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Abstract. This paper presents an overview of some techniques and concepts
coming from dynamical system theory and used for the analysis of dynamical
neural networks models. In a first section, we describe the dynamics of the neu-
ron, starting from the Hodgkin-Huxley description, which is somehow the canon-
ical description for the “biological neuron”. We discuss some models reducing the
Hodgkin-Huxley model to a two dimensional dynamical system, keeping one of
the main feature of the neuron: its excitability. We present then examples of phase
diagram and bifurcation analysis for the Hodgin-Huxley equations. Finally, we end
this section by a dynamical system analysis for the nervous flux propagation along
the axon. We then consider neuron couplings, with a brief description of synapses,
synaptic plasticity and learning, in a second section. We also briefly discuss the
delicate issue of causal action from one neuron to another when complex feed-
back effects and non linear dynamics are involved. The third section presents the
limit of weak coupling and the use of normal forms technics to handle this situ-
ation. We consider then several examples of recurrent models with different type
of synaptic interactions (symmetric, cooperative, random). We introduce various
techniques coming from statistical physics and dynamical systems theory. A last
section is devoted to a detailed example of recurrent model where we go in deep
in the analysis of the dynamics and discuss the effect of learning on the neuron
dynamics. We also present recent methods allowing the analysis of the non lin-
ear effects of the neural dynamics on signal propagation and causal action. An
appendix, presenting the main notions of dynamical systems theory useful for the
comprehension of the chapter, has been added for the convenience of the reader.

1 Introduction

The present paper aims to give an outlook of the various dynamical systems notions and
techniques that are used while modeling Neural Network dynamics. Actually, there are a lot
of such models. One reason is that there are several levels of description and abstraction in
this context : from a biologically realistic modeling of a neuron to neurons with a binary state;
from an isolated neuron to Neural Networks, composed by several functional parts, each of them
constituted by many neurons, and interacting in complex fashion, etc. . . . Another reason is that
the Neural Network community is wide : from biologists, neurophysiologists, pharmacologists, to
mathematician, theoretical physicists, including engineers, computer scientists, robot designers,
etc. . . . Clearly the motivations and questions are different. Models that are designed to tackle a
given problem may have very different structure and properties. It follows from these remarks
that any attempt to “give an outlook of the various dynamical systems notions and techniques
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Fig. 1. Different levels of description of the neuron/network and techniques used to handle the dynamics
of the models presented in this paper.

used while modeling Neural Network dynamics” is necessarily partial, biased and includes
arbitrary and subjective choices. For sure, this paper is subject to these restrictions.
With this idea in mind we made the choice to explore the world of Neural Networks according

to a specific map, represented in the Figures 1, 2, localizing the various models studied in this
paper in a 3 dimensional space. We started from the obvious remark that a Neural Network is
roughly made of neurons and synapses. But there are different levels of complexity and accu-
racy in the description of neurons and synapses. For neurons we used a model categorization
along two axis. The first axis is relative to the proximity to biology. In this hierarchy, the
Hodgkin-Huxley model is at the first rank (Section 2.1). The Hodgkin-Huxley equations are
derived in the section 2.1 and some aspects of their dynamical properties are briefly described
in the sections 2.3 (examples of bifurcations occurring in the Hodgkin-Huxley model when
a control parameter such as the external current is applied) and 2.4 (propagation of a spike
along the axon). Before this, one remarks that the Hodgkin-Huxley equations can be reduced
to a two dimensional dynamical system, taking various forms according to the modeling, but
retaining in particular one of the main feature of the neuron: the property of excitability. The
two dimensional excitable dynamical system obtained by reducing the Hodgkin-Huxley equa-
tions are easy to understand and provide fairly pedagogical examples. The excitable systems
come therefore next in our hierarchy (section 2.2). They allow one to capture some important
dynamical aspects in neuronal behavior, such as spike generation, refractory period, threshold,
and they exhibit various dynamical regimes observed in the experiments. After presenting the
general structure of models for excitable membranes (section 2.2.1) we discuss several canonical
examples in neuron modeling. The first example is the Fitzhugh-Nagumo model (Section 2.2.2),
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Fig. 2. Different type of (formal)
synapses considered in this paper
(section 5).
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then we briefly present the Morris-Lecar model (Section 2.2.3), and Integrate and Fire models
(Section 2.2.4).

These sections essentially deal with “spiking” neurons, namely the activity of the neuron is
manifested by emission of action potential or “spikes” according to various pattern (individuals
spikes, periodic spiking, bursting, etc . . .). On biological grounds, this is certainly a fundamental
aspect in neuronal dynamics. However, another description of the neuron can be made in terms
of “firing rates”. The firing rate is the frequency of the spikes occurring during a certain time
window of length T (typically, T ∼ 100ms). It plays certainly also an important role in a
certain number of neurological processes. For example, it is known since a long time [6], [7] that
the firing rate of stretch receptor neurons in the muscles is related to the force applied to the
muscle. However, during recent years, experimental evidences have suggested that this concept
may be too simplistic to describe brain activity. It neglects indeed important aspects such as
the information possibly contained in the exact timing of the spikes [27,1,143,96,150,128,126].
Also, the reaction times in behavioral experiments are often too short to allow long temporal
averages (see for example the experiments by S. Thorpe [154] on the vision).

