriate for the Birch–Swinnerton-Dyer conjecture (resulting in a regulator 2r times as
large). In Silverman’s paper he uses the other (smaller) normalization. Thus all the formulae
here are double those in the paper [59].

The following proposition, which is Theorem 5.2 of [59] (for curves over general number
fields) specialized to the case of a curve defined over Q, also applies to a curve defined over Qp

and to a point P = (x, y) ∈ E(Qp). In the proposition, we refer to the functions ψ2 and ψ3

defined on E by

ψ2(P ) = 2y + a1x+ a3, and ψ3(P ) = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8;

thus, ψ2 vanishes at the 2-torsion points of E and ψ3 at the 3-torsion.

Proposition 3.4.1. Let E be an elliptic curve defined over Q given by a standard Weierstrass
equation (3.1.1) which is minimal at p, and let P = (x, y) ∈ E(Q).
(a) If

ordp(3x
2 + 2a2x+ a4 − a1y) ≤ 0 or ordp(2y + a1x+ a3) ≤ 0

then
ĥp(P ) = max{0,−ordp(x)} log p.

(b) Otherwise, if ordp(c4) = 0 then set N = ordp(∆) and M = min{ordp(ψ2(P ), 1
2N}; then

ĥp(P ) =
M(M −N)

N
log p.

(c) Otherwise, if ordp(ψ3(P )) ≥ 3ordp(ψ2(P )) then

ĥp(P ) = −2

3
ordp(ψ2(P )) log p.

(d) Otherwise

ĥp(P ) = −1

4
ordp(ψ3(P )) log p.

The first case in Proposition 3.4.1 covers primes p where the point P has good reduction
(including all primes where E has good reduction, as well as those where the reduced curve
is singular but P does not reduce to the singular point). In the other three cases, P has
singular reduction, and the reduction of E at p is multiplicative, additive of types IV or IV∗,
and additive of types III, III∗ and I∗m respectively.

Hence for each point P , the local height ĥp(P ) = 0 if p divides neither the discriminant ∆

nor c, where c2 is the denominator of the x-coordinate of the point P . In all cases, ĥp(P )
is a rational multiple of log(p). The total contribution from the primes dividing c in the

global height ĥ(P ) is therefore (from case (a) of the Proposition) simply 2 log(c), and we have

1I am grateful to Gross for explaining this to me, after I found that apparently the two sides of the Birch–
Swinnerton-Dyer conjecture disagreed by a factor of 2r!



3.4 HEIGHTS AND THE HEIGHT PAIRING 73

the following formula, better for practical computation than (3.4.1) since we do not have to
factorize c:

(3.4.2) ĥ(P ) = ĥ∞(P ) + 2 log(c) +
∑

p|∆,p-c

ĥp(P ).

This formula appears in [62], where it is shown how to compute ĥ(P ) using little (or no)
factorization of ∆, which can be useful in certain situations. We refer the reader to [62] for
details.

An algorithm for computing the local height at a finite prime p is given by the following:

Silverman’s algorithm for computing local heights: finite primes

INPUT: a1, a2, a3, a4, a6 (integer coefficients of a minimal model for E).
x,y (rational coordinates of a point P on E).
p (a prime).

OUTPUT: the local height of P at p.

1. BEGIN

2. compute invariants(b2,b4,b6,b8,c4,∆);

3. N = ord(p,∆);

4. A = ord(p,3*x2+2*a2*x+a4-a1*y);

5. B = ord(p,2*y+a1*x+a3);

6. C = ord(p,3*x4+b2*x3+3*b4*x2+3*b6*x+b8);

7. M = min(B,N/2);

8. IF A ≤ 0 OR B ≤ 0 THEN L = max(0,-ord(p,x))

9. ELSE IF ord(p,c4)=0 THEN L = M*(M-N)/N

10. ELSE IF C ≥ 3*B THEN L = -2*B/3

11. ELSE L = -C/4

12. FI;

13. RETURN L*log(p)

14. END

We must also compute the local component of the height at the infinite prime, ĥ∞(P ).
The method here originated with Tate, but was amended by Silverman in [59] to improve

convergence, and to apply also to complex valuations. Tate in [66] expressed ĥ∞(P ) as a series

ĥ∞(P ) = log |x| + 1

4

∞
∑

n=0

4−ncn

where the coefficients cn are bounded provided that no point on E(R) has x-coordinate zero.
Of course, over R one can shift coordinates to ensure that this condition holds, but the resulting
series can have poor convergence properties, and this trick will not work over C. Silverman’s
solution is to use alternately the parameters x and x′ = x + 1, switching between them (and
between the two associated series cn and c′n) whenever |x| or |x′| becomes small (less than
1/2). The series of coefficients cn is obtained by repeated doubling of the point P , working
with t = 1/x or t′ = 1/x′ as local parameter. The result is a new series of the above type in
which the error in truncating before the Nth term is O(4−N ), with an explicit constant. In
fact (see [59, Theorem 4.2]) the error is less than 1

2
10−d, giving a result correct to d decimal

places, if

N ≥ 5

3
d+

1

2
+

3

4
log(7 +

4

3
logH +

1

3
log max{1, |∆|−1})



74 III. ELLIPTIC CURVE ALGORITHMS

where

H = max{4, |b2|, 2|b4|, 2|b6|, |b8|}.

The last term vanishes for curves defined over Z, since then we have |∆| > 1.

In the algorithm which we now give, the quantities b2’, b4’, b6’ and b8’ are those
associated with the shifted model of E with x′ = x+1; the switching flag beta indicates which
model we are currently working on; mu holds the current partial sum; f holds the negative
power of 4.

Silverman’s algorithm for computing local heights: real component

INPUT: a1, a2, a3, a4, a6 (integer coefficients of a minimal model for E).
x (x-coordinate of a point P on E).
d (number of decimal places required).

OUTPUT: the real local height of P.

1. BEGIN

2. compute invariants(b2,b4,b6,b8);

3. H = max(4,|b2|,2*|b4|,2*|b6|,|b8|);

4. b2’ = b2-12; b4’ = b4-b2+6; b6’ = b6-2*b4+b2-4; b8’ = b8-3*b6+3*b4-b2+3;

5. N = ceiling((5/3)*d + (1/2) + (3/4)*log(7+(4/3)*log(H)));

6. IF |x|<0.5 THEN t = 1/(x+1); beta = 0 ELSE t = 1/x; beta = 1 FI;

7. mu = -log|t|; f = 1;

8. FOR n = 0 TO N DO

9. BEGIN

10. f = f/4;

11. IF beta=1 THEN

12. w = b6*t4+2*b4*t3+b2*t2+4*t;

13. z = 1-b4*t2-2*b6*t3-b8*t4;

14. zw = z+w

15. ELSE

16. w = b6’*t4+2*b4’*t3+b2’*t2+4*t;

17. z = 1-b4’*t2-2*b6’*t3-b8’*t4;

18. zw = z-w

19. FI;

20. IF |w| ≤ 2*|z|

21. THEN mu = mu+f*log|z|; t = w/z

22. ELSE mu = mu+f*log|zw|; t = w/zw; beta = 1-beta

23. FI

24. END;

25. RETURN mu

26. END

Finally, to compute the global height ĥ(P ), we simply add to the infinite local height ĥ∞(P )

the finite local heights ĥp(P ) for all primes p dividing either ∆ or the denominator of x(P ).
Using (3.4.2) this leads to the following algorithm.



3.5 THE MORDELL–WEIL GROUP II: GENERATORS 75

Algorithm for computing global canonical heights

INPUT: a1, a2, a3, a4, a6 (integer coefficients of a minimal model for E).
P=(x,y) (a rational point P on E).

OUTPUT: the global canonical height ĥ(P ) of P.

1. BEGIN

2. ∆= discr(a1,a2,a3,a4,a6);

3. d = denom(x);

4. h = real height(P) + log(d);

5. p list = prime divisors(∆);

6. FOR p IN p list DO

7. BEGIN

8. IF p-d THEN h = h + local height(p,P) FI

9. END;

10. RETURN h

11. END

3.5 The Mordell–Weil group II: generators

In this section we will show how we look for rational points of infinite order on an elliptic
curve E. In compiling the tables, we usually knew the rank r in advance so that we knew how
many independent points to expect to find (and only looked for such points when we knew
that r > 0); however, this procedure is also useful as an open-ended search when we do not
know the rank, as obviously it can provide us with a lower bound for r.

The procedure divides into two parts. First, we have a searching routine which looks for
points up to some bound on the naive height (equivalently, some bound on the numerator and
denominator of the x-coordinate). As this routine finds points, it gives them to the second
routine, which has at each stage a Z-basis for a subgroup A of E(Q)/T : initially A = 0. This
second routine uses the height pairing to determine one of three possibilities: the new point
P may be independent of those already found and can then be added to our cumulative list
of independent points; the rank of A is thus increased by 1. Secondly, P may be an integral
combination of the current basis (modulo torsion) and can then be ignored. Finally, if a
multiple kP of P is an integral combination of the current basis for some k > 1, we can find a
basis for a new subgroup A which contains the old A with index k. Even when we know the
rank r in advance, we do not stop as soon as we have a subgroup A of rank r, since A might still
have finite index in E(Q)/T . To close this final gap we use explicit bounds for the difference
between the naive and canonical heights, such as Silverman’s result (Proposition 3.5.1) below.

The algorithm we use for the second procedure is a very general one, which can be used in
many other similar situations; for example, as part of an algorithm for finding the unit group
of a number field, where the first routine somehow finds units. Our algorithm is essentially the
same as the ‘Algorithm for enlarging sublattices’ in the book by Pohst and Zassenhaus [50,
Chapter 3.3].

A rational point P on E (given by a standard Weierstrass equation) may be written uniquely
as P = (x, y) = (a/c2, b/c3) with integers a, b, and c satisfying gcd(a, c) = gcd(b, c) = 1 and
c ≥ 1. The naive or Weil height of P is h(P ) = log max{|a|, c2}. Initially, we find the point of
order 2 in E(R) with minimal x-coordinate x0; this gives a lower bound for the x-coordinates
of all real points on E. We then search for points P with naive height up to some bound B
by looping through positive integers c ≤ exp(B/2) and through a coprime to c in the range2

2If E(R) has three points of order two, with x-coordinates x0 < x1 < x2, then we also omit those a for
which c2x1 < a < c2x2.



76 III. ELLIPTIC CURVE ALGORITHMS

max{c2x0,− exp(B)} ≤ a ≤ exp(B). Given a and c, we attempt to solve the appropriate
quadratic equation for b ∈ Z. To speed up this procedure, we use a quadratic sieve: for
each denominator c we precompute for about 10 auxiliary sieving primes p the residue classes
modulo p to which amust belong if the equation for b is to be soluble modulo p. Each candidate
value of a can then first be checked to see if it is admissible modulo each sieving prime before
the more time-consuming step of attempting to solve for b. This improvement to the search
results in a major time saving in most cases, though for most of the curves in our tables on
which we expected to find points of infinite order, such a point was found very quickly anyway.
(In some cases we had already found such a point during the search for torsion points.) In
practice it may be better to use composite moduli for the sieving.

Each point P found by this search is passed to the second procedure, which tests whether
it has infinite order, discarding it if not. At the general stage we will have k independent
points Pi for 1 ≤ i ≤ k (initially k = 0) which generate a subgroup A of rank k, and will have
stored the k × k height pairing matrix M = (h(Pi, Pj)) and its determinant R. Now we set

Pk+1 = P and compute ĥ(Pi, Pk+1) for i ≤ k + 1 to obtain a new height pairing matrix of
order k+1. If the determinant of this new matrix is non-zero, the new point is independent of
the previous ones and we add it to the current list of generators, increment k, replace R by the
new determinant, and go on with the point search. If the new determinant is zero, however,
we use the values h(Pi, P ) to express Pk+1 as a linear combination of the Pi for i ≤ k, with
approximate real coefficients: in fact we have

a1P1 + a2P2 + . . .+ akPk + ak+1Pk+1 = 0 (modulo torsion)

where for 1 ≤ i ≤ k+1 the coefficient ai is the (i, k+1) cofactor of the enlarged matrix, which
we will have stored during the computation of the new determinant. In particular, ak+1 is (up
to sign) the previous value of R, and hence is non-zero. Next we find rational approximations to
these floating-point coefficients ai (using continued fractions, or MLLL if available), and clear
denominators to obtain a new equation of the same form with coprime integer coefficients ai,
which we can check holds exactly. In this relation we still have ak+1 6= 0 (the first k points
are independent). The simplest case now is when ak+1 = ±1, for then Pk+1 is redundant and
can be discarded. Similarly, if ai = ±1 for some i ≤ k, then we may discard Pi, replacing it
by Pk+1, and gaining index |ak+1|. In general let ai be the minimal non-zero coefficient (in
absolute value); if |ai| > 1, we find a coefficient aj not divisible by ai (which must exist since
the coefficients are coprime) and write aj = aiq + b where 0 < b < |ai|. Now since

aiPi + ajPj = aiPi + (aiq + b)Pj = ai(Pi + qPj) + bPj

we may replace the generator Pi by Pi + qPj , replace the coefficient aj by b (which is smaller
than |ai|), and replace i by j. After a finite number of steps we obtain a minimal coefficient
ai = 1 and can discard the current generator Pi, leaving a new set of k independent generators
which generate a group larger than before by a finite index equal to the original value of |ak+1|.

