CHAPTER 4

Averaging and Perturbation from a
Geometric Viewpoint

In this chapter we describe some classical methods of analysis which are
particularly applicable to problems in nonlinear oscillations. While these
methods might be familiar to the reader who has studied nonlinear mechanics
and perturbation theory, the present geometrical approach and the stress
on obtaining approximations to Poincaré maps will probably be less familiar.

We start with the averaging method, originally due to Krylov and
Bogoliubov [1934], which is particularly useful for weakly nonlinear prob-
lems or small perturbations of the linear oscillator. We show that, under
suitable conditions, global information, valid on semi-infinite time intervals,
can be obtained by this approach. Generally, in perturbation methods one
starts with an (integrable) system whose solutions are known completely,
and studies small perturbation$ of it. Since the unperturbed and perturbed
vector fields are close, one might expect that solutions will also be close, but
as we shall see, this is not generally the case, in that the unperturbed systems
are often structurally unstable. As we have seen, arbitrarily small perturba-
tions of such systems can cause radical qualitative changes in the structure
of solutions. However, these changes are generally associated with limiting,
asymptotic behavior and one does usually find that unperturbed and
perturbed solutions remain close for finite times. Moreover, in this chapter
we shall show that such finite time results, together with ideas from dynamical
systems theory, do enable us to make deductions about the asymptotic
behavior of solutions and the structure of the nonwandering set for the
perturbed system.

Averaging is applicable to systems of the form

x = ¢f (x, 1); xe R, & <1, (4.0.1)

where f is T-periodic in . In such a system the T-periodic forcing contrasts
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with the “slow” evolution of solutions on the average due to the ((g) vector
field. In the first four sections we will show how weakly nonlinear oscillators
of the form

X+ wlx = ef (x, X, 1) (4.0.2)

can be recast in the standard-formy(4:0:1)"and averaging applied. In this
analysis we essentially deal with small perturbations of the linear oscillator
% + w’x = 0, which is an example of an integrable Hamiltonian system.

We continue with a description of Melnikov’s [1963] method for dealing
with perturbations of general integrable Hamiltonian systems. Here one
typically starts with a strongly nonlinear system,

x = f(x), x e R?", (4.0.3)
and adds weak dissipation and forcing:
X = f(x) + eg(x, ). (4.0.4)

While we are primarily concerned with periodically forced two-
dimensional systems, we state the averaging results in the more general n-
dimensional context, since they are no more difficult in that form. For
Melnikov’'s method we restrict ourselves to two-dimensional problems,
although some n-dimensional, and even infinite-dimensional, generalizations
are available. We comment on extensions of this nature towards the end of
the chapter. We also outline some of the theory of area preserving maps of the
plane arising as Poincaré maps in time-periodic single degree of freedom
Hamiltonian systems and in time-independent two degree of freedom systems.

4.1. Averaging and Poincaré Maps

There are many versions of the averaging theorem. Our account is based on
the versions due to Hale [1969; Chapter V, Theorem 3.2], and Sanders and
Verhulst [1982], who give a very full discussion from the viewpoint of
asymptotics. We consider systems of the form

X =¢f(x,t,¢); xeUc R, 0<e<«l, 4.1.1)

/

th;re fiR"x Rx R" - R"is ", r > 2, bounded on bounded sets, and of
period T > 0 in . We normally restrict ourselves to a bounded set U < R".
The associated autonomous averaged system is defined as

) = lr t, 0) dt & ef 4.1.2
V=t Of(y,,) = &f (¥)- (4.1.2)
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In this situation we have

Theorem 4.1.1 (The Averaging Theorem). There exists a C" change of co-
ordinates x = y + ew(y, t, &) under which (4.1.1) becomes

J} = Sf(y) + Szfl(y’ tv 8)9 (413)

where f, is of period T int. Moreover

(i) If x(t} and y(t) are solutions of (4.1.1) and (4.1.2) based at xq, y,,
respectively, at t = 0, and |xy — yo| = O(), then |x(t) — y(t)| = O(e)
on a time scale t ~ 1/z.