Nevertheless, firing rate models play an important role in the Neural Network community
since they have been often used to model the collective activity of a neural assembly [8], [9], [50],
and also to perform recognition tasks [95]. Henceforth, we have included them in our table,
and we have placed them after the spiking neurons in our rough hierarchy. In the examples
described in the sections 5, 6, corresponding to recurrent neural networks, the neuron is basically
considered as an entity having an input and an output with a non linear transfer function
(typically a sigmoid). This nonlinearity has several deep effects on the dynamics and a detailed
example is described in section 6.

Finally, if one makes the further approximation that the slope of the sigmoid function is
infinite, one ends up with a binary state neuron (or Mac Cullogh and Pitts neuron [112]). Neural
Networks with such binary “spin” like neurons had a great success [95] but we shall not discuss
them in this paper.

The second axis of the table 1 takes into account the collective aspects of Neural Networks.
We establish a hierarchy ordering the models by increasing complexity in the neural population:
one neuron, then a few neurons, then one population of weakly coupled neurons, then one
population with arbitrary couplings (one could also consider several populations interacting
with each others, but we do not consider this case in this paper).

If one observes this space and asks which analytical methods allow us to describe the dynam-
ics, one obtains the Table 1. A simple glance reveals that the methods discussed in this paper
essentially belong to three different domains of mathematics and physics: Dynamical systems
theory, statistical mechanics and probability theory, and, at the intersection, ergodic theory.
Also, one can remark that we essentially deal with the diagonal of this Table. As a matter of
fact, when one moves away from the diagonal one meets, on one side, more and more trivial
models (e.g. an isolated binary neuron), and, on the other side, more and more complex cases
(a big population of many Hodgkin-Huxley neurons). In the first case, there is almost nothing
non trivial to say, and in the second one, very little is known at least from the analytical point
of view. In this paper, we therefore choose some examples on the diagonal and we analyze the
corresponding dynamics.

There is actually, behind this choice, a fundamental aspect in modeling and analyzing Neural
Networks, and more generally, modeling and analyzing the so-called “complex systems”. Com-
plex systems are often composed by elementary units (in our case, neurons), having their own
intrinsic characteristic dynamics and interacting with each others in a complicated way (non-
linear, non symmetric, with delays, etc . . . ). The intrinsic dynamics of the units can already be
quite a bit complex (see, for example, the section 2.3) so one may expect the collective dynam-
ics to be even more complex. This is certainly true, but coupling the units give usually rise to
a collective emergent behavior that one may characterize by the sentence: “The system as a
whole is not reducible to the superposition of its elementary components”. This is usually due
to non linear effects but this can also result from large numbers effects. Nevertheless, when one
builds a dynamical system by coupling entities, each of them described by a lower dimensional
dynamical system, the wisdom acquired when observing individual units is usually not sufficient
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to handle the collective behavior. The coupled system inherits characteristics that cannot be
inferred from the knowledge of the un-coupled one. Also, some characteristics of the individ-
ual units may be hidden or may become irrelevant in the collective dynamics. These emergent
effects can arise even if the coupling is weak. Starting from isolated neurons and “switching
on” an interaction (synapses) between them, with an increasing intensity controlled by some
parameter, the coupled system may, in some situations, exhibit a sharp, drastic change in its
dynamics even if the parameter is small. This change usually corresponds to a bifurcation and
it has often some analogies with phase transitions in statistical mechanics. Some prominent
examples are presented in section 4.

The existence of emergence has two consequences. Firstly, this justifies somehow the
simplifications inherent to modeling. If one desires to understand some emergent properties
resulting from coupling neurons it might not be necessary to integrate all the features of the
isolated neuron. It is often possible to drop some feature (preventing, for example, an ana-
lytic computation) and to capture nevertheless some important collective aspect. This outlines
one important feature of the diagonal in table 1. When going from one “level of complexity”
(detailed description of the neuron dynamics) to another level (coupling neurons) one often sim-
plifies the characteristics of the neuron in order to have a tractable model. This is in some sense
what we do when going from spiking Hodgkin-Huxley neurons to firing rate neurons. However
another consequence results from the modeling process aiming to capture some characteristics
considered as “relevant” and eliminate others considered as “details”. The mathematical struc-
ture and properties of the coupled model might be drastically different from the un-coupled
one. This means that the tools, techniques or even philosophy adopted to handle the dynamics
may change from one level of complexity to another. As we shall see, for example, the normal
forms theory is quite a bit useful to handle dynamical changes in isolated neurons or in weakly
coupled neural networks (provided some necessary assumptions are made), but it is of little
help in randomly coupled recurrent neural networks, at least before any prior treatment (such
as the dynamic mean field equations of section 6.4).

It results from these remarks that there is, currently, no general strategy to study Neural
Networks dynamics. Nevertheless, as we shall see, dynamical systems theory, probability theory,
statistical physics and ergodic theory can sometimes be used and combined to give partial solu-
tions and can be tailored to build new tools and methods. A few examples are given in this paper.