In this way, we will be able to find a Z-basis for the subgroup A of the Mordell–Weil group
(modulo torsion) which is generated by the points of naive height less than the bound B. Often
we know the rank r of our curve in advance, so that we can increase B until A has rank r.
Then A has finite index in E(Q), and we must enlarge it to give the whole of E(Q). There are
various methods one can use here, all of which rely on having explicit bounds for the difference
between the naive and canonical heights on the curve E. The simplest general bound here is
a result of Silverman (see [60]). One can certainly often obtain better bounds for individual
curves, and there are also more complicated results which apply in general and which usually
give much better bounds, such as the main result of [57].



3.5 THE MORDELL–WEIL GROUP II: GENERATORS 77

For simplicity we will only give Silverman’s version of the bound. In the following proposi-
tion,3 the height of a rational number a/b with gcd(a, b) = 1 is h(a/b) = log max{|a|, |b|}, and
log+(x) = log max{1, |x|} for x ∈ R.

Proposition 3.5.1. Let E be an elliptic curve defined by a standard Weierstrass equation
over Z, with discriminant ∆ and j-invariant j. Set 2∗ = 2 if b2 6= 0, or 2∗ = 1 if b2 = 0.
Define

µ(E) =
1

6

(

log |∆| + log+(j)
)

+ log+(b2/12) + log(2∗).

Then for all P ∈ E(Q),

− 1

12
h(j) − µ(E) − 1.922 ≤ ĥ(P ) − h(P ) ≤ µ(E) + 2.14.

This result is easiest to apply in the rank 1 case, as follows. Suppose we have a rational point
P of infinite order on E, of height ĥ(P ). If P is not a generator it is a multiple P = kQ (modulo

torsion) of some generatorQ, where k ≥ 2, so that ĥ(Q) ≤ 1
4 ĥ(P ). By the preceding proposition

we can bound the naive height of Q and adjust the bound B in our search accordingly. If a
further search up to this bound finds no more points, then P was a generator after all; otherwise
we are sure to find a generator.

Similar techniques are possible in higher rank situations, using estimates from the geometry
of numbers. See the papers [70] and [57] for more details.

We may also remark that since P has finite order if and only if ĥ(P ) = 0, the proposition
implies that all torsion points have naive height h(P ) ≤ 1

12
h(j) + µ(E) + 1.922, giving us

another way of finding all the rational torsion points.
For the general case, the following simple result4 may be used.

Lemma 3.5.2. Let B > 0 be such that

S = {P ∈ E(Q) | ĥ(P ) ≤ B}

contains a complete set of coset representatives for 2E(Q) in E(Q). Then S generates E(Q).

Proof. Let A be the subgroup of E(Q) modulo torsion generated by the points in S. Suppose

that A is a proper subgroup; then we may choose Q ∈ E(Q) − A with ĥ(Q) minimal, since ĥ
takes a discrete set of values. By hypothesis, there exist P ∈ A and R such that Q = P + 2R;

certainly R 6∈ A, so that ĥ(R) ≥ ĥ(Q) by minimality. Now using the fact that ĥ is quadratic
and non-negative we obtain a contradiction:

ĥ(P ) =
1

2
(ĥ(Q+ P ) + ĥ(Q− P )) − ĥ(Q)

≥ 1

2
ĥ(2R) − ĥ(Q)

= 2ĥ(R) − ĥ(Q) ≥ ĥ(Q) > B. �

We have two ways of using this in practice. First of all, it is possible to obtain from the
two-descent procedure which we use to determine the rank (see the next section), a set of coset
representatives for E(Q) modulo 2E(Q). Computing the heights of these points we can find

3When referring to [60], recall that our ĥ is double Silverman’s; also, the constant 1.922 appearing here is

a (normalized) correction, due to Bremner, of the constant in Silverman’s paper.
4Attributed in [60] to Zagier, it is also exercise 5 on page 84 of Cassels’ book [8].



78 III. ELLIPTIC CURVE ALGORITHMS

a B for which the Lemma holds, to which we add the maximum difference between naive and
canonical heights from the preceding proposition to get a bound on the naive heights of a set
of generators.

Alternatively, assuming that we know the rank r, we first run our search until we find r
independent points Pi. Now it is easy to check whether a point P is twice another: if any
subset of the Pi sums to 2Q for some Q we replace one of the Pi in the sum by Q and gain
index 2. After a finite number of steps (since we are in a finitely-generated group) we obtain
independent points which are independent modulo 2, and proceed as before.

Again, we have only presented here the most straightforward strategies for enlarging a set
of r independent points in E(Q) to a full Z-basis; this is a topic of active research, with new
ideas being developed rapidly: see the paper [57] for some recent advances.

Putting the pieces together, we can determine a set of generators for E(Q) modulo torsion,
and then compute the regulator, provided that we know its rank. If we do not know the rank,
we at least can obtain lower bounds for the rank. Together with the torsion points found in
section 3.3, we will have determined the Mordell–Weil group E(Q) explicitly. Computing the
rank is the subject of the next section.

3.6 The Mordell–Weil group III: the rank

For an elliptic curve E defined over the rationals, the rank of the Mordell–Weil group E(Q) is
by far the hardest of the elementary quantities associated with E to compute, both theoretically
and in terms of implementation. Strictly speaking, the two-descent algorithms we will describe
are not algorithms at all, as they are not guaranteed to terminate in all cases. One part of the
procedure involves establishing whether or not certain curves of genus one have rational points,
when they are known to have points everywhere locally (that is, over R and over the p-adic
field Qp for all primes p): there is no known algorithm to decide this in general. Moreover,
even without this difficulty, for curves with large coefficients and no rational points of order
two, the general two-descent algorithm takes too long to run in practice. For simplicity, we
will refer to the procedures as rank algorithms, although their output in certain cases will be
bounds on the rank rather than its actual value.

We originally decided to implement a general two-descent procedure in order to check that
the modular curves we had computed did have their rank equal to the analytic rank, which
we knew, as described in the previous chapter. This was a somewhat thankless task, as it
involved a large programming effort, and a large amount of computer time to run the resulting
program, in order to verify that approximately 2500 numbers did in fact have the values 0, 1
or 2 which we were already sure were correct. Since the project started, the major theoretical
advances by Kolyvagin, Rubin and others meant that all the cases of rank 0 or 1 were known
anyway, which left just 18 cases of conjectured rank 2 to verify. In the end we were able to
verify these cases, and to check all but a few dozen of the rank 0 or 1 curves; we also obtained
extra information by the two-descent procedure, such as the 2-rank of the Tate–Shafarevich
group X, and a set of coset representatives for E(Q)/2E(Q).

Since the original implementation, the algorithm has been much improved in many ways
(notably the syzygy sieve in the search for quartics, the systematic use of group structure in the
2-isogeny case, and the use of quadratic sieving in searching for rational points on homogeneous
spaces: see below for details). Our program mwrank,5 based on the algorithm, now works well
on a much larger set of curves, including some of fairly high rank such as a curve of Fermigier
[23] with rank 13 and 2-torsion (see the example below), and several curves with no 2-torsion
and ranks 6, 7 and 8. However, curves with extremely large coefficients, such as Nagao’s curve
of rank (at least) 21 (see [45]), are beyond the reach of this algorithm owing to the enormous

5Available from the author’s ftp site: see the Introduction for details.



3.6 THE MORDELL–WEIL GROUP III: THE RANK 79

search regions required. One can also use the program mwrank to find points on curves which
are too large to find by the search methods of the previous section.

We will not describe here the theory of two-descent, which is the basis of the algorithm, in
great detail. Roughly speaking, one has an injective homomorphism from E(Q)/2E(Q) into a
finite elementary abelian 2-group, the 2-Selmer group, and attempts to determine the image;
if this has order 2t then the rank of E(Q) is t, t− 1 or t− 2 according to whether the number
of points of order 2 in E(Q) is 0, 1 or 3 (respectively). This procedure applies to arbitrary
curves, and is called general two-descent . When E has a rational point P of order two, there
is a rational 2-isogeny φ : E → E ′ = E/ 〈P 〉 and a dual isogeny φ′ : E′ → E. We may then
proceed differently, using a procedure we call two-descent via 2-isogeny : we embed each of
E′/φ(E) and E/φ′(E′) into finite subgroups of Q∗/(Q∗)2, which are easy to write down. This
is in contrast to the general two-descent, where one has to work hard to find the Selmer group
itself. A full description of two-descent can be found in the standard references such as the
books by Silverman [58], Husemöller [27], Knapp [28], or Cassels [8], but the descriptions given
there are only easy to apply when E has all its 2-torsion rational. For the general case where
there are no rational points of order 2, the main reference is one of the original papers [3] by
Birch and Swinnerton–Dyer on their Conjecture, and we followed that paper closely in writing
the first version of our program. More detail on the invariant theory, which has resulted in
substantial improvements to the general two-descent algorithm, can be found in the paper [20];
a very full description of the algorithm, together with its extension to real quadratic number
fields (see also [19]), can be found in Serf’s thesis [52].

Both algorithms involve the classification of certain curves, associated with the given ellip-
tic curve E, called principal homogeneous spaces. These are twists of E: curves of genus 1
isomorphic to E over an extension field, but not (necessarily) over Q itself; they need not have
rational points, so need not themselves be elliptic curves. When they do have rational points,
these map to rational points on E; the maps H → E are called 2-coverings and have degree
4 (in the general two-descent) or 2 (in the 2-isogeny descent). The homogeneous spaces which
arise in both algorithms have equations of the form

(3.6.1) H : y2 = g(x) = ax4 + bx3 + cx2 + dx+ e

where g(x) is a quartic polynomial with rational coefficients. For brevity we will usually refer
to these principal homogeneous spaces simply as quartics. The invariants I and J of g(x) (see
below for their definition) are related to the invariants c4 and c6 of either E or the 2-isogenous
curve E′. In the case of descent via 2-isogeny, g(x) will in fact be a quadratic in x2. We will be
interested in whether the quartic H has points over Q or one of its completions, the p-adics Qp

or the reals R. Such a point will either be an affine point (x, y) satisfying the equation (3.6.1),
or one of the two points at infinity on the projective completion of H, which are rational if
and only if a is a square.

In all cases, a quartic with a (global) rational point (x, y) will lead to a rational point on
the original curve E, and the set of all the rational points thus obtained will cover the cosets
of 2E(Q) in E(Q); thus we will be able to determine the rank of E(Q), and at the same time
obtain a set of points which generates a subgroup of the Mordell-Weil group E(Q) of odd,
finite index. Quartics with no global rational point which are everywhere locally soluble arise
from non-trivial elements in the Tate–Shafarevich group of E (or of E ′); if these exist, we will
only obtain upper and lower bounds for the rank. This is because we currently have no general
procedure for proving that a quartic with no rational points does have none. In practice,
moreover, it is often impossible to distinguish between such a quartic and one with rational
points which are all very large, and hence outside the search region; this happens when a curve
has some very large generators, and in such cases also we may only be able to give bounds for



80 III. ELLIPTIC CURVE ALGORITHMS

the rank. Further work on these questions is clearly needed, and is currently the focus of much
active research.

Since the covering maps H → E have degree 2 or 4, the rational points on H tend to be
smaller (in the sense of naive height) than the rational points they map to on E; this makes
them easier to find by search. Here is an example of this: the curve y2 = x3 − 673 has rank 2,
with generators P1 = (29, 154) and P2 = (33989323537/617612,−1384230292401340/617613).
The second generator, which would take a very long time to find by searching on the curve
itself, is obtained from the rational point (x, y) = (191/97, 123522/972) on the quartic with
coefficients (a, b, c, d, e) = (−2, 4,−24, 164,−58). This is much easier to find: our program
takes less than a second to find the rank and both generators of this curve (but in this time
it does not prove that they are generators, only that they generate a subgroup of finite odd
index in the Mordell-Weil group).

Before we describe the two main two-descent algorithms, we will present algorithms for
determining local solubility and for attempting to determine global solubility of a quartic
equation such as (3.6.1), as these are used in both the algorithms.

Checking local solubility.