(ii) If po is a hyperbolic fixed point of (4.1.2) then there exists ¢y > 0 such
that, for all 0 < ¢ < gy, (4.1.1) possesses a unique hyperbolic periodic
orbit y.(t) = py + (&) of the same stability type as py.*

(1) If x*(ty e W*(y,) is a solution of (4.1.1) lying in the stable manifold of the
hyperbolic periodic orbit v, = po + 0(e), y¥(t) € W(p,) is a solution of
(4.1.2) lying in the stable manifold of the hyperbolic fixed point p, and
| x(0) — y(0)] = O(e), then |x°(t) — y*(t)| = C(e) for t €[0, o). Similar
results apply to solutions lying in the unstable manifolds on the time
interval t € (— o0, 0].

Remarks. Conclusions (11) and (iii) generalize to more complicated hyper-
bolic sets. In particular, Hale [1969] shows that if (4.1.2) has a hyperbolic
closed orbit I, then (4.1.1) has a hyperbolic invariant torus Ty. Generaliza-
tions to almost periodic functions f are also available (Hale [1969]).
Conclusion (iii} implies that the averaging theorem can be used to approxi-
mate stable and unstable manifolds in bounded sets and generally to study

the global structure of the Poincaré map of (4.1.1), as our examples will
demonstrate.

Proor. We will sketch the first two parts of the proof using standard resuits
from differential equations; for the last parts it is more convenient to use
the ideas of Poincaré maps and invariant manifolds. We start by explicitly
computing the change of coordinates. Let

f(x,1,8) = f(x) + f(x,t,8) (4.1.4)
be split into its mean, f, and oscillating part fiLet
x =y + ewyt,g), (4.1.5)

without yet choosing waDifferentiating (4.1.5)-and using (4.1.1) and (4.1.4)
we have

] ] ow

[+ eDywly=x— &
ow

= ¢f (y + ew) + 8f(y + ew, t, &) — Sa,

* -+, may be a trivial periodic orbit, y,(t) = p,, cf. Example I on p. 171 below.
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or

y =¢[l + aDyw]"l[f(y +ew) + f(y + ew, t, &) — %‘;ﬁ] (4.1.6)

Expanding (4.1.6) in powers of ¢ and choosing w to be the anti-derivative of f:

ow
5, = S0, @:1.7)

we obtain

of

y=ef(¥)+ ez[Dyf (3, £, Ow(y, t,0) —D w(y, 1, 0) f(y) + Pt 0)} + 0(&)

Z e (y) + 2, (), (4.1.8)

as required.
To obtain conclusion (1) we use a version of Gronwall’s lemma:

Lemma 4.1.2 (cf. Coddington and Levinson {1955), p. 37). If u,v,and ¢ = 0
on [0, t], c is differentiable, and

u(t) < c(f) + J‘tu(s)v(s) ds,

then

v(t) < c(0) exp f Iu(s) ds + fc’(s) [exp J Iu('r) dr] ds.
0 $

0

To prove the lemma, let R(t) = [} u(s)v(s) ds and first show that R" — uR
< uc. After integrating this differential inequality and some manipulation,
including integration by parts, one obtains the result.

Now consider equations (4.1.2) and (4.1.3). Integrating and subtracting,
we have

P8} = ) = Voo — Yo + 2 L[f(ye(s» _ 7)1 ds

+ ¢ f'fl(ye(S). s, €) ds,
0

where y,(t) is a solution of (4.1.3) based at y,. Letting y, — y = ¢, L be the
Lipschitz constant of f and C the maximum value of f;, this becomes

L) < U0 | + eL fl&j(s)l ds + &*Ct. (4.1.9)
0

/Applying Gronwall’s lemma, with c(t) = |L(0)| + £*Ct and u(s) = ¢L, we
have

O] < KOl + 7 | L= g
0

< [I L0y + fgjle‘;“. (4.1.10)
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Thus, if |y, — yol = O(e), we conclude that |y(t) — y(t)| = €(e) for
t € [0, 1/eL]. Finally, via the transformation (4.1.5) we have

1X(8) = y(D)] = ew(y,, 1, &) = Oe)

and, using the triangle inequality

[ %(t) = ()] < |%(1) — yO] + [y() — ¥,

we obtain the desired result.