Now, a few words about Table 2 below. It defines a third dimension in our classification space,
where we define several levels of description for the “synapses” (interactions between neurons).
The detailed physiology of the synapse is complex and, actually, there exists different types
of synapses: chemical or electrical (gap junction). However, in most models the mathematical
description is rough and, quite often, synapses are basically modeled in a way allowing to store
information in the network, this information being extracted from the dynamical evolution of the
neurons. Depending on the modeling chosen for the synapses, the dynamics can be very different,
and their modification can induce drastic dynamical changes. In this paper, we essentially give
one example of the changes induced when one considers the different types of synapses presented
in table 2, for recurrent networks (section 5). We discuss first the convergence properties of
the Cohen-Grossberg model when the synapses are symmetric (section 5.2). Then we discuss
the case of cooperative networks. The main result is a convergence theorem from Hirsch [92]
which had recently some extensions in the field of genetic networks [80,145]. We also discuss
in this section the notion of frustration resulting from the competition of excitatory/inhibitory
effects. The section 6 is devoted to the complete analysis of a recurrent model with asymmetric
interactions, exhibiting complex regimes such as chaos. One can indeed go quite a bit deep in
the description of the dynamics, by combining dynamical systems theory, statistical mechanics
and ergodic theory (sections 6.1, 6.2, 6.3, 6.4). This model exhibits interesting properties when
submitted to Hebbian learning (section 6.5). We also present new developments characterizing
the ability of such a network to transmit a signal. The basic tools is a linear response theory
recently developed by Ruelle [134] (section 6.6).

To conclude this introduction we would like to point out an important aspect. Many tech-
niques described here have been developed out of the field of Neural Networks. But, in many
cases they have been tailored or adapted to tackle specific problems in this field, and new
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methods have emerged. The interesting remark is that some of these techniques have now ap-
plications in other fields such as genetic networks, communication networks, or more generally
non linear dynamical systems on non regular graphs1, with a large number of degree of freedom
(but finite). Some examples of applications to other fields are discussed in this paper.

2 Spiking neurons and excitable systems

The activity of a neuron occurs by the emission of action potentials (or spikes) (see Fig. 3).
In the simplest cases, they are controlled by ions (mainly Sodium (Na+) and Potassium (K+))
and their concentration around the nerve cell (see section 2.1). An external stimulus causes
Na-selective ion channel to open causing an influx of Sodium in the nerve cell. If the corre-
sponding potential exceeds a threshold value (depolarization threshold) an action potential is
generated. The action potential propagates then along the axon (section 2.4). After the cell
depolarizes, it must repolarize to its resting potential before it can depolarize again. This re-
polarization phase is controlled by an efflux of Potassium (repolarization phase). This phase
is followed by a refractory period where the neuron cannot be excited. The initial balance
between Sodium and Potassium is restored by ionic pumps. Different models accounting for
action potential generation exist and some of them are described below. But, the core of all
these models is certainly the Hodgkin-Huxley’s that we describe in the next section.
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Fig. 3. Typical action potential of
a neuron.

2.1 Hodgkin-Huxley neurons

The classical description of neuronal spiking dates back to Hodgkin and Huxley [94]. After
extensive experimental studies these authors were able to propose a model for the dynamics of
the giant axon of the squid. This constituted a significant breakthrough in the description of
action potential. At the time of their experiments (1952), the modern concept of ion-selective
channels controlling the flow of current through the membrane was only one hypothesis among
several competing others. Their model ruled out alternative ideas and gave correct predictive
results of experiments that were not used in formulating the model. It reproduces and explain
a remarkable range of data from squid axon, including the shape and propagation of the action
potential, its sharp threshold, refractory period, anode-break excitation, accommodation and
sub-threshold oscillations. Hodgkin & Huxley also proposed a set of equations modeling spikes

1 In this way, the wisdom coming from the field of Neural Network is different (and complementary)
from the knowledge acquired in parallel fields, such as coupled map lattices.
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propagation along the axon (see section 2.4). They were in particular able to predict the prop-
agation rate of spikes with a remarkable accuracy. The Hodgkin-Huxley modeling is generic,
tractable and gave rise to new techniques and concepts. Consequently, the actual models of
neural excitability are greatly influenced this work which resulted in a Nobel price (1961) for
the authors. There is a large number of papers and books dealing with Hodgkin-Huxley model.
Our main references are [54,78,90,104,107,123].
In their work, Hodgkin and Huxley start from the idea that the action potential results

from transmembrane currents mainly constituted by Sodium (Na+) and Potassium (K+) ions.
Consider a neuron at rest in its natural environment, namely in the intra cellular fluid where
the Sodium and Chloride concentration is similar to sea water. One observes that, at rest, the
Na+ concentration is about 10 times higher outside the neuron than inside, while the K+

concentration is about 5 times higher inside than outside. Assuming that the system is locally
at thermal equilibrium with a temperature T , the difference in concentration between the inside

and the outside, for the ionic species X, results in a potential difference EX
def
= Vin[X]−Vout[X]

called the Nernst potential and given by:

EX =
RT

F
log

(
[X]out
[X]in

)
(1)

where R = Nk = 8.315 J/K is the ideal gas constant, (N = 6.02×1023 is the Avogadro number,
k = 1.38 × 10−23 J/K the Boltzmann constant), F = N e = 96500C is the Faraday number
(e = 1.602× 10−19 C is the charge of the proton), and [X]out (resp. [X]in) is the concentration
of X outside (resp. inside) the neuron. With this convention, for positive ions, the effective
electric force has the same direction as the force induced by the concentration gradient. For
the giant axon of the skid and for a temperature T = 6.3 ◦C, the Nernst potential for Sodium
and Potassium are respectively ENa ∼ 56mV, EK ∼ −77mV. Moreover, taking into account
the respective concentration of all ionic species the membrane potential is about −70mV at
rest. Were the membrane to be permeable to ions, would one observe ionic currents through
the membrane. These currents are not observed at rest, but arise during an action potential.
Consequently, the ionic permeability of the membrane (conductance) depends on the neuron
state (i.e. its membrane potential).
In Hodgkin-Huxley modeling the (macroscopic) membrane conductances are determined by

the combined effects of a large number of microscopic ionic channels located in the membrane.
One considers a channel as an ensemble of independent gates (that can be of different type)
with a binary open-closed state. Denote by pi ≡ pi(V ) the probability that a a gate of type i is
open. Then the conductivity GX for channels of ionic species X, with gates of type i = 1 . . . N ,

is proportional to the product of the probabilities pi that the gate i is open : GX = gX
∏N
i=1 pi,

where gX is the maximal conductance for channels of type X. Each pi depends on the potential
V and on the fraction of open (pi) and closed (1− pi) gates. In the Hodgkin-Huxley model the
time dependence of the pi’s is given by a master equation:

dpi

dt
= αi(V )(1− pi)− βi(V )pi =

p∞i (V )− pi
τi(V )

(2)

where αi (resp. βi) are the transition rates from close to open (resp. open to close) or gate
inactivation (resp. activation). They have been empirically determined by Hodgkin and Huxley
for each ion species. They are function of the membrane potential V (see eq. (13) below). In the
second equality one introduces the natural quantities:

τi(V ) =
1

αi(V ) + βi(V )
; p∞i (V ) =

αi(V )

αi(V ) + βi(V )
(3)

where τi is a characteristic time constant and p
∞
i is called the steady state activation. This is

the value reached by pi when it is held at a potential V for a long period (say larger than the
characteristic time τi). The solution of (2) is obviously:

pi(t) = p
∞
i (V )− (p∞i (V )− p0i )e

− t
τi(V ) (4)

Consequently, for a fixed V , pi has a simple exponential time dependence governed by τi.
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From their experiments Hodgkin-Huxley proposed to model the K conductance with an
equation of the form:

GK = gKn
4 (5)

where gK is the maximum Potassium conductance. This corresponds to have a K channel with
four independent gates of type n. The probability n is called the K activation variable.
A similar equation can be written for the sodium:

GNa = gNam
3h (6)

This corresponds to modeling a Na+ channel with three gates of type “m” and one
gate of type “h”. m is the Na activation variable, and h is called the Na inactivation
variable. The Na+ ions can penetrate in the cell only if the m and h gates are both open
(see Fig. 5).
The membrane potential V is now given by Kirchhoff’s law

Cm
dV

dt
+ INa + IK + IL = Iext (7)

where INa, IK are the sodium and potassium ionic currents through the cell membrane, IL the
leakage current (mainly composed by Cl− ions) and Iext is some external current (for example
applied during an experiment). Cm is the membrane capacity (∼ 1µF/cm2). The currents
are given by the Ohm’s law Ii = Gi(V − Ei) where Ei is the Nernst potential of the species
i = Na,K,L.
Finally, the ionic currents are given by:

Cm
dV

dt
= −gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + Iext (8)

1

γ(T )

dn

dt
= αn(V )(1− n)− βn(V )n =

n∞(V )− n
τn(V )

(9)

1

γ(T )

dm

dt
= αm(V )(1−m)− βm(V )m =

m∞(V )−m
τm(V )

(10)

1

γ(T )

dh

dt
= αh(V )(1− h)− βh(V )h =

h∞(V )− h
τh(V )

(11)

The dynamical system (8–11) constitutes the complete Hodgkin-Huxley system. It involves a
temperature dependent factor:

γ(T ) = 3
(T−6.3)
10 (12)

This factor has the only effect of modifying the time constants in the equations for the activa-
tion/inactivation variables2. In the sequel we shall forget it and assume that the temperature
is T = 6.3 ◦C (γ(T ) = 1).
The V dependence of the parameters αn, βn, αm, βm, αh, βh was determined empirically by

Hodgkin and Huxley. They found3:

αm(V ) = Ψ

(
−(V + 45)
10

)
; βm(V ) = 4e

−(V+70)
18 (13)