Here we present an algorithm for determining the local solubility of a curve of the form
(3.6.1), where g(x) is a square-free quartic polynomial with integer coefficients. It is easy to
generalize this algorithm in two ways: firstly, one might be interested in polynomials of higher
degree (when studying curves of higher genus, for example); secondly, working over a general
number field K, one would replace the p-adic field Qp here with the appropriate completion
of K. These extensions are quite straightforward.

Solubility at the infinite prime (that is, over the reals) is easily determined. If g(x) has a
real root then it certainly takes positive values, so that H has real points; if g(x) has no real
roots, then the values of g(x) have constant sign, and we merely have to check that a > 0.

Regarding the finite primes, we first observe that there are only a finite number which need
checking in each case, for if p is an odd prime not dividing the discriminant of g, then H
certainly has points modulo p which are nonsingular and hence lift to p-adic points. For the
other primes, we present an algorithm first given in [3].

It suffices to determine solubility in Zp for either g(x) or g∗(x) = ex4 + dx3 + cx2 + bx+ a,
and in the latter case we may assume x ∈ pZp. Given xk modulo pk, one tries to lift to a p-adic
point (x, y) with x ≡ xk (mod pk). In [3], conditions are given for this to be possible; more
precisely, one of three possibilities may occur (given k and xk): either a lifting is definitely
possible, and we may terminate the algorithm with a positive result; or it is definitely not
possible, and we reject this value of xk; or it is impossible to decide without considering xk

modulo a higher power of p. The test for this lifting is given below in the two subroutines called
lemma6 and lemma7, named after the corresponding results in [3]. This leads to a recursive
algorithm which is guaranteed to terminate since in any given case there is an exponent k such
that it is possible6 to determine p-adic solubility by considering solubility modulo pk. All this
is an exercise in Hensel’s Lemma; the prime p = 2 needs to be considered separately. For the
details, we refer to the pseudocode below, or to [3]. Further information on local solubility
may be found in [56] and [57].

Here is the pseudocode for these algorithms. Note that for any given elliptic curve, all the
homogeneous spaces considered will have the same discriminant as the curve (up to a power
of 2), so that in practice we would not need to factorize the discriminant of each quartic.

6In fact, if k > ordp(disc(g)), and also k ≥ 2 when p = 2, then the third possibility cannot occur in
algorithms lemma6 and lemma7.



3.6 THE MORDELL–WEIL GROUP III: THE RANK 81

Algorithm for determining local solubility of a quartic

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))

OUTPUT: TRUE/FALSE (solubility of y2=g(x) in R and in Qp for all p)

1. BEGIN

2. IF NOT R soluble(a,b,c,d,e) THEN RETURN FALSE FI;

3. IF NOT Qp soluble(a,b,c,d,e,2) THEN RETURN FALSE FI;

4. ∆ = discriminant(a,b,c,d,e);

5. p list = odd prime factors(∆);

6. FOR p IN p list DO

7. BEGIN

8. IF NOT Qp soluble(a,b,c,d,e,p) THEN RETURN FALSE FI

9. END;

10. RETURN TRUE

11. END

(Subroutine for determining real solubility)

SUBROUTINE R soluble(a,b,c,d,e)

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))

OUTPUT: TRUE/FALSE (solubility of y2=g(x) in R)

1. BEGIN

2. IF a>0 THEN RETURN TRUE FI;

3. x list = real roots(a*x4+b*x3+c*x2+d*x+e=0);

4. IF length(x list)>0 THEN RETURN TRUE FI;

5. RETURN FALSE

6. END

(Subroutine for determining p-adic solubility)

SUBROUTINE Qp soluble(a,b,c,d,e,p)

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))

p (a prime)

OUTPUT: TRUE/FALSE (solubility of y2=g(x) in Qp)

1. BEGIN

2. IF Zp soluble(a,b,c,d,e,0,p,0) THEN RETURN TRUE FI;

3. IF Zp soluble(e,d,c,b,a,0,p,1) THEN RETURN TRUE FI;

4. RETURN FALSE

5. END

(Recursive Zp-solubility subroutine)

SUBROUTINE Zp soluble(a,b,c,d,e,x k,p,k)

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))

p (a prime)

x k (an integer)

k (a non-negative integer)

OUTPUT: TRUE/FALSE (solubility of y2=g(x) in Zp, with x≡x k (mod pk))

1. BEGIN

2. IF p=2

3. THEN code = lemma7(a,b,c,d,e,x k,k)

4. ELSE code = lemma6(a,b,c,d,e,x k,p,k)



82 III. ELLIPTIC CURVE ALGORITHMS

5. FI;

6. IF code=+1 THEN RETURN TRUE FI;

7. IF code=-1 THEN RETURN FALSE FI;

8. FOR t = 0 TO p-1 DO

9. BEGIN

10. IF Zp soluble(a,b,c,d,e,x k+t*pk,p,k+1) THEN RETURN TRUE FI

11. END;

12. RETURN FALSE

13. END

(Zp lifting subroutine: odd p)

SUBROUTINE lemma6(a,b,c,d,e,x,p,n)

1. BEGIN

2. gx = a*x4+b*x3+c*x2+d*x+e;

3. IF p adic square(gx,p) THEN RETURN +1 FI;

4. gdx = 4*a*x3+3*b*x2+2*c*x+d;

5. l = ord(p,gx); m = ord(p,gdx);

6. IF (l≥m+n) AND (n>m) THEN RETURN +1 FI;

7. IF (l≥2*n) AND (m≥n) THEN RETURN 0 FI;

8. RETURN -1

9. END

(Z2 lifting subroutine)

SUBROUTINE lemma7(a,b,c,d,e,x,n)

1. BEGIN

2. gx = a*x4+b*x3+c*x2+d*x+e;

3. IF p adic square(gx,2) THEN RETURN +1 FI;

4. gdx = 4*a*x3+3*b*x2+2*c*x+d;

5. l = ord(p,gx); m = ord(p,gdx);

6. gxodd = gx; WHILE even(gxodd) DO gxodd = gxodd/2;

7. gxodd = gxodd (mod 4);

8. IF (l≥m+n) AND (n>m) THEN RETURN +1 FI;

9. IF (n>m) AND (l=m+n-1) AND even(l) THEN RETURN +1 FI;

10. IF (n>m) AND (l=m+n-2) AND (gxodd=1) AND even(l) THEN RETURN +1 FI;

11. IF (m≥n) AND (l≥2*n) THEN RETURN 0 FI;

12. IF (m≥n) AND (l=2*n-2) AND (gxodd=1) THEN RETURN 0 FI;

13. RETURN -1

14. END

A few further remarks on these algorithms: firstly, only trivial changes need to be made to
the algorithms Qp soluble and Zp soluble to make them apply to more general equations of
the form y2 = g(x) where g(x) is a non-constant squarefree integer polynomial. This is relevant
for work on curves of higher genus, and was observed by S. Siksek. Secondly, extensions to
more general p-adic fields are also useful in studying curves over number fields, and again the
extensions of Lemma 6 and Lemma 7 in [3] are not difficult. See the theses [56] and [52] for
details of such extensions.

Lastly, D. Simon observed that in our application of the algorithms lemma6 and lemma7, we
only care whether there is a solution, not necessarily that there is a solution congruent to the
given x (mod pk); hence line 6 of subroutine lemma6 and line 8 of subroutine lemma7 can both
be replaced by:

IF l>2*m THEN RETURN +1 FI.



3.6 THE MORDELL–WEIL GROUP III: THE RANK 83

Checking global solubility.

To determine whether an equation (3.6.1) has a rational point is much harder than the
corresponding local question. All we can do at present is search (efficiently) for a point up to
a certain height, after checking that there is no local obstruction. The only satisfactory way
known at present to decide on the existence of rational points on these homogeneous spaces is
to carry out so-called higher descents; as mentioned above, this is the subject of current work
(see [63], for example), and we will not consider it further here.

Our strategy is to look first for a small rational point, using a very simple procedure with
low overheads; if this fails, we check for local solubility; if this passes, we start a much more
thorough search for a global point, using a quadratic sieving procedure rather similar to the
one described in the previous section for finding points on the elliptic curve itself. (In fact, such
a sieve-assisted search may be used to find rational points on any curve given by an equation
of the form y2 = g(x) where g(x) is a polynomial in x.) The philosophy here is that there is
no point in looking hard for rational points unless one is sure of local solubility, but also that
there is no point in checking local solubility when there is an obvious global point.

To carry out the sieve-assisted search, for each possible denominator of x one precomputes,
for each of several sieving moduli m, the residues to which the numerator of x must belong if
the right-hand side of the equation is to be a square modulo m. In addition, it is easy to see
that for every odd prime p dividing the denominator of the x-coordinate of a rational point,
we must have (a

p
) = +1; so provided that the leading coefficient a is not a square (in which

case the points at infinity are rational anyway), we precompute a list of primes p for which
(a

p ) = −1, and discard possible denominators divisible by any of these primes. For p = 2 a

similar condition holds.7 One also obviously restricts the search to ranges of x for which g(x)
is positive; depending on the number of real roots of g and the sign of a, this splits the search
into up to three intervals. Finally, in the case of two-descent via 2-isogeny, where the quartics
are polynomials in x2 and thus even, we may restrict to positive x.

For reasons of space, we will only give here the code for a simple point search with no
sieving.

Algorithm for searching for a rational point on a quartic: simple version

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))

k1, k2 (lower and upper bounds)

OUTPUT: TRUE/FALSE (solubility of y2=g(x) in Q with x=u/w

and k1 ≤ |u|+w ≤ k2)

1. BEGIN

2. FOR n = k1 TO k2 DO

3. BEGIN

4. IF n=1 THEN

5. IF square(a) RETURN TRUE FI;

6. IF square(e) RETURN TRUE FI

7. ELSE

8. FOR u = 1 TO n-1 DO

9. BEGIN

10. IF gcd(u,n)=1

11. THEN

12. w = n-u;

13. IF square(a*u4+b*u3w+c*u2w2+d*uw3+e*w4) RETURN TRUE FI;

7I am grateful to J. Gebel for this idea, which saves considerable time in practice.



84 III. ELLIPTIC CURVE ALGORITHMS

14. IF square(a*u4-b*u3w+c*u2w2-d*uw3+e*w4) RETURN TRUE FI

15. FI

16. END

17. FI

18. END;

19. RETURN FALSE

20. END

We will now describe the two main two-descent algorithms: two-descent via 2-isogeny for
use when E has a rational point of order 2, and general two-descent in the general case. We
only use general two-descent when there is no point of order 2, so that the first method does
not apply. The situation is not appreciably simpler when E has all three of its points of order
two rational than when there is just one rational point of order two, and so we will not bother
to consider this case separately.

Method 1: descent using 2-isogeny.

Suppose that E has a rational point P of order 2. By a change of coordinates we may
assume that E has equation

E : y2 = x(x2 + cx+ d)

where P = (0, 0), and c, d ∈ Z. Explicitly, in terms of a Weierstrass equation, let x0 be a root
of the cubic x3 + b2x

2 +8b4x+16b6, and set c = 3x0 + b2, d = (c+ b2)x0 +8b4. If a1 = a3 = 0,
then we can avoid a scaling factor of 2 by letting x0 be a root of x3 + a2x

2 + a4x + a6, and
setting c = 3x0 + a2, d = (c+ a2)x0 + a4. The 2-isogenous curve E ′ = E/ 〈P 〉 has equation

E′ : y2 = x(x2 + c′x+ d′)

where
c′ = −2c and d′ = c2 − 4d.

The nonsingularity condition on E is equivalent to dd′ 6= 0. The 2-isogeny φ:E → E ′ has

kernel {0, P} and in general maps (x, y) to
(

y2

x2 ,
y(x2−d)

x2

)

. The dual isogeny φ′:E′ → E maps

(x, y) to
(

y2

4x2 ,
y(x2−d′)

8x2

)

.

For each factorization d = d1d2, with d1 square-free, we consider the homogeneous space

H(d1, c, d2) : v2 = d1u
4 + cu2 + d2.

Let n1 = n1(c, d) be the number of factorizations of d for which the quartic H(d1, c, d2) has
a rational point, and n2 = n2(c, d) the number for which the quartic has a point everywhere
locally. Define n′

1 = n1(c
′, d′) and n′

2 = n2(c
′, d′) similarly. Then it is not hard to show

by rather explicit calculation (see below and the references given) that E(Q)/φ′(E′(Q)) is
isomorphic to the subgroup of Q∗/(Q∗)2 generated by the factors d1 for which H(d1, c, d2) has
a rational point. Thus

|E(Q)/φ′(E′(Q))| = n1,

which must therefore be a power of 2, say n1 = 2e1 ; similarly,

|E′(Q)/φ(E(Q))| = n′
1 = 2e′

1 .