To prove (ii) we consider the Poincaré maps P, P, associated with (4.1.2)
and (4.1.3). Rewriting these latter systems as

y = (y); 6=1, (4.1.11)
y =) + &£, 6, 8); 0 =1, (4.1.12)

where (y, 0)e R* x S', and S' = R/T is the circle of length T, we define
a global cross section £ = {(y, #)|0 = 0}, and the first return or time T
Poincaré maps* P,: U —» X, P,: U — X are then defined for (4.1.11), (4.1.12)
in the usual way, where U < X is some open set. Note that P, is ¢*-close to P,
since T 1s fixed independent of ¢. If p, is a hyperbolic fixed point for (4.1.2),
then it is also a hyperbolic fixed point of DPy(p,) since DPy(p,) = e*72/1#),
Therefore, lim,_, (1/e)[eTP7%P?) — Id] = TDf(p,) is invertible. Since P, is
e-close to P,, we also have lim,.(1/e){DP{py,) — Id] = TDf(p,). The
implicit function theorem implies that the zeros of (1/¢)[DP(p,) — Id]
form a smooth curve (p,, ¢) in R" x R. The p, are fixed points of P,, and the
eigenvalues of DP,(p,) are &* close to those of DP,(p,) since p, = po + ((€)
and DP(p,) = exp[eT(Df(p,) + £Df,(p,))] = exp[eTDf (po)] + €(¢). Thus
(4.1.12) has a periodic orbit 7, e-close to p,, and via the change of coordinates
(4.1.5), equation (4.1.1) has a similar orbit.

We remark that all that is required for the existence of a periodic orbit
in (4.1.1) is the absence of any eigenvalues equal to one in the spectrum of
DPy(py)- However, the stability types of p, and y, may not correspond if any
eigenvalues of DPy(p,) lie on the unit circle.

To prove (ii1), suppose that (4.1.2) has a hyperbolic saddle point p, and
consider solutions y(t) € W*(p,) and the corresponding solutions y,(t) € W*(y,)
of the full system (4.1.3). The cases in which p, is a sink or source and W*
is replaced by W* can be dealt with similarly. The proof is divided into two
parts; an outer region in which the averaged vector field &f(y) is large in
comparison with the remainder term &f,(y, ), and an inner region in which
the “perturbations” ¢’f; and ¢f are of comparable order. For more details
see Sanders and Verhulst [1982]. We fix a é neighborhood, Uj, of p,, so
that, outside U;, we have [f()))| > ¢|f1(),t, €)|. As above, standard
Gronwall estimates show that |y, — yo| = O(¢) for times of order 1/e

*In P,, the subscript “0” indicates that the ¢(e?) term is removed, rot that ¢ = 0 in (4.1.11).
The notation, P, for the ¢(g) map and P, for the full map, will be used throughout this and the
following three sections.
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Figure 4.1.1. Validity of averaging on semi-infinite time intervals.

outside U;. On the other hand, in U, the (local) stable manifold theorem
guarantees that the stable manifold Wi, (y,) is & C" close to Wi (py) x
[0, T]. Moreover, within Wi (y,) and W3 (py) solutions are contracting
towards y, and p,, respectively, this contraction being dominated by an
exponential term of the form e~ *. Using this fact, we can prove that, if y, and
yo enter U; within O(e), they remain within () for all forward time, Figure
4.1.1. Piecing the two estimates together and using the transformation (4.1.5)
as above, we obtain the desired result. O]

We note that Sanders [1980] and Murdock and Robinson [1980] (cf.
Robinson [1981b]) give proofs of part (111) of this theorem. In the proof of the
last part of the theorem we are using the smooth dependence of (local)
invariant manifolds on parameters. Thus statement (iii) also follows directly

from the “big” invariant manifold theorem of Hirsch et al. [1977, Theorem
4.1].