2 For a recent numerical work on the effects of temperature on the dynamics of a network composed
by Hodgkin-Huxley neurons, coupled with gap junctions, see [158].
3 In the literature one may find different forms for these equations depending on the zero of the
potential. Here we have chosen it such that the membrane potential at rest is Vrest = −70mV . One
can also choose it such that V = 0 at rest.
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αn(V ) = 0.1Ψ

(
−(V + 60)
10

)
; βn(V ) = 0.125e

−(V+70)
80 (14)

αh(V ) = 0.07e
−(V+70)

20 ; βh(V ) =
1

1 + e
(−(V+40))

10

(15)

with:

Ψ(x) =

{
x
ex−1 if x �= 0
1 if x = 0

(16)

In Fig. 4a have we drawn the time constants τn, τh, τm deduced from eq. (13) as functions
of V , while in fig. 4b the steady state values n∞,m∞, h∞ as functions of V are shown. One
notes in particular that the time constant for the Na activation variable is about one order
of magnitude less than for the Na inactivation and the K activation, through the entire range.
This means that the response in the m variable is quite a bit faster than the other variables.
Consequently, during an action potential, when the voltage is high and m is large, it will take
a while for h to decrease and for n to increase and contribute to the opposite K current. The
mechanism of action potential emission is then the following. In the resting phase (a) the m,n
gates are closed while the h gate is open. Therefore, sodium and potassium are neither leaving
nor entering the cell (fig. 5a). During depolarization, the m gates open fast allowing sodium
to diffuse inside the cell, following the concentration gradient, while the n gates are still closed
(fig. 5b). This increases the membrane potential. Then n increases slowly, more and more K
gates are open, generating an opposite K current. In the same time, h decreases and more and
more h gates close, preventing sodium from coming into the cell (fig. 5c). This corresponds to
the repolarization phase. In the refractory period the m gates close, the h gates stay closed and
the n gates stay open. It is not possible to excite the neuron in this phase (fig. 5d). Finally,
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the h gates open, the ionic balance is restored by ionic pumps, and the resting state is once
again achieved. If one draws the membrane potential versus time one obtains a picture similar
to figure 3. The action potential is then propagated along the axon. The propagation equations
are studied in section 2.4.
The preceding analysis is only qualitative but deeper mathematical investigations can

be done (see section 2.3) and numerical simulations can be performed. One observes spike
generations but also periodic spiking, bursting etc . . . The Hodgkin-Huxley equations describe
therefore the neural dynamics with a fantastic accuracy accounting of the wide variability in
neuron activity. In particular, one predicts various situations observed in experiments. On the
other hand they equations can be simplified giving rise to many models of formal neural net-
works. Despite this simplification (that can be quite a bit rough) it is still possible to obtain a
huge quantity of information about the neural dynamics. In the next section we present a few
models derived from Hodgkin-Huxley equation and capturing one of the main feature of the
biological neuron: excitability.

2.2 Reducing the Hodgkin-Huxley equations

2.2.1 General structure of excitable membrane

Most models for excitable membrane have the general Hodgkin-Huxley structure (eq. (8)–(11))
and can be written in the form.

Cm
dV

dt
= −Iion(V,X1, . . . , Xn) + Iext = −

N∑
k=1

Ik(V,X1, . . . , Xn) + Iext, (17)

Ik = gkσk(V,X1, . . . , Xn)(V − Ek), k = 1 . . . N, (18)

dpi

dt
=
p∞i (V )− pi

τi(V )
, i = 1 . . . l, (19)

where V denotes membrane potential, Cm the membrane capacity, Iion is the sum of ionic
currents, Iext an external or applied current. The variables pi are used to describe the frac-
tion of open channels of type i. τi is the characteristic time that the ions of type i need to
reach the rest state p∞i (V ). In the Ohm’s law (18), Ik is the current for the k th ion species,
gk is the maximal conductivity for the ions channels of type k, σk is the product of gate
k-channels activity, and Ek is the Nernst equilibrium potential. In some situations it is fun-
damental to have an accurate models of the neuron excitability, if one seeks, for example,
to account for rather detailed aspects of spike shape, dependence upon many pharmacologi-
cal agents, etc. . . . However, in many cases a rough description is enough to capture the main
qualitative and quantitative aspects of the dynamics of excitability. Consequently, one can re-
duce the complexity of the set of equations (17, 18, 19) in order to obtain an analytically
tractable model. Henceforth, many models of neuronal dynamics are reduction of these general
equations.

2.2.2 The FitzHugh-Nagumo model

In this spirit FitzHugh [71] and independently Nagumo, Arimoto et Yoshizawa [122], considered
reductions of the Hodgkin-Huxley model and introduced an analytically tractable two variables
model.
The basic observation is the time scale separation between the variables V,m, n, h in

eq. ((8)–(11)). According to Fig. 4 the characteristic time for Sodium activation is so fast
compared to the other variables that one may consider m essentially as a constant. This elimi-
nates the variable m. Also, FitzHugh observed that h+ n is essentially a constant ∼0.8 during
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the action potential. Consequently, one can eliminate one more variable. One finally obtains a
model of the form (for the detailed reduction see e.g. [4], [105], [104], [78], [129]):

ε
dv

dt
= fλ(v, w) (20)

dw

dt
= gλ(v, w) (21)

where ε =
Cm

maxV τn(V )
is typically small. The index λ refers to the control parameters of the

system. In the FitzHugh-Nagumo model fλ(v, w) = v − v3 − w + I is a cubic polynomial in v
and is linear in w, while gλ(v, w) = (v−a− bw). The parameters λ = (a, b, I) are deduced from
the physiological characteristics of the neuron. It can also be useful to consider the dynamical
system

dv

dt
= fλ(v, w) (22)

dw

dt
= εgλ(v, w) (23)

obtained from (20,21) by a time rescaling t→ t
ε
.

The system of equations (20, 21) is the canonical form for excitable systems. That is why
we used the “generic” variables namely v, w instead of V, n. They are usually called excitation
and recovery variables. The excitation variable governs the rise to the excited state while the
recovery variable causes the return to the steady state. Since ε is typically a small parameter,
there is a separation of time scales between the two variables.
On technical grounds, the analysis is simplified by the two dimensional geometry of the phase

space. Indeed, in the phase plane, the slope of the trajectory of a given point is dw
dv
= gλ(v,w)
fλ(v,w)

and consequently the phase portrait can easily been drawn. In particular a trajectory is vertical
(resp. horizontal) at the points such that fλ(v, w) = 0 (resp. gλ(v, w) = 0). The set of points

Nv
def
= {(v, w) | fλ(v, w) = 0} (resp. Nw def= {(v, w) | gλ(v, w) = 0}) is composed by a union of

curves called the v-nullclines (resp. w-nullclines). Thus, the fixed points of (20, 21) are at the
intersection of nullclines. More generally, the shape of the nullclines gives strong informations
on the dynamics. As shown below the nullclines shape changes when the parameters λ are
varying, leading to bifurcations for some values of λ.
When ε is small one uses an additional property to analyze the dynamical system (20, 21).

Setting ε = 0 in (20, 21) one obtains fλ(v, w) = 0;
dw
dt
= gλ(v, w). This means that, whenever it

is possible, v is adjusted rapidly to maintain a pseudo-equilibrium corresponding to f(v, w) = 0
and plays the role of an implicit parameter in the evolution of w. In other words, the point
(v, w) moves slowly along the (stable) branches of the v nullclines. These branches compose
the so-called “slow manifold”: it is only “on” (or very near) this curve that the motion of the
solution curves is not very fast in a nearly horizontal direction (see e.g. Fig. 6).
On the other hand, away from the Nw nullcline, the vector field is essentially horizontal and

one has a fast motion of v. Indeed, a time rescaling t → t
ε
gives the system (22, 23). Then,

setting ε = 0 one can approximate the (regular) trajectories of the system (20, 21) by the
(non regular) trajectories of the degenerated system:

dv

dt
= fλ(v, w) (24)

dw

dt
= 0 (25)

where the vector field is horizontal with a norm fλ(v, w).
The trajectories of the real system are composed by pieces coming from these two approx-

imations. There are theorems controlling how the real trajectories of (20, 21) are close to the
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Fig. 6. Nullclines and vector field for the
toy model (26). This a qualitative draw-
ing and the phase portrait has been drawn
“by hand”. Consequently, the arrows rep-
resenting the vector field are drawn as
indicators. The picture is not scaled. In
particular, the vicinity of the slow man-
ifolds (in green) is of order ε. Practically,
the trajectories near the slow manifold can
essentially be considered as being “on” the
slow manifold.

piecewise trajectories, for a sufficiently small ε allowing to obtain the characteristic trajectories
of the initial system from the solutions of the degenerated system. This is the essence of the
singular perturbation theory developed by Mischenko & Rozov [121].
To illustrate this, let us start we a simple example used as a preliminary step to analyze

later on the FitzHugh-Nagumo equations:

ε
dv

dt
= v − v3 − w (26)

dw

dt
= v − a (27)

The v-nullcline is given by w = v − v3 while the w-nullcline is the vertical line v = a. The
nullclines and the flow of (26) are depicted fig. 6. Due to the smallness of the parameter ε, the
flow is essentially horizontal4 (dw

dt
∼ 0) except close to the v-nullcline. Crossing the v-nullcline

(resp. the w-nullcline) makes the v component of the flow (resp. the w component) changing its
sign. The v nullcline has two “stable” branches denoted by N±v . Namely the flow is attracted
in a neighborhood of these branches and stays a long time in this neighborhood, moving slowly
upward for the + branch and downward for the branch −. In the case of the + branch the
flow finally reaches the extremum. Then it moves fast to the other branch. The middle branch
is called the unstable branch. As discussed below it acts (roughly) as a threshold for spike
generation.
The point A =

(
vA = a,wA = −a+ a3

)
, where the nullclines intersect, is a fixed point.

The eigenvalues of the corresponding Jacobian matrix DFA are λ1,2 =
1−3a2±

√
(1−3a2)2−4ε
2 .