It then follows (see below) that

(3.6.2) rank(E(Q)) = rank(E ′(Q)) = e1 + e′1 − 2.



3.6 THE MORDELL–WEIL GROUP III: THE RANK 85

With luck one will find rational points on all the quartics which have them everywhere
locally; then n1 = n2, and there is no ambiguity in the result. However there will be cases in
which the number ñ1 of quartics on which we can find a rational point is strictly less than n2.
In such cases, we will only have upper and lower bounds for n1, and similarly for n′

1, leading
to upper and lower bounds for the rank. This can happen for two reasons: either there is a
rational point on some quartic, but our search bound was too small to find it; or the quartic
has points everywhere locally but no global rational point.

The quartics H which have points everywhere locally but not globally come from elements
of order 2 in the Tate–Shafarevich groups X(E/Q) and X(E ′/Q). There is an exact sequence

0 → E(Q)/φ′(E′(Q)) → S(φ′)(E′/Q) → X(E′/Q)[φ′] → 0

coming from Galois cohomology; here S(φ′)(E′/Q) is the Selmer group of order n2 whose ele-
ments are represented by the homogeneous spaces H(d1, c, d2) which are everywhere locally sol-
uble, and X(E′/Q) is the Tate–Shafarevich group of E ′. The injective map E(Q)/φ′(E′(Q)) →
S(φ′)(E′/Q) is induced by taking a point (x, y) in E(Q) with x 6= 0 to the space H(d1, c, d2)
where d1 = x modulo squares: if x = d1u

2 and v = uy/x then (u, v) is a rational point on
H(d1, c, d2). The point P = (0, 0) maps to d modulo squares. Conversely, if (u, v) is a rational
point on H(d1, c, d2) then (x, y) = (d1u

2, d1uv) is a rational point on E. (In proving these
statements, one has to check that two rational points on E have the same x-coordinate modulo
squares if and only if their difference is in φ′(E′(Q)); for example, the image of P is d, which
is a square if and only if P ∈ φ′(E′(Q)).) It follows that n1 is the order of E(Q)/φ′(E′(Q)),
as stated above, and hence that

|X(E′/Q)[φ′]| = n2/n1.

Similarly, from the exact sequence

0 → E′(Q)/φ(E(Q)) → S(φ)(E/Q) → X(E/Q)[φ] → 0

with similarly defined maps, we obtain

|X(E/Q)[φ]| = n′
2/n

′
1.

Thus the result is only genuinely ambiguous when either X(E/Q)[φ] or X(E ′/Q)[φ′] is
non-trivial, so that not all elements of the Selmer groups are obtained from rational points
on the elliptic curves. This is rare for the curves in the tables, but obviously must be taken
into account in general. A typical situation is to have n2n

′
2 = 16 and n1n

′
1 ≥ 4, when one

suspects that r = 0 with |X(E/Q)[2]| = 4 or |X(E ′/Q)[2]| = 4, but where it is possible
instead that r = 2 and |X(E/Q)[2]| = |X(E ′/Q)[2]| = 1. Curve 960D1 in the tables is an
example of this, although in this case since the curve is modular and we know that L(E, 1) 6= 0,
it must have rank 0 by the result of Kolyvagin mentioned earlier. We can also deduce this
by working with the 2-isogenous curves 960D3 and 960D2, where there is no ambiguity: here
n1 = n2 = n′

1 = n′
2 = 2, showing that the rank is certainly 0. (Note that isogenous curves have

the same rank, but not necessarily the same order of X, which can work to our advantage in
cases like this.) Returning to the pair 960D1-960D2 where we compute n1 = n2 = 1, n′

2 = 16
and n′

1 ≥ 4, now we know that the rank is in fact zero we can conclude that n′
1 = 4, and that

|X(E/Q)[φ]| = 4. The nontriviality of X(E/Q) in this case is confirmed by the Birch–Swin-
nerton-Dyer conjecture, which for this curve predicts that X has order 4 (see Table 4).

Local solubility of H(d1, c, d2) is automatic for all primes p which do not divide 2dd′; for
those p which do divide 2dd′ we may apply the general criteria of Birch and Swinnerton-Dyer.



86 III. ELLIPTIC CURVE ALGORITHMS

Local solubility in R is easy to determine here: if d′ < 0 then we require d1 > 0, while if
d′ > 0 then either d1 > 0 or c +

√
d′ > 0 is necessary. Thus if either d′ < 0, or d′ > 0 and

c +
√
d′ < 0, then we only consider positive divisors d1 of d, and need not apply the general

test for solubility in R.
Each rational point (u, v) on H(d1, c, d2) maps, as observed above, to the point (d1u

2, d1uv)
on E; modulo φ′(E′(Q)), this is independent of the rational point (u, v), and only depends on
d1 modulo squares. Similarly, a rational point (u, v) on H(d′1, c

′, d′2) maps to a point on E′,
and hence via the dual isogeny φ′ to the point

(

v2

4u2
,
v(d′1u

4 − d′2)

8u3

)

in E(Q). The set of n1n
′
1 points in E(Q) thus determined (by adding the points constructed in

this way) cover the cosets of E(Q)/2E(Q), either once each, when |E(Q)[2]| = 4, which is when
d′ is a square, or twice, when d′ is not a square and |E(Q)[2]| = 2. Thus, when |E(Q)[2]| = 2
we have

n1n
′
1

2
= |E(Q)/2E(Q)| = 2r+1,

while if |E(Q)[2]| = 4 we have

n1n
′
1 = |E(Q)/2E(Q)| = 2r+2;

hence 2r = n1n
′
1/4 in both cases, proving (3.6.2).

When counting n1 and n2 (and similarly, n′
1 and n′

2), it is very useful to use the fact that
each is a power of 2, being the order of an elementary abelian 2-group. This is particularly
important when d (or d′) has many distinct prime factors. Let A0 be the group of all divisors
of d modulo squares, of order n0 (say). Then A0 is generated by −1 and the primes dividing
d, so that n0 = 2e0 where e0 is the number of distinct prime factors of d, plus 1. Within A0 we
must determine the subgroups A1 and A2 of orders n1 and n2, consisting of those divisors d1

of d for which the corresponding homogeneous space is everywhere locally or globally soluble,
respectively.

We can effectively reduce the size of the set A0 of divisors to be searched by a factor up to 8
as follows: as observed above, if either d′ < 0, or d′ > 0 and c +

√
d′ < 0, then we need only

consider positive divisors d1 of d, cutting in two the number of elements of A0 which may lie
in A1. Secondly, we may take advantage of the fact that we know the rational point (0, 0) on
E; thus we know that d is in A2 (though possibly just the identity if d is a square); similarly, if
d′ is a square then x2 + cx+ d factorizes, say as (x− x2)(x− x3), and we know that x2 and x3

also lie in A2.
More generally, whenever we find in the course of our systematic search through the elements

of A0 that the element d1 lies in A2, we can effectively factor out d1 and reduce the number of
remaining values to check by a factor of 2. Of course, this requires careful book-keeping in the
implementation; for simplicity, we omit these refinements from the pseudocode below, where
we simply loop over all square-free divisors of d and d′.

As an example of the saving that can be made, consider the curve of rank 13 constructed
by Fermigier in [23]; this is of the form y2 = x(x2 + cx+ d) with

c = 36861504658225 and

d = 1807580157674409809510400 = 215 · 34 · 52 · 72 · 17 · 23 · 29 · 41 · 103 · 113 · 127 · 809,

so that d has 12 distinct prime factors and 213 = 8192 square-free divisors. Since d is non-square
we can cut the set in half, say by excluding all d1 divisible by the largest prime factor 809,
leaving 4096 values to test. In our implementation, the results of the test are as follows:



3.6 THE MORDELL–WEIL GROUP III: THE RANK 87

• 7 non-trivial values of d1 give rational points after searching, as well as d1 = 1 which gives
the trivial point;

• 120 further values are in the subgroup A2 generated by these 7 values and need not be
tested;

• 122 further values were tested and found to be not everywhere locally soluble, hence not
in A1;

• 3846 further values were discarded as being a product of an element of A2 and an element
not in A1, and hence not in A1.

Thus in this case we find that n1 = n2 = 256, after only having to search for points on seven
homogeneous spaces. Working with the isogenous curve, we obtain n′

1 = n′
2 = 128 after only

searching six homogeneous spaces for points. Thus e1 = 8, e′1 = 7 and the rank is 13. Note that
in the course of computing this value, we have searched precisely 13 homogeneous spaces, and
the points we thereby construct give 13 generators of E(Q)/2E(Q) modulo torsion. Adding
P = (0, 0) to this list gives 14 points which generate E(Q)/2E(Q) (which has order 214), and
which therefore generate a subgroup of finite odd index in the full Mordell-Weil group E(Q).

The situation is not always this simple, however, even for curves where X[2] is trivial,
since there may be homogeneous spaces with rational points which are hard to find. For
example, consider Fermigier’s curve of rank 14 from [23], with c = 2429469980725060 and d =
275130703388172136833647756388 (which has 14 prime factors). When we run our program
using a (logarithmic) bound of 10 in the search for rational points on the quartics, we find
n1 ≥ 64, n′

1 ≥ 128, while n2 = n′
2 = 256. Here the correct values are n1 = n′

1 = 256, giving
r = 14, but we only find 11 ≤ r ≤ 14; and in the process, we have had to search many more
homogeneous spaces for rational points.

Here is the pseudo-code which implements the algorithm just described. The main routine
aborts if either the input curve is singular (this is useful if one wants to apply the algorithm
systematically to a range of inputs) or if there is no point of order two. The latter is detected
in lines 6–7, where an integer root to a monic cubic with integer coefficients is found (if it
exists). Most of the work is done in the subroutine count(c,d,p list) which determines
n2(c, d) and, as far as possible, n1(c, d). Here p list is the set of ‘bad’ primes dividing
2dd′ where local solubility needs to be checked, which we only compute once. There are two
calls to the subroutine rational point(a,b,c,d,e,k1,k2), which seeks a rational u/w with
k1 ≤ |u|+w ≤ k2 such that g(u/w) is a rational square, where g(x) = ax4 + bx3 + cx2 +dx+ e.
(Here w > 0 and gcd(u,w) = 1.) In the first call we carry out a quick check for ‘small’ points;
then we look further, having first checked for everywhere local solubility. The particular
parameters lim1, lim2 for the search will probably be decided at run time. The subroutines
Qp soluble and rational point are implementations of the algorithms given earlier (though
in practice we would use a more efficient algorithm for the second call to rational point, as
explained above).

Algorithm for computing rank: rational 2-torsion case

INPUT: a1, a2, a3, a4, a6 (coefficients of E)
OUTPUT: r min, r max (bounds for rank of E)

S,S’ (upper bounds for #X(E)[φ] and #X(E ′)[φ′])

1. BEGIN

2. IF a1=a3=0

3. THEN s2 = a2; s4 = a4; s6 = a6

4. ELSE s2 = a1*a1+4*a2; s4 = 8*(a1*a3+2*a4); s6 = 16*(a3*a3+4*a6)

5. FI;

6. x list = integer roots(x3+s2*x2+s4*x+s6=0);



88 III. ELLIPTIC CURVE ALGORITHMS

7. IF length(x list)=0 THEN abort ELSE x0 = x list[1] FI;

8. c = 3*x0+s2; d = (c+s2)*x0 + s4;

9. c’ = -2*c; d’ = c2-4*d;

10. IF d*d’=0 THEN abort FI;

11. p list = prime divisors(2*d*d’);

12. (n1,n2) = count(c,d,p list);

13. (n1’,n2’) = count(c’,d’,p list);

14. e1 = log 2(n1); e2 = log 2(n2);

15. e1’ = log 2(n1’); e2’ = log 2(n2’);

16. r min = e1+e1’-2; r max = e2+e2’-2;

17. S = n2’/n1’; S’ = n2/n1;

18. RETURN r min, r max, S, S’

19. END

(Main counting subroutine)

SUBROUTINE count(c,d,p list)

1. BEGIN

2. n1 = n2 = 1; d’ = c2-4*d;

3. d1 list = squarefree divisors(d);

4. FOR d1 IN d1 list DO

5. BEGIN

6. IF rational point(d1,0,c,0,d/d1,1,lim1)

7. THEN n1 = n1+1; n2 = n2+1

8. ELSE

9. IF everywhere locally soluble(c,d,d’,d1,p list)

10. THEN

11. n2 = n2+1;

12. IF rational point(d1,0,c,0,d/d1,lim1+1,lim2)

13. THEN n1 = n1+1

14. FI

15. FI

16. FI

17. END;

18. RETURN (n1, n2)

19. END

(Subroutine to check for everywhere local solubility)

1. SUBROUTINE everywhere locally soluble(c,d,d’,d1,p list)

2. BEGIN

3. IF d’<0 AND d1<0 THEN RETURN FALSE FI;

4. IF d’>0 AND d1<0 AND (c+sqrt(d’))<0 THEN RETURN FALSE FI;

5. FOR p IN p list DO

6. BEGIN

7. IF NOT Qp soluble(d1,0,c,0,d/d1,p) THEN RETURN FALSE FI

8. END;

9. RETURN TRUE

10. END

Method 2: general two-descent.

We now turn to the general two-descent, which applies whether or not E has a rational
point of order 2. Again, the basic idea is to associate to E a collection of 2-covering quartic



3.6 THE MORDELL–WEIL GROUP III: THE RANK 89

curves (or homogeneous spaces) H. These have equations of the form

(3.6.1) H : y2 = g(x) = ax4 + bx3 + cx2 + dx+ e

with a, b, c, d, e ∈ Q, such that the invariants

I = 12ae− 3bd+ c2 and J = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3

are related to the c4 and c6 invariants of E via

I = λ4c4 and J = 2λ6c6

for some λ ∈ Q∗. Two such quartics g1(x), g2(x) are equivalent if

g2(x) = µ2(γx+ δ)4g1

(

αx+ β

γx+ δ

)

for some α, β, γ, δ and µ ∈ Q, with µ and αδ−βγ non-zero. The invariants of g1(x) and g2(x)
are then related by the scaling factor λ = µ(αδ − βγ):

I(g2) = µ4(αδ − βγ)4I(g1),

J(g2) = µ6(αδ − βγ)6J(g1).

We set ∆ = 4I3 − J2 = 27disc(g), and call ∆ the discriminant.
In particular, by scaling up the coefficients, we may assume that the invariants I and J are

integral. The number of equivalence classes of quartics with given invariants (up to a scaling
factor λ) which are everywhere locally soluble is finite. One of our tasks will be to determine,
for a given integral quartic, an equivalent integral one with minimal invariants. This process
is closely analogous to the one considered earlier in this chapter, using Kraus’s conditions or
Tate’s algorithm to determine minimal models for elliptic curves. Indeed, we will see below that
if c4 and c6 are invariants of a minimal model for the elliptic curve E, then I = c4 and J = 2c6
are also minimal, except possibly at the prime 2. (We may lose minimality at 2 because the
equations (3.6.1) we use for homogeneous spaces are not completely general, not having terms
in y, xy or x2y; to remove these by completing the square involves a scaling by a factor of 2.)

We now explain the relationship between equivalence classes of soluble quartics with in-
variants I and J and rational points on the elliptic curve. More details of this relationship,
including proofs, may be found in [20]. For convenience, we again start by making a coordi-
nate transformation: if c4 and c6 are the integral invariants of our curve E, we set I = c4 and
J = 2c6, and replace E by the isomorphic curve

(3.6.3) EI,J : Y 2 = F (X) = X3 − 27IX − 27J.

This is the model on which the rational points we construct will naturally lie; it is then a
simple matter to transfer them back to the original model for E. For simplicity, we will still
continue to refer to the curve simply as E when this will not cause confusion.

Associated to each quartic g there are two so-called covariants, which we denote g4 and g6:

(3.6.4)

g4(X,Y ) = (3b2 − 8ac)X4 + 4(bc− 6ad)X3Y + 2(2c2 − 24ae− 3bd)X2Y 2

+ 4(cd− 6be)XY 3 + (3d2 − 8ce)Y 4,

g6(X,Y ) = (b3 + 8a2d− 4abc)X6 + 2(16a2e+ 2abd− 4ac2 + b2c)X5Y

+ 5(8abe+ b2d− 4acd)X4Y 2 + 20(b2e− ad2)X3Y 3

− 5(8ade+ bd2 − 4bce)X2Y 4 − 2(16ae2 + 2bde− 4c2e+ cd2)XY 5

− (d3 + 8be2 − 4cde)Y 6.



90 III. ELLIPTIC CURVE ALGORITHMS

Wherever convenient, we will also denote by g the homogenized polynomial g(X,Y ) = aX4 +
bX3Y + cX2Y 2 + dXY 3 + eY 4. These three homogeneous polynomials satisfy an algebraic
identity, or syzygy:

(3.6.5) 27g2
6 = g3

4 − 48Ig2g4 − 64Jg3.

Later we will also need a simpler form of this syzygy; set

(3.6.6) p = g4(1, 0) = 3b2 − 8ac and r = g6(1, 0) = b3 + 8a2d− 4abc;

these quantities are called seminvariants of g. Substituting (X,Y ) = (1, 0) in the covariant
syzygy (3.6.5) gives an identity (the seminvariant syzygy) between these seminvariants:

(3.6.7) 27r2 = p3 − 48Ia2p− 64Ja3.

We will make use of this equation in our search for quartics with given invariants, where it will
allow us to set up a quadratic sieve.

It follows from the covariant syzygy (3.6.5), by simple substitution, that the map

(3.6.8) ξ : (x, y) 7→
(

3g4(x, 1)

(2y)2
,
27g6(x, 1)

(2y)3

)

maps rational points (x, y) on H (satisfying y2 = g(x, 1)) to rational points on EI,J , thus
defining a rational map ξ, of degree 4, from H(Q) to EI,J(Q). We are using affine coordinates

here; the points at infinity on H map to

(

3p

4a
,
±27r

(4a)3/2

)

, which are rational if and only if a is

a square.
We now have the following facts (see [20] for details):
• If R ∈ H(Q) with P = ξ(R) ∈ EI,J(Q), then the coset of P modulo 2EI,J (Q) is inde-

pendent of R, and of the particular quartic g up to equivalence; in fact, equivalences between
quartics induce rational maps between the associated homogeneous spaces, and the covariant
property of g4 and g6 ensures that corresponding rational points on the homogeneous spaces
have the same image in EI,J (Q).

• Each rational point P = (x, y) ∈ EI,J(Q) arises as the image of a rational point on some
quartic g with invariants I and J : explicitly, one can take the rational point at infinity on the
quartic with coefficients (a, b, c, d, e) = (1, 0,−x/6, y/27, I/12− x2/432); the equivalence class
of g depends only on the coset of P modulo 2EI,J(Q).

• The equivalence classes of everywhere locally soluble quartics with invariants I and J form
a finite elementary abelian 2-group, isomorphic to the 2-Selmer group S(2)(E/Q).

• The equivalence classes of soluble quartics with invariants I and J form a finite elementary
abelian 2-group isomorphic to E(Q)/2E(Q); the identity is the trivial class, consisting of
quartics with a rational root.

• More generally, when E has no 2-torsion, for any extension field K of Q there is a bijection
between the roots of g(x) in K and the solutions Q ∈ EI,J (K) to the equation 2Q = P (where
P = ξ(R) for R ∈ H(Q) as above). In particular, non-trivial quartics are irreducible in this
case. We will use this fact with K = R later.

We therefore classify the set of equivalence classes of quartics with invariants I and J as
follows:

(0) the trivial class consists of those quartics g(x) which have a rational root. These are
elliptic curves isomorphic to E over Q.

(1) those which have a rational point: these are also elliptic curves, isomorphic to E over Q.
(2) those which have points everywhere locally.
(3) those which fail to have points everywhere locally.



3.6 THE MORDELL–WEIL GROUP III: THE RANK 91

Let the number of inequivalent quartics in the first three sets be n0 = 1, n1 and n2. (Those
in the last set will not be used.) Because of the group structure, each of these numbers is a
power of 2. We write ni = 2ei for i = 1, 2.

As in the case of descent via 2-isogeny, Galois cohomology gives an exact sequence

0 → E(Q)/2E(Q) → S(2)(E/Q) → X(E/Q)[2] → 0.

Thus the quotient of S(2)(E/Q) by the image of E(Q) is isomorphic to X(E/Q)[2], the 2-
torsion subgroup of the Tate–Shafarevich group X(E/Q). So it is the points of order 2 in
X(E/Q), if any, which account for the possible existence of homogeneous spaces which have
points everywhere locally but not globally, and we have

|X(E/Q)[2]| = n2/n1.

As before, the potential practical difficulty lies in determining whether each homogeneous
space H has a rational point, as there is no known algorithm to do this in general. Again, for
the vast majority of the curves in the tables, we found a rational point easily on each space
which was everywhere locally soluble, which not only determined the rank of E, but also implied
that the Tate–Shafarevich group had no 2-torsion. The only example with n1 < n2 in the tables
(for a curve with no 2-torsion) is curve 571A1, where n1 = 1 and n2 = 4; here the rank is 0,
and |X(E/Q)[2]| = 4; the Birch–Swinnerton-Dyer conjecture predicts |X(E/Q)| = 4.

The steps of the algorithm are as follows: first we determine the pair or pairs of integral
invariants (I, J) such that every quartic associated with our curve E is equivalent to one with
integer coefficients and these invariants. There will be either one or two such pairs. For each
pair (I, J), we find a finite set of quartics with invariants (I, J) such that every non-trivial,
everywhere locally soluble quartic with these invariants is equivalent to one in the list. This is
the most time-consuming step, as the search region can be very large when I and J are large.
Now we must test the quartics in our list pairwise for equivalence, discarding those equivalent
to earlier ones; look for rational points; and test everywhere local solubility. Again, there may
be quartics where we do not find rational points despite their having points everywhere locally,
so that although we can always (given enough time) determine n2, we may in some cases only
find bounds on n1. Since n1 = |E(Q)/2E(Q)|, we can then compute the rank r, or bounds on
the rank. Usually, E will have no rational 2-torsion, or we would probably be using descent
via 2-isogeny, and then simply 2r = n1.

We now consider each of these steps in more detail.

Step 1: Determining the invariants (I, J).
Given an integral quartic g with invariants I and J , we must consider the question of whether

there exists an equivalent integral quartic with smaller invariants. The smaller invariants will
have the form λ−4I, λ−6J with λ ∈ Q∗. In [3, Lemmas 3–5], conditions are stated under which
g is equivalent to an integral quartic with invariants p−4I, p−6J for a prime p; we call such a
quartic p-reducible, otherwise p-minimal . Clearly a necessary condition for reducibility is that
p4 | I and p6 | J . We say that the pair (I, J) is p-reducible if every integral quartic with these
invariants which is p-adically soluble is equivalent to an integral quartic with invariants p−4I
and p−6J .

The question of p-reducibility is almost completely settled by the following proposition. The
result is simplest for primes greater than 3, but even for these it is important to note that the
assumption of p-adic solubility is necessary for reduction to be possible when the divisibility
conditions are satisfied.

Proposition 3.6.1. Let I and J be integers such that ∆ = 4I3 − J2 6= 0.

(1) If p is a prime and p ≥ 5, then (I, J) is p-reducible if and only if p4 | I and p6 | J .



92 III. ELLIPTIC CURVE ALGORITHMS

(2) (I, J) is 3-reducible if and only if either 35 | I and 39 | J , or 34 || I, 36 || J and 315 | ∆.
(3) (I, J) is 2-reducible if 26 | I, 29 | J and 210 | 8I + J .

This proposition is stated in [3] as Lemmas 3–5, but only the proof of Lemma 3 (covering
the case p ≥ 5) is given there. Complete proofs in all cases (which are elementary though
somewhat lengthy) can be found in [52].

Note that for p = 2 we only have sufficient conditions for reducibility. Because of this, we
will sometimes have to consider two pairs of invariants, a smaller pair (I0, J0) and a larger
pair (16I0, 64J0). However, when searching for integral quartics with the larger invariants, we
may assume that the quartic cannot be 2-reduced, and this provides us with useful congruence
conditions on the coefficients of such a quartic. We state these here.

Proposition 3.6.2. Let g be an integral 2-adically soluble quartic whose invariants satisfy
24 | I and 26 | J , such that

(1) g is not equivalent to an integral quartic with invariants 2−4I and 2−6J ;
(2) g is not equivalent to an integral quartic with the same invariants I and J and smaller

leading coefficient a.

Then the coefficients of g satisfy

(a) 2 - a, 22 | b, 2 | c, 24 - e and 24 - a+ b+ c+ d+ e; or
(b) 2 || a, 22 | b, 22 | c, 23 - e and 23 - a+ b+ c+ d+ e.

Moreover, if 26 | I and 27 | J , then we must have

(a’) 2 - a, 22 | b, 22 || c, 23 | d, and 22 || e; or
(b’) 2 - a, 22 | b, 22 || c− 2a+ 3b, 23 | d− b and 22 || a+ c+ e.

The first set of conditions stated here were given in [3]; the second set are from [52], which
contains complete proofs in both cases.

Using this proposition, we may ensure that few of the quartics we find when searching the
larger pair of invariants are equivalent to one with smaller invariants. More significantly in
terms of running time, we have extra congruence conditions to apply when searching for the
larger invariants, which speeds up this search.

It would appear that rational points in E(Q) whose quartics have the larger pair of invariants
lie in certain components of the 2-adic locus E(Q2). Further study of this would be very useful,
since if the search for quartics with the larger pair of invariants could be eliminated or curtailed,
it could result in a major saving of time in the algorithm.

In practice, suppose that our original curve E is given by a minimal equation, with invariants
c4 and c6. We set I = c4 and J = 2c6. Clearly the pair (I, J) is p-minimal for p ≥ 5: for
if p4 | I and p6 | J then p−4c4 and p−6c6 would be integral invariants of an elliptic curve,
contradicting minimality of E, and similarly the pair (p4I, p6J) is certainly p-reducible by
Proposition 3.6.1(1). Less obvious is that (I, J) is also 3-minimal; using Kraus’s conditions, it
is easy to check first that (34I, 36J) is certainly 3-reducible (one needs here that ord3(c6) 6= 2),
and then that (I, J) itself is not 3-reducible, using Proposition 3.6.1(2).

For p = 2, the best we can do is the following. First set I = c4 and J = 2c6. Replace (I, J)
by (2−4I, 2−6J) if 24 | I and 26 | J ; the resulting pair (I, J) (which will not be further divisible
by 2) will be the basic pair of invariants. Then we also use the pair (16I, 64J) unless 4 | I,
8 | J and 16 | (2I + J).

The result of this step is then to produce either one or two pairs of invariants (I, J). In the
latter case, the following steps must be carried out with both pairs separately.

Step 2: Finding the quartics with given I and J .

We now have a fixed pair of invariants (I, J) with ∆ = 4I3 − J2 6= 0, and we wish to find
all integral quartics with these invariants, up to equivalence. We classify the quartics g(x) into



3.6 THE MORDELL–WEIL GROUP III: THE RANK 93

types, according as g(x) has no real roots (type 1), four real roots (type 2) or two real roots
(type 3). When ∆ < 0 only type 3 is possible, while if ∆ > 0, only types 1 and 2 are possible.
For each relevant type, we now determine a finite list of quartics of that type with the given
invariants such that every soluble quartic with these invariants is equivalent to at least one on
the list. We can ignore quartics which are negative definite (type 1 with a < 0), since they will
not be soluble over R. For each type, we will determine a finite region of (a, b, c)-space such
that every quartic with invariants I and J is equivalent to at least one in this region.

As observed above, the number of real roots of g(x) is equal to the number of points
Q ∈ E(R) satisfying 2Q = P , where P ∈ E(R) is the image under the map ξ of any real point
on the homogeneous space H with equation y2 = g(x). When ∆ < 0, the real locus is in one
component, and E(R) is isomorphic to the circle group, which is 2-divisible with two 2-torsion
points, so in this case the equation 2Q = P has exactly two solutions for all P ∈ E(R). This
agrees with the observation just made, that quartics with negative discriminant ∆ will all have
exactly two real roots.

Consider further the case ∆ > 0. Now E(R) has two components, the connected component
of the identity E0(R) and a second component which we call the ‘egg’. There are four 2-torsion
points, and 2E(R) = E0(R). There are therefore two possibilities for a point P ∈ E(R) and its
associated real quartic: if P ∈ E0(R), then there are four solutions Q to 2Q = P , and P will be
associated to a quartic of type 2 with four real roots. On the other hand, if P /∈ E0(R), then
there are no solutions and the quartic associated to P will be of type 1, with no real roots.

The image of E(Q) in E(R)/2E(R) has order 2 or 1, depending on whether or not there
are any rational points on the egg. Thus there are two sub-cases to the case ∆ > 0: if
E(Q) ⊂ E0(R), then there are no rational points on the egg, the index is 1, and there will be
no soluble quartics of type 1; on the other hand, if E(Q) 6⊂ E0(R), then there are rational
points on the egg, the index is 2, and there are equal numbers of (equivalence classes of) soluble
quartics of types 1 and 2. Those of type 2 will lead to rational points on E(Q)∩E0(R), while
those of type 1 will lead to rational points on the egg.

To take advantage of this in practice, when ∆ > 0 we will first look for quartics of type 2;
let the number of these be n+

1 , where n1/n
+
1 is either 1 or 2. At this stage we will already know

the rank to within one, since if we set r+ = log2(n
+
1 ) then (assuming no rational 2-torsion) we

have either r = r+ or r = r++1. Then we start to look for quartics of type 1; as soon as we find
one which is soluble, then we may abort the search for type 1 quartics at that point, and assert
that r = r+ + 1. On the other hand, if we complete the search for quartics of type 1 without
finding any soluble ones, then we will know that r = r+, and we will have proved that there
are no rational points on the egg. An example of the second possibility happens with the curve
E = [0, 0, 1,−529,−3042] (which is the −23-twist of the curve [0, 0, 1,−1, 0] with conductor 37
and rank 1), which has rank 1 with generator (46, 264) on the identity component, and no
rational points on the egg.8

If we happened to know in advance that there were rational points on the egg (perhaps by a
short preliminary search for such points with small height), then we would already know that
r = r+ + 1, and we would not need to search for type 1 quartics at all.

In order to find all integral quartics of a given type (up to equivalence) we proceed as
follows. First, following [3], we determine bounds on the coefficients a, b and c. We also set up
a sieve based on the seminvariant syzygy (3.6.7) to speed up our search through this region of
(a, b, c)-space. For triples (a, b, c) in the region which pass the sieve, we solve for d and e and
ensure that they are integral. Finally, we check that the quartic we have constructed satisfies
any further congruence conditions we require (for example, when we are using the larger pair
of invariants).

8Thanks to Nelson Stephens for this example.



94 III. ELLIPTIC CURVE ALGORITHMS

The method for bounding the coefficients which is developed in [3] involves using the aux-
iliary (resolvent) cubic equation

(3.6.9) φ3 − 3Iφ+ J = 0

which will have one real root (type 3) or three real roots (types 1 and 2), since its discriminant
is 27∆. Indeed, φ is a root of (3.6.9) if and only if (−3φ, 0) is a point of order 2 on the curve
EI,J .

In each case, the bound for b arises simply from the fact that the quartics g(x) and g(x+k)
are equivalent, and the coefficients of the latter are (a, b + 4ak, . . . ), so that we may assume
that b is reduced modulo 4a. Also, note that the bounds on c are effectively bounds on the
seminvariant 8ac− 3b2 = −p, which is how they arise in [3].

Bounds for (a, b, c): Type 1. Here we may assume a > 0 for real solubility. Order the three
real roots of (3.6.9) as φ1 > φ2 > φ3, and set K = (4I −φ2

1)/3. Then the bounds on a, b, c are

0 < a ≤ K +K
1

2φ1

3K
1

2 + φ1 + 2φ2

;

−2a < b ≤ 2a;

4aφ2 + 3b2

8a
≤ c ≤ 4aφ1 + 3b2

8a
.

Bounds for (a, b, c): Type 2. This subdivides into subtypes according as a > 0 or a < 0.
For a > 0 we take φ1 > φ2 > φ3 and search the region

0 < a ≤ I − φ2
2

3(φ2 − φ3)
;

−2a < b ≤ 2a;

4aφ2 − 4
3
(I − φ2

2) + 3b2

8a
≤ c ≤ 4aφ3 + 3b2

8a
.

Then for a < 0 we take φ1 < φ2 < φ3 and search over

0 < − a ≤ I − φ2
2

3(φ3 − φ2)
;

−2|a| < b ≤ 2|a|;
4aφ2 − 4

3
(I − φ2

2) + 3b2

8a
≥ c ≥ 4aφ3 + 3b2

8a
.

Bounds for (a, b, c): Type 3. Here we let φ be the unique real root of (3.6.9), and search

1

3
φ−

√

4

27
(φ2 − I) ≤ a ≤ 1

3
φ+

√

4

27
(φ2 − I);

−2|a| < b ≤ 2|a|;
9a2 − 2aφ+ 1

3
(4I − φ2) + 3b2

8|a| ≤ c.sign(a) ≤ 4aφ+ 3b2

8|a| .



3.6 THE MORDELL–WEIL GROUP III: THE RANK 95

The syzygy sieve. Recall the seminvariant syzygy

(3.6.7) 27r2 = p3 − 48Ia2p− 64Ja3 = s(a, p),

say, where p = 3b2 − 8ac and r = b3 + 8a2d − 4abc. For fixed I, J the expression s(a, p) is a
polynomial in a, b and c, which we require to be 27 times an integer square. We can set up
a quadratic sieve as follows: for each of several sieving moduli m we create and initialize an
m × m array indicating whether s(a, p) is 27 times a square modulo m, for each pair (a, p)
modulo m. We take one of the moduli to be 9 and use it to force the right-hand side of (3.6.7)
to be divisible by 27; it will certainly be positive, as this is ensured by the bounds on c.

For each (a, b, c) in the region searched, we check that it passes the sieving test; it is then
quite likely that s(a, p) will be 27 times a square, since it is so modulo a large modulus and is
positive. We then test whether this is the case, discarding (a, b, c) if not, and if so we then find
r. We can take r > 0, since the quartics with coefficients (a, b, c, d, e) and (a,−b, c,−d, e) are
equivalent, with opposite signs of their respective r-seminvariants. In fact, we treat the triples
(a,±b, c) together in practice.

Implementation note: It is worth pointing out that a large proportion of the running time of
our algorithm is spent testing whether large integers are squares (given that they are positive
and congruent to squares modulo several carefully chosen moduli), and find their integer square
root if so. This is needed here, and in our searches for rational points, both on the elliptic curve
directly, and on the homogeneous spaces. Hence it is crucial that we have access to efficient
procedures for this in the multiprecision integer package we use.

Solving for d and e. Given integers a, b, c, r satisfying (3.6.7) with p = 3b2 − 8ac, we can
solve for d and e, setting

d = (r − b3 + 4abc)/(8a2) and e = (I + 3bd− c2)/(12a).

This will certainly give rational values for d and e; we must check that they are integral,
discarding the triple (a, b, c) if not. If they are, we have integral coefficients (a, b, c, d, e) of a
quartic g(x) with invariants I and J in the search region, which we add to our list for further
processing.

Solving for the roots of g(x). For later use, when we check for triviality, and again when we
search for rational points on the homogeneous spaces, we will need to know the real roots of
the quartic g(x) we have constructed. Although the formulae for finding the roots of quartic
are well-known, we give them here: since we already know the roots of the resolvent cubic,
there is very little work remaining.

For i = 1, 2, 3 we set zi = (4aφi + p)/3 where the φi are the three roots of (3.6.9). The
product of these quantities is r2 (from (3.6.7) again), and we form their square roots with
product r by setting w1 =

√
z1, w2 =

√
z2, and w3 = r/(w1w2). Then the roots of g(x) are

x1 = ( w1 + w2 − w3 − b)/(4a),

x2 = ( w1 − w2 + w3 − b)/(4a),

x3 = (−w1 + w2 + w3 − b)/(4a),

x4 = (−w1 − w2 − w3 − b)/(4a).

We will not give here a pseudo-code algorithm for the search for quartics, as it is straight-
forward in principle, although in practice it needs careful book-keeping. As this is the most



96 III. ELLIPTIC CURVE ALGORITHMS

time-consuming part of the whole procedure, particularly when the second, larger, pair of in-
variants must be used, it is important to make the implementation code as efficient as possible.

At the end of this step we will have a list of quartics with the desired invariants. We now
discard any which are equivalent to earlier ones, or are not locally soluble at some prime p, and
try to find rational roots on the remainder. In practice we may choose to apply these tests in
a different order, such as not bothering to check equivalences between quartics which are not
locally soluble.

Step 3: Testing triviality.

For each quartic g(x) in the list, we already know its roots x to reasonable precision. If x
is rational, then ax is integral, which we can test. If we suspect that ax is equal to an integer
n to within some working tolerance, we can check whether n/a is a root of g(x) using exact
arithmetic.

Step 3: Testing equivalence of quartics.

With each quartic we find with the right invariants, we store its coefficients, type, roots
and seminvariants p and r. We also compute and store the number of roots of the quartic
(including roots at infinity) modulo each of several primes not dividing its discriminant, as
these numbers are clearly invariant under equivalence.9

When testing equivalence of two quartics, we first check that their invariants and type are
the same, as well as their numbers of roots modulo these primes. If this is the case, we use a
general test for equivalence (valid over any field) from [20], which we state here.10

Proposition 3.6.3. Let g1 and g2 be quartics over the field K, both having the same invariants
I and J , and with leading coefficients ai and seminvariants pi and ri for i = 1, 2. Then g1 is
equivalent to g2 over K if and only if the quartic u4 − 2pu2 − 8ru+ s has a root in K, where

p = (32a1a2I + p1p2)/3,

r = r1r2, and

s = (64I(a2
1p

2
2 + a2

2p
2
1 + a1a2p1p2) − 256a1a2J(a1p2 + a2p1) − p2

1p
2
2)/27.

The quantities p, r and s in this proposition will be integers when g1 and g2 are integral.
Converting the proposition into an algorithm is straightforward.

Step 5: Testing local and global solubility.

This is carried out using the procedures and strategy described earlier.

Step 6: Final computation of the rank.

The number of quartics found (up to equivalence) which are everywhere locally soluble is
n2, the order of the 2-Selmer group. This must be a power of 2, say n2 = 2e2 , which serves
as a check on our procedures. The number n1 with a rational point is also a power of 2, say
n1 = 2e1 , equal to the order of E(Q)/2E(Q). If we have found rational points on all n2 locally
soluble quartics, then certainly n1 = n2, so that X(E/Q)[2] is trivial, and the rank of E(Q) is
e1 − e0 where |E(Q)[2]| = 2e0 with e0 = 0, 1 or 2. The rank is equal to the Selmer rank e2 − e0
in this case. (Usually e0 = 0 when we are using this method.)

As before, we may not have found global points on all the locally soluble quartics; if the
number on which we have points is ñ1 with ñ1 < n2 then we only know that ñ1 ≤ n1 ≤ n2. If

9This was suggested to us by S. Siksek.
10The algorithm presented here only applies to quartics. In the First Edition we presented a different

algorithm, described in [3], which is messier to implement, but which generalizes more readily to more general
situations, such as testing the equivalence of binary forms of higher degree.



3.7 THE PERIOD LATTICE 97

ñ1 is not a power of 2, we will know that n1 > ñ1, so that at least some of our locally soluble
quartics must have rational points which we have not found. In this case, we replace ñ1 by the
next highest power of 2, say ñ1 = 2ẽ1 . Then we have bounds on the rank, namely

ẽ1 − e0 ≤ e1 − e0 = rank(E(Q)) ≤ e2 − e0,

and on the order of X(E/Q)[2]:

|X(E/Q)[2]| ≤ n2/ñ1.

One final point: from the Selmer conjecture, we expect the Selmer rank e2 − e0 to differ
from the actual rank e1 − e0 by an even number, so that e2 ≡ e1 (mod 2). This would also
follow from the conjecture that X(E/Q) is finite, since then its order is known to be a perfect
square, so that n2/n1 must be a square. So if we find that e2 6≡ ẽ1 (mod 2), then we suspect
that the rank is at least one more than our lower bound, and can output a comment to this
effect, though of course we will not have proved that the rank is greater than our lower bound.
In some cases, such as for a modular curve where we know the sign of the functional equation,
we may have other conjectural evidence for the parity of the rank.

Step 7: Recovering points on E.

Each quartic g(x) for which the homogeneous space y2 = g(x) has a rational point R leads
to a rational point P = ξ(R) on the model EI,J of our curve E, via the formula (3.6.8) given
above. If we apply this formula to all the inequivalent quartics with rational points which we
found in computing the rank of E, we will have a complete set of coset representatives for
2E(Q) in E(Q), provided that ñ1 = n1. In cases where we have rounded up ñ1 to the nearest
power of 2, we will still have generators for E(Q)/2E(Q), and can fill in the missing coset
representatives if we wish.

This completes our description of algorithms for determining the Mordell-Weil group E(Q).

3.7 The period lattice

In this section we show how to compute the complex periods for an elliptic curve defined
over the complex numbers. We used this in our investigation of modular curves to check that
the exact integral equations we found (after rounding the approximate computed values of c4
and c6) did have the correct periods; and also in our method for computing isogenous curves,
which we describe in the following section.

Let E be an elliptic curve defined over the complex numbers C, given by a Weierstrass
equation. We wish to compute periods λ1 and λ2 which are a Z-basis for the period lattice
Λ of E. We do this using Gauss’s arithmetic–geometric mean (AGM) algorithm. Write the
equation for E in the form

(

y +
a1x+ a3

2

)2

= x3 +
b2
4
x2 +

b4
2
x+

b6
4

= (x− e1)(x− e2)(x− e3),

where the roots ei are found as complex floating-point approximations (using Cardano’s for-
mula, say). Then the periods are given by

(3.7.1)

λ1 =
π

AGM(
√
e3 − e1,

√
e3 − e2)

,

λ2 =
πi

AGM(
√
e3 − e1,

√
e2 − e1)

.



98 III. ELLIPTIC CURVE ALGORITHMS

Notice that in general this involves the AGM of pairs of complex numbers. This is a multi-
valued function: at each stage of the AGM algorithm we replace the pair (z, w) by (

√
zw, 1

2
(z+

w)), and must make a choice of complex square root. It follows from work of Cox (see [11])
that while a different set of choices does lead to a different value for the AGM, the periods we
obtain this way will nevertheless always be a Z-basis for the full period lattice Λ. We have
found this to be the case in practice, where we always choose a square root with positive real
part, or with positive imaginary part when the real part is zero. The computation of λ1 and
λ2 by this method is very fast, as the AGM algorithm converges extremely quickly, even in its
complex form. As a check on the values obtained, in each case we recomputed the invariants
c4 and c6 of each curve from these computed periods λ1 and λ2, using the standard formulae
given in Chapter II; in every case we obtained the correct values (known exactly from the
coefficients of the minimal Weierstrass equation) to within computational accuracy.

If the curve is defined over R, we can avoid the use of the complex AGM, and also arrange
that λ1 is a positive real period, as follows. First suppose that all three roots ei are real;
order the roots so that e3 > e2 > e1, and take the positive square root in the above formulae.
Then we may use the usual AGM of positive reals in (3.7.1), and thus obtain a positive real
value for λ1 and a pure imaginary value for λ2. This is the case where the discriminant
∆ > 0 and the period lattice is rectangular. When ∆ < 0 there is one real root, say e3,
and e2 = e1. If

√
e3 − e1 = z = s + it with s > 0 then

√
e3 − e2 = z = s − it, so that

λ1 = π/AGM(z, z) = π/AGM(|z|, s) which is also real and positive.

3.8 Finding isogenous curves

Given an elliptic curve E defined over Q, we now wish to find all curves E ′ isogenous to
E over Q. The set of all such curves is finite (up to isomorphism), and any two curves in the
isogeny class are linked by a chain of isogenies of prime degree l. Thus it suffices to be able
to compute l-isogenies for prime l, if we can determine those l for which rational l-isogenies
exist. The latter question can be rather delicate in general, and we have to have a completely
automatic algorithmic procedure if we are to apply it to several thousand curves, such as we
had to when preparing the tables.

When the conductor N of E is square-free, so that E has good or multiplicative reduction
at all primes, E is called semi-stable. In this case, a result of Serre (see [53]) says that either
E or the isogenous curve E ′ has a rational point of order l, and so by Mazur’s result already
mentioned, l can only be 2, 3, 5 or 7. Moreover, if a curve E possesses a rational point of order
l, then the congruence 1 + p − ap ≡ 0 (mod l) holds for all primes p not dividing Nl, so the
presence of such a point is easy to determine, even if it is not E itself but the isogenous curve
E′ which possesses the rational l-torsion, since the trace of Frobenius ap is isogeny-invariant.

If E is not semi-stable we argue as follows. The existence of a rational l-isogeny is purely
a function of the j-invariant j of E: in fact, pairs (E,E ′) of l-isogenous curves parametrize
the modular curve X0(l) whose non-cuspidal points are given by the pairs (j(E), j(E ′)). For
l = 2, 3, 5, 7 or 13 the genus of X0(l) is zero, and infinitely many rational j occur. The only
other values of l for which rational l-isogenies occur are l = 11, 17, 19, 37, 43, 67, and 163, and
these occur for only a small finite number of j-invariants (see below). The fact that no other
l occur is a theorem of Mazur (see [39] and [40]), related to the theorem limiting the rational
torsion which we quoted earlier in Section 3.3 of this chapter. These extra values occur only
for curves with CM (complex multiplication, see the next section), apart from l = 17 (where
X0(l) has genus 1) and the exotic case l = 37 studied by Mazur and Swinnerton–Dyer in [41]
(where X0(l) has genus 2).

For isogenies of non-prime degree m, the degrees which occur are: m ≤ 10, and m = 12, 16
18, and 25 (where X0(l) has genus 0, infinitely many cases); and finally m = 14, 15, 21, and



3.8 FINDING ISOGENOUS CURVES 99

27. The latter occur first for conductors N = 49 (with CM), N = 50, N = 162 and N = 27
(with CM) respectively. See [2, pages 78–80] for more details.

Thus our procedure is:
• If N is square-free, try l = 2, 3, 5, 7 only;
• else try l = 2, 3, 5, 7 and 13 in all cases; and
• if j(E) = −215, −112, or −11 · 1313, try also l = 11;
• if j(E) = −172 · 1013/2 or −17 · 3733/217, try also l = 17;
• if j(E) = −963, try also l = 19;
• if j(E) = −7 · 113 or −7 · 1373 · 20833, try also l = 37;
• if j(E) = −9603, try also l = 43;
• if j(E) = −52803, try also l = 67;
• if j(E) = −6403203, try also l = 163.

Now we turn to the question of finding all curves (if any) which are l-isogenous to our given
curve E for a specific prime l. The kernel of the isogeny is a subgroup A of E(Q) which is
defined over Q, but the points of A may not be individually rational points. If we have the
coordinates of the points of a subgroup of E of order l defined over K, we may use Vélu’s
formulae in [68] to find the corresponding l-isogenous curve. Finding such coordinates by
algebraic means is troublesome, except when the subgroup is point-wise defined over K, and
instead we resort to a floating-point method.

The case l = 2 is simpler to describe separately. Obviously in this case the subgroup of
order 2 defined over Q must consist of a single rational point P of order 2 together with the
identity. We have already found such points, if any, in computing the torsion. There will be 0,
1 or 3 of them according to the number of rational roots of the cubic 4x3 + b2x

2 + 2b4x+ b6.
If x1 is such a root, then P = (x1, y1) has order 2, where y1 = −(a1x1 + a3)/2. As a special
case of Vélu’s formulae we find that the isogenous curve E ′ has coefficients [a′1, a

′
2, a

′
3, a

′
4, a

′
6] =

[a1, a2, a3, a4 − 5t, a6 − b2t− 7w] where

t = (6x2
1 + b2x1 + b4)/2 and w = x1t.

Note that the point (x1, y1) need not be integral even when E has integral coefficients ai, but
that 4x1 and 8y1 are certainly integral, by the formulae given; thus the model just given for
the isogenous curve may need scaling by a factor of 2 to make it integral.

The simpler formula for a curve in the form y2 = x3 + cx2 + dx and the point P = (0, 0)
was given in the previous section: the formulae just given take the curve [0, c, 0, d, 0] to
[0, c, 0,−4d,−4cd], which transforms to [0,−2c, 0, c2 − 4d, 0] after replacing x by x − c. The
relation between the two formulae is given by c = 12x1 + b2 and d = 16t.

For reference we give here similar algebraic formulae for l-isogenies for l = 3 and l = 5, from
Laska’s book [35]. In each case we assume that the curve E is given by an equation of the
form y2 = x3 + ax+ b, and the isogenous curve E ′ by y2 = x3 +Ax+B. Each subgroup of E
of order l is determined by a rational factor of degree (l − 1)/2 of the l-division polynomial
of degree (l2 − 1)/2, whose roots are the x-coordinates of the points in the subgroup. The
simplest case is l = 3, where there is just one x-coordinate, which must be rational.

l = 3. Let ξ be a root of the 3-division polynomial 3x4 + 6ax2 + 12bx − a2. Then the
3-isogenous curve E ′ is given by

A = −3(3a+ 10ξ2)

B = −(70ξ3 + 42aξ + 27b).



100 III. ELLIPTIC CURVE ALGORITHMS

l = 5. Let x2 + h1x+ h2 be a rational factor of the 5-division polynomial 5x12 + 62ax10 +
380bx9− 105a2x8 +240abx7− (300a3 +240b2)x6− 696a2bx5− (125a4 +1920ab2)x4− (1600b3 +
80a3b)x3−(50a5+240a2b2)x2−(100a4b+640ab3)x+(a6−32a3b2−256b4). Then the 5-isogenous
curve E′ is given by

A = −19a− 30(h2
1 − 2h2)

B = −55b− 14(15h1h2 − 5h3
1 − 3ah1).

A similar formula is given in [35] for l = 7, where A and B are given in terms of a, b and
the coefficients of a factor x3 +h1x

2 +h2x+h3 of the 7-division polynomial. Rather than take
up space by giving the latter here, we refer the reader to [35, page 72].

Now we turn to Vélu’s formulae in the case of an odd prime l. Let P = (x1, y1) be a point
of order l in E(Q), and set kP = (xk, yk) for 1 ≤ k ≤ (l − 1)/2. Define

tk = 6x2
k + b2xk + b4 and uk = 4x3

k + b2x
2
k + 2b4xk + b6,

and then set

t =

(l−1)/2
∑

k=1

tk and w =

(l−1)/2
∑

k=1

(uk + xktk) .

Then the isogenous curve E ′ has coefficients [a1, a2, a3, a4− 5t, a6− b2t− 7w] as before. Again,
these may not be integral, even when the original coefficients were; but since the xk are the
roots of a polynomial of degree (l − 1)/2 with integral coefficients and leading coefficient l2

(the so-called l-division equation), we must have l2xk integral. Thus a scaling factor of l will
certainly produce an integral equation.

We make these remarks on integrality as our method is to find the coordinates xk and
yk as real floating-point approximations, and thus to determine the coefficients of any curves
l-isogenous to E over R; there will always be exactly two such curves over R, but of course
they will not necessarily be defined over Q. As we will only know the coefficients a′i of the
isogenous curves approximately, we wish to ensure that if they are rational then they will in
fact be integral, so that we will be able to recognize them as such.

First we find the period lattice Λ of E, as described in the previous section. The Z-basis
[λ1, λ2] of Λ is normalized as follows: there are two cases to consider, according as ∆ > 0 (first
or ‘harmonic’ case) or ∆ < 0 (second or ‘anharmonic’ case). In both cases λ1 is real (the least
positive real period); in the first case, λ2 is pure imaginary, while in the second case, 2λ1 − λ2

is pure imaginary. We can also ensure that τ = λ2/λ1 is in the upper half-plane; however we
can not simultaneously arrange that τ is in the usual fundamental region for SL(2,Z), and this
needs to be remembered when evaluating the Weierstrass functions below.

Of the l + 1 subgroups of C/Λ of order l, the two defined over R are the one generated by
z = λ1/l (in both cases), and in the first case, the one generated by z = λ2/l, or in the second
case, the one generated by z = (λ1 − 2λ2)/l. Thus z/λ1 is either 1/l, τ/l, or (1 − 2τ)/l. Let
℘(z; τ) denote the Weierstrass ℘-function relative to the lattice [1, τ ]. Then we have

xk = ℘(kzλ−1
1 ; τ)λ−2

1 − 1

12
b4 and yk =

1

2

(

℘′(kzλ−1
1 ; τ)λ−3

1 − a1xk − a3

)

.

Here we have had to take account of the lattice scaling [λ1, λ2] = λ1[1, τ ], and also of the
fact that (℘(z), ℘′(z)) is a point on the model of E of the form y2 = 4x3 − g2x − g3 =
4x3 − (c4/12)x− (c6/216) rather than a standard model where the coefficient of x3 is 1.

We evaluate these points of order l numerically for k = 1, 2, . . . , (l − 1)/2, for each of the
two values of z (depending on whether we are in case 1 or case 2). Substituting into Vélu’s



3.8 FINDING ISOGENOUS CURVES 101

formulae, we obtain in each case the real coefficients a′i of a curve which is l-isogenous to E
over R. If these coefficients are close to integers we round them and check that the resulting
curve over Q has the same conductor N as the original curve E. If not, we also test the curve
with coefficients lia′i.

The resulting program finds l-isogenous curves very quickly for any given prime l. We run
it for all primes l in the set determined previously, applying it recursively to each new curve
found until we have a set of curves closed under l-isogeny for these values of l. Since the set
of primes l for which a rational l-isogeny exists is itself an isogeny invariant, once we have
finished processing the first curve in the class, we will already know which primes l to use for
all the remaining curves.

Some care needs to be taken with a method of computation such as this, where we use
floating-point arithmetic to find integers. The series we use to compute the periods and the
Weierstrass function and its derivative all converge very quickly, so that we can compute the
a′i to whatever precision is available, though of course in practice some rounding error is bound
to arise. When we test whether a floating-point number is ‘approximately an integer’ in the
program, we must make a judgement on how close is close enough. With too relaxed a test, we
will find too many curves are ‘approximately integral’; usually these will fail the next hurdle,
where we test the conductor, but this takes time to check (using Tate’s algorithm). On the
other hand, too strict a test might mean that we miss some rational isogenies altogether, which
is far more serious. In compiling the tables, there was only one case which caused trouble af-
ter the program had been finely tuned. The resulting error resulted in a curve (916B1) being
erroneously listed as 3-isogenous to itself in the first (preprint) edition of the tables; this is pos-
sible only when a curve has complex multiplication, which is not the case here, though it does
not often occur even in the complex multiplication case (see the remarks in the next section).
Unfortunately the error was not noticed in the automatic generation of the typeset tables,
and I am grateful to Elkies for spotting it.11 The curve E = [0, 0, 0,−1013692, 392832257]
has three real points of order 2, two of which are equal to seven significant figures; the pe-
riod ratio is approximately 7i. One of the curves 2-isogenous to E over R has coefficients
[0, 0, 0,−1013691.999999999992, 392832257.000000006], which are extremely close to those of
E itself. Thus this new curve, which is not defined over Q, passed both our original tests (the
coefficients are extremely close to integers, and the rounded coefficients are those of a curve
of the right conductor, namely E itself). After this example was discovered, we inserted an
extra line in the program, to print a warning whenever a supposedly isogenous curve was the
original curve itself, and reran the program on all 2463 isogeny classes (which only takes a few
minutes of machine time). The result was that expected, namely that 916B1 is the only curve
for which this phenomenon occurs within the range of the tables12. There is no example of a
curve actually l-isogenous to itself with conductor less than 1000.

Our original implementation of this algorithm in Algol68 used a precision of approximately
30 significant figures for its real and complex arithmetic, which was sufficient to find all the
isogenous curves up to conductor 1000. However, our implementation in C++ misses several
isogenous curves when using standard double precision, with approximately 15 digits (though
this runs very quickly); we need to use a multiprecision floating-point package (such as the
one included in LiDIA) to obtain a satisfactory working program, though the resulting code
runs very much slower. In our extended computations to conductor 5077, we have computed
the isogenies independently using both a C++/LiDIA program and a PARI program, and the
results agree.

When we were initially persuaded to extend the tables to include isogenous curves as well
as the modular curves themselves, we were afraid that the total number of resulting curves

11This error also somehow survived into the first edition of this book, despite these comments in the text.
12Another example of the same type occurs for curve 1342C3, where the period ratio is approximately 9.5i.



102 III. ELLIPTIC CURVE ALGORITHMS

would be rather larger than it turned out to be. On average, we found that the number of
curves per isogeny class was 5113/2463, or just under 2.08. We do not know of any asymptotic
analysis, or even a heuristic argument, which would predict an average number of two curves
per class. However, it is dangerous to generalize from the limited amount of data which we
have available. In the extended computations to conductor 5077, the ratio slowly diminishes;
for all curves up to this conductor, the ratio is 31570/17583 = 1.795.

3.9 Twists and complex multiplication

Traces of Frobenius.

If E is given by a standard minimal Weierstrass equation over Z, then for all primes p of
good reduction the trace of Frobenius ap is given by

ap = 1 + p− |E(Fp)| .

If E has bad reduction at p, this same formula gives the correct value for the pth Fourier
coefficient of the L-series of E.

Since in our applications we never needed to compute ap for large primes p, we used a very
simple method to count the number of points on E modulo p. First, for all primes p in the
desired range (say 3 ≤ p ≤ 1000; p = 2 would be dealt with separately), we precompute the
number n(t, p) of solutions to the congruence s2 ≡ t (mod p). Then we simply compute

ap = p−
p−1
∑

x=0

n(4x3 + b2x
2 + 2b4x+ b6, p).

This was sufficient for us to compute ap for all p < 1000 for all the curves in the table,
which we did to compare with the corresponding Hecke eigenvalues. For large p, there are far
more efficient methods, such as the baby-step giant-step method or Schoof’s algorithm (see
[51]). Details of these may be found in [9]. More recently, even better algorithms have been
developed, by Atkin, Elkies, Morain, Müller and others. For example, Morain and Lercier in
1995 successfully computed the number of points on the curve [0, 0, 0, 4589, 91228] over Fp for
p = 10499 + 153, a prime with 500 decimal digits. This took 4200 hours of computer time.

Twists.

A twist of a curve E over Q is an elliptic curve defined over Q and isomorphic to E over Q
but not necessarily over Q itself. Thus the set of all twists of E is the set of all curves with
the same j-invariant as E. These can be simply described, as follows.

First suppose that c4 6= 0 and c6 6= 0; equivalently, j 6= 1728 and j 6= 0 (respectively).
Then the twists of E are all quadratic, in that they become isomorphic to E over a quadratic
extension of Q. For each integer d (square-free, not 0 or 1), there is a twisted curve E ∗ d with

invariants d2c4 and d3c6, which is isomorphic to E over Q(
√
d). If E has a model of the form

y2 = f(x) with f(x) cubic, then E ∗ d has equation dy2 = f(x). A minimal model for E ∗ d
may be found easily by the Laska–Kraus–Connell algorithm. The conductor of E ∗ d is only
divisible by primes dividing ND, where D is the discriminant of Q(

√
d). The simplest case is

when gcd(D,N) = 1; then E ∗ d has conductor ND2. More generally, if D2 - N then E ∗ d
has conductor lcm(N,D2), but if D2 | N then the conductor may be smaller; for example,
(E ∗ d) ∗ d is isomorphic to E, so has conductor N again.

Twisting commutes with isogenies, in the sense that if two curves E, F are l-isogenous then
so are their twists E ∗ d, F ∗ d. If E has no complex multiplication (see below), then the
structure of the isogeny class of E is a function of j(E) alone.



3.9 TWISTS AND COMPLEX MULTIPLICATION 103

The trace of Frobenius of E ∗ d at a prime p not dividing N is χ(p)ap, where χ is the

quadratic character associated to Q(
√
d) and ap is the trace of Frobenius of E. Thus if E is

modular, attached to the newform f , then E ∗ d is also modular and attached to the twisted
form f ⊗ χ, in the notation of Chapter 2.

When j = 0 (or equivalently c4 = 0), E has an equation of the form y2 = x3 + k with k ∈ Z
non-zero and free of sixth powers. Such curves have complex multiplication by Z[(1+

√
−3)/2].

Two such curves with parameters k, k′ are isomorphic over Q( 6

√

k/k′).
Similarly, when j = 1728 (or equivalently c6 = 0), E has an equation of the form y2 = x3+kx

with k ∈ Z non-zero and free of fourth powers. Such curves have complex multiplication by
Z[
√
−1]. Two such curves with parameters k, k′ are isomorphic over Q( 4

√

k/k′).

Complex multiplication.

Each of the 13 imaginary quadratic orders O of class number 1 has a rational value of
j(O) = j(ω1/ω2), where O = Zω1 + Zω2. Elliptic curves E with j(E) = j(O) have complex
multiplication: their ring of endomorphisms defined over C is isomorphic to O. In all other
cases the endomorphism ring of an elliptic curve defined over Q is isomorphic to Z, since an
elliptic curve with complex multiplication by an order of class number h > 1 has a j-invariant
which is not rational, but algebraic of degree h over Q.

We give here a table of triples (D, j,N) where j = j(O) for an order of discriminant D, and
N is the smallest conductor of an elliptic curve defined over Q with this j-invariant. All but
the last three values (D = −43, −67, −163) have N < 1000 and so occur in the tables.

D −4 −16 −8 −3 −12 −27 −7 −28 −11 −19 −43 −67 −163

j 123 663 203 0 2 · 303 −3 · 1603 −153 2553 −323 −963 −9603 −52803 −6403203

N 32 32 256 27 36 27 49 49 121 361 432 672 1632

If E has complex multiplication by the order O of discriminant D, then the twist E ∗D is
isogenous to E, though not usually isomorphic to E (over Q). Indeed, the only cases where E
is isomorphic to E ∗D are D = −4 and D = −16 with j(E) = 1728: the curves y2 = x3 +16kx
and y2 + 256kx are twists of, and isomorphic to, y2 = x3 + kx. Since curves are isogenous if
and only if they have the same L-series by Faltings’s Theorem (see [22]), this implies that E
has complex multiplication if and only if ap = χ(p)ap for all primes p, where χ is the quadratic
character as above. Thus ap = 0 for half the primes p, namely those for which χ(p) = −1. This
gives an alternative way of recognizing a curve with complex multiplication, from its traces of
Frobenius. This is particularly convenient in the case of modular curves, where we compute
the ap first, and will always know when a newform f , and hence the associated curve Ef , has
complex multiplication. For, in such a case, we must have D2 | N and f = f ⊗ χ, which we
may easily check from the tables.