4.2. Examples of Averaging

ExampLE 1. Consider the scalar system
% = gx sin? ¢, (4.2.1)

Here f(x,t,e) = f(x) + f(x, 1, 6) = x/2 — (x/2) cos 2t and we have

' @ cos 2t
a2 %
or
y .
W= — i sin 2t. (4.2.2)
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Note that the t-independent term which could appear in the anti-derivative
is generally taken to be zero. From (4.1.8), the transformed system is

Y = sg + 82[(% ~ 1 ¢os 2t)(— %sin Zt) — (—1sin 21) (g)] + 0(e%),
or

b= g2 4+ g2 s 3 4
¥y 82+8 16sm4t+(9(a). (4.2.3)

Here the autonomous averaged equation is simply

Y
y=¢3. (4.2.4)

The exact solution of (4.2.1) with initial value x(0) = x, is easily found
to be

x(t) = x, e H2) - sinzZn/d) (4.2.5)
Comparing this with the solution of the averaged equation

y(t) = yoe™'?, (4.2.6)

we see that
x(t) — y(t) = e[| xo — Yol — xo sin(2)/4 + O(E*)],  (4.2.7)

in agreement with conclusion (i) of the theorem. Here the hyperbolic source
y = 0 of (4.2.4) corresponds to a trivial hyperbolic periodic orbit x = 0 of
(4.2.1), and, letting t - — o0 in (4.2.5)-(4.2.7), we see that x(t), y(t) — 0 and
hence |x(t) — y(t)}| = 0, in agreement with conclusions (i1) and (ii1).

ExercCise 4.2.1. Study the system X = —éx cos ¢ by the method of averaging. Does it
have a hyperbolic limit set? Compare the averaged and exact solutions.

EXERCISE 4.2.2. Repeat the averaging analysis for X = e(—x + cos? ¢). In particular
check the validity of conclusions (ii) and (iii) of the theorem.

EXERCISE 4.2.3. Study the nonlinear systems

X = &(x — x*) sin? ¢
and

X = g(x sin® t — x%/2)

by the method of averaging. What do you notice about their solutions?

ExampLE 2 (Weakly nonlinear forced oscillations). In many weakly non-
linear oscillator problems, the second-order equation to be studied takes
the form

X+ wix = ef (x, X, 0), (4.2.8)
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where [ is T periodic in ¢. In particular, if f is sinusoidal with frequency o =
ko, We have a system close to a resonance of order k. In such a situation, our
expectation of finding an almost sinusoidal response of frequency w/k
prompts the use of the invertible van der Pol transformation, which recasts
(4.2.8) into the form (4.1.1) which can then be averaged. We set

(a)t) k .n(wt)
cos|— — —sin| —
u X k w k
(D) - |
(U) : in o : cos ot
TNk o \k )|
(4.2.9)
P cos(wt) _Sin(go_r) T
P k k
@ in wt 2cos wr
AR kSO k )]
under which (4.2.8) becomes
, k[ [w? — kKPwd o] . [t
n= — P L(ww—mlgz————)x + ¢f (x, X, t)j sm(?),
k B 2 - k2 2 T t
b= — % 5 il x + ¢f(x, x, t) | cos hd , (4.2.10)
w | k ] k

in which x, x can be written as functions of u, v, and t via (4.2.9). If w?* —

k*w? = ((e), then (4.2.10) is in the correct form for averaging.
As a specific example, we take the standard Duffing equation which is
considered in almost every text on nonlinear oscillations:
X + wix = g[y cos wt — 6% — ax?], (4.2.11)

where wf — w? = ¢Q, i.e, we are close to order one resonance. Setting k = 1
in (4.2.9) we obtain the transformed system