Consequently, the eigenvalues are complex for a ∈]−1+2
√
(ε)

3 ,− 1−2
√
(ε)

3 [∪] 1−2
√
(ε)

3 ,
1+2
√
(ε)

3 [and

real otherwise. Moreover, A is stable when |a| > 1√
3
and unstable otherwise. More precisely,

this is a sink (λ1, λ2 < 0) for a ∈]−∞,−
√
1+2

√
ε

3 ]∪ [
√
1+2

√
ε

3 ,+∞[, a stable focus (	(λ1,2) < 0)

for a ∈] −
√
1+2

√
ε

3 ,− 1√
3
[∪] 1√

3
,

√
1+2

√
ε

3 [, a center (	(λ1,2) = 0) for |a| = 1√
3
, an unstable

focus (	(λ1,2) > 0) for a ∈] − 1√
3
,−
√
1−2√ε
3 [∪]

√
1−2√ε
3 , 1√

3
[, and a source (λ1, λ2 > 0) for

a ∈ [−
√
1−2√ε
3 ,

√
1−2√ε
3 ] (see the appendix for more details about the classification of fixed

points).
Assume now that we are in the situation depicted in Fig. 7a, with a < − 1√

3
. The system is

at rest in A. Now, we excite it moving A to B = (vB , wB . There are two possibilities. Either

4 Note that, strictly speaking, the vector field on the y axis is not horizontal (its component are
(−w

ε
,−a)). However, for simplicity, we are drawn it horizontal, assuming a very small ε value.
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Fig. 7. Examples of possible behaviors for the equation (26) in response to a perturbation of the rest
state A. Fig. 7a. Relaxation to the rest state A. Fig. 7b. Spike emission. Fig. 7c. Periodic spikes train
emission.

wB > − 2

3
√
(3)
, then the excitation relaxes down to the rest state (Fig. 7a). Or wB < − 2

3
√
(3)
.

Then we have the situation depicted in fig. 7b. The trajectory flows rapidly parallel to v until it
approaches the v-nullcline and crosses it in C. Then it follows slowly the stable branch (C,D).
At this point, the v flow is zero while the w flow is positive. Consequently, the trajectory leaves
the nullclines, and is fast driven by the flow until the point E. It follows then the stable branch
(E,A) until the rest state A. The corresponding trajectory of v is depicted in the inset of Fig. 7b.
It has a spike shape where one recognizes the equivalent of the depolarizing phase (B,C), the
repolarizing phase (C,E), and the refractory period (E,A) of the figure 3. Consequently, this
simplified model gives already a fairly good example of an excitable dynamical system.
Note that the dynamical system (the neuron) is more sensitive to excitation when the

fixed point A is closer to the local extremum M1 = (− 1√
3
,− 2

3
√
(3)
) of the nullcline (resp.

M2 = (
1√
3
, 2

3
√
(3)
)), namely when the control parameter a is close to the bifurcation value

a = − 1√
3
(resp. a = 1√

3
). In this way, one may consider that excitable neurons are dynamical

systems close to a bifurcation point. This idea is further developed in section 4. This dynamical
system has moreover an additional feature which makes it relevant to neuronal dynamics.
Assume now that |a| < 1√

3
. Then the rest state A is unstable. If we slightly perturb A one

generates a periodic activity depicted in fig. 7c.
For general systems of the form (20, 21) the nullclines have a more complex shape and

the dynamics is richer. It is an interesting exercise, illustrating the spirit of dynamical systems
theory, to start from the system (26), and to ask what are the changes induced in the dynamics
by deformations of the nullclines. Let us do this for the FitzHugh-Nagumo model.

dv

dt
= v − v3 − w + I (28)

dw

dt
= ε(v − a− bw) (29)

It is deduced from the system (26) by translating the v-nullclines with a vertical displace-
ment I and by tilting the w nullclines which becomes the straight line w = v−a

b
, for b �= 0.

From a qualitative point of view one can figure out without any computation which type of
novelties will be induced by these changes. As shown in Fig. 8, 9 we can for example have
appearance/coalescence of pairs of fixed points by saddle-node bifurcations and bistability.
On more general biological grounds, and though the FitzHugh-Nagumo equations are a

simplification of the Hodgkin-Huxley equations, they exhibit some typical behavior of the real
neuron. Let us list a few examples.

– Action potential emission and threshold. The first observation is that a suitable input current
can generate an action potential. Consider the case depicted in Fig. 10. There is a unique
stable fixed point A. Consider now the line labeled by S. This line is called the threshold
separatrix since it separates solution curves that represent action potentials from those
that do not represent action potentials [54]. This curve is not sharply defined here (see the
discussion of type I excitability for a definition) but it is very close to the unstable branch
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Fig. 8. Saddle node bifurcation and bistability in the FitzHugh-Nagumo model (28) when the para-
meter b increases. Note that the slope of the w nullcline is 1
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Fig. 10. Spike emission in the FitzHugh-Nagumo model.

and, between the minimum and the maximum of the v nullclines, it essentially corresponds
to the set {(x, y) | fv(v, w) = fw(v, w)}, where the vector field makes an angle of 45◦ with
the v axis. Let us now consider the situations corresponding to the case 1 and 2 in Fig. 10.
One perturbs the rest state by changing the membrane potential such that v is close to S,
but in the case 1 the perturbed point is “above” S and in the case 2 it is “below” S. Even if
these two points are close to each other, the vector fields have a different orientation since
the angle of the vector field with the v axis is, in the case 1 larger than 45◦ and in the
case 2 it is smaller. This has the following consequence. In the case 1 the neuron returns to
equilibrium without emitting a spike. On the other hand, in the case 2 the trajectory has
to make a big excursion before returning to the rest state: there is a spike emission. The
horizontal distance from A to S corresponds therefore to a threshold value θ. Note however
that the concept of threshold, corresponding to a sharp transition, is questionable, in the
Hodgkin-Huxley model, since there is no real clear cut firing threshold (see [108,130]; see
also the discussion below about type I and type II models of excitability).

– Existence of a refractory period. The Figure 10 also exhibits two regions labeled by AR
for “Absolute Refractory”, and RR for “Relative Refractory”. These regions are defined as
follows. Assume that the neuron is spiking. If the corresponding point in the phase space is
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in the region AR, any further positive increase in the membrane potential will not be able
to generate a new spike. On the other hand, in the region RR a a spike can be generated
provided the clamped potential is strong enough.

– Anodal break excitation. Assume that an action potential is generated and, during this, an
external potential (anodal shock) is applied at the instant where the system is the point P
in Fig. 11, with the effect to move P to P ′. If the shock is large enough such that P ′ is on
the left of the threshold separatrix, the action potential is abolished by the anodal shock.
This phenomenon has been observed experimentally (see [54] and references therein).

P’ P

N

N

v
w

w

v

S t

P

P’

v

Fig. 11. Anodal break excitation in the FitzHugh-Nagumo model.

– Spike emission by hyperpolarization. Assume now that we apply a negative current I < 0 in
the situation where the system is initially at rest, with a stable fixed point A (Fig. 12). The
cubic nullcline moves downward and A moves to A′. If we removes the current, the cubic
moves upward. But then A′ is no more a fixed point. Its trajectory is described in Fig. 12.
This corresponds to a spike emission.

– Periodic sequences of action potential. Assume now that we apply a positive current I > 0.
For sufficiently high I A becomes unstable. Then the slightest excitation generates a periodic
emission of spikes. It is indeed possible to show rigorously, using Mischenko and Rozov
theorems combined with the Poincaré-Bendixon theorem [84], that there exists a stable
limit cycle (depicted Fig. 13).

A

A’

I <0

N
N

N’

v
w

w

v v

Fig. 12. Spike emission by hyperpolarization in the FitzHugh-
Nagumo model.

What happens now if we go on deforming the nullclines? For example, one can bend the
line corresponding to the w nullcline transforming it into a parabola: this is the deformation of
lowest non linear order. It is quite interesting to remark that this leads to a system exhibiting
neural excitability5 of type I and II. Indeed, the response of a neuron to permanent current
stimulus can generate a periodic train of spikes with a determined frequency. In this case,
one distinguishes two types of such excitability (this classification was proposed by Hodgkin
in 1948).

5 Note that type II excitability exists already in the previous case.
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Fig. 13. Periodic sequences of spikes in the FitzHugh-Nagumo
model.

– Type I excitability. The spike train is generated with an arbitrary small frequency, depending
on the applied current (Fig. 14). From a dynamical point of view, such type of excitability
can be generated by the scenario depicted Fig. 15a,b,c. The variation of a control parameter
(here the applied current) moves the v nullcline such that a saddle-node bifurcation on a
limit cycle occurs. For a critical value I = Ic there is an homoclinic connexion on the fixed
point A. Consequently, the period is infinite (and the frequency is zero). Note that the
amplitude of the cycle is independent of I.
In figure 15a we have also qualitatively plotted the separatrix S which is here the stable
manifold of B. Clearly, a perturbation to the left of S does not generate a spike, while a
perturbation to the right corresponds to a trajectory making a big excursion around the
unstable fixed point C, before returning to the rest state: this corresponds to a spike.

– Type II excitability. The spike train is generated with a frequency staying a specific domain
(Fig. 14b). From a dynamical point of view, such type of excitability can be generated by the
scenario depicted Fig. 16. The variation of the applied current moves the x nullcline such
that a Hopf bifurcation occurs. The frequency depends slightly on I and the amplitude
increases like the square root of the parameter distance to the critical value, as long as
one stays close to the bifurcation point. Note that the example depicted in Fig. 16 does
not use the fact that Ny has a quadratic shape. Actually, the same is obtained with a
straight line.
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ν

λ

Fig. 14. Variation of the spikes frequency with the control parameter (applied current in Fig. 15a,b,c,
16a,b,c). Fig. 14a. Type I excitability.) Fig. 14b. Type II excitability.).
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Fig. 15. Type I excitability. Schematic example of a dynamical system exhibiting type I excitability.
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Fig. 16. Schematic example of a dynamical system exhibiting type II excitability.

2.2.3 The Morris Lecar model

The previous examples may look quite abstract since we deformed the nullclines freely, without