. € . . .
U= —[Qu cos wt — vsin wt) ~ wd(u sin wt + v COs wt)
w

+ au cos wt — v sin wt)® — y cos wt] sin wt,

. & . :
U = — [u cos wt — v sin wt) — wd(u sin wt + v cos wt)
cu

+ ou cos wt — v sin wt)® — y cos wt] cos wt. (4.2.12)
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Averaging (4.2.12) over one period T = 27n/w, we obtain

A 3
U= s —wdu — Qv — 2 (u? + vz)u] L ef (u, v),
2w | 4
] (4.2.13)
) € . 3 of
Bl _Qu — wdv + . W? + v)u — y] C o (u, v)
or, in polar coordinates; r = /u* + v?, ¢ = arctan(v/u):
; € :
F=_—[—wdr — ysin ¢],
2w
b= Q+30{3 cos ¢ (4.2.14
r — E-a—) 3 4 r '}) . et )

Perturbation methods carried to ((e) give precisely the same result (cf.
Nayfeh and Mook [1979], Scction 4.1.1).
Recalling the transformation

x = u(t) cos wt — v(t) sin wt = r(t) cos(wt + (1)),

we see that the slowly varying amplitude, r, and phase, ¢, of the solution
of (4.2.11) are given, to first order, by solutions of the averaged system
(4.2.14). It is therefore important to find the equilibrium solutions of or
fixed points of (4.2.14), which, by the averaging theorem and the trans-
formation (4.2.9), correspond to steady, almost sinusoidal solutions of the
original equation. Fixing o, &, and y and plotting the fixed points 7, ¢ of
(4.2.14) against Q or w/w,, we obtain the frequency response curve familiar
to engineers: see Figure 4.2.1. We shall consider the “jump™ bifurcation
phenomenon below. For more details on the Duffing equation see Nayfeh
and Mook [1979], or, for bifurcation details, Holmes and Rand [1976].
The stability types of the branches of steady solutions shown in Figure 4.2.1
are obtained by consideration of the eigenvalues of the linearized averaged
equation, and we invite the reader to check our assertions.

In Figure 4.2.2 we show typical phase portraits for (4.2.13)-(4.2.14),
obtained by numerical integration for parameter values for which three
hyperbolic fixed points coexist. In Figure 4.2.3(a) we reproduce the stable and
unstable manifolds of the saddle point, under the orientation reversing trans-
formation (4.2.9) (with k = 1) applied at r = 0: x = u, X = —ov. According
to Theorem 4.1.1, these manifolds should approximate the stable and unstable
manifolds of the Poincaré map of the full system (4.2.11), which we show in
Figure 4.2.3(b). These latter manifolds were also computed numerically. We
note that the agreement is good, but remark that it deteriorates as @ moves
away from w, (£ increases). For more examples, see Fiala [1976].
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Figure 4.2.1. Frequency response function for the Duffing equation: sx = 0.05,
e =02, ey = 2.5

EXERCISE 4.2.4. Carry out averaging for the “original” van der Pol equation
. « 2 .
X+ —(x* — 1x + x = oy cos wx,
W

With 1 — w? = ac = O(x) < 1. Show that the averaged equation takes the form given
In (2.1.13) with § = ay. Check as many of the assertions made in Section 2.1, concerning
the averaged system, as you can.

EXERCISE 4.2.5. Consider equation (4.2.11) with ey = 7 = O(1) and w = 3w, and apply
the method of averaging to study the subharmonics of order three. In this case the
transformation (4.2.9) should be replaced by

(u) _u(*T B cos(wt — ¢)
/ v/ T \% — wBsin{wt — ¢>))’
where
(wt) 3 . (wt)
cos| — — —sin|—
3 w 3

_ (a)t) 3 (cot)
—sin{— — —cos|—
3 w 3

(4.2.15)
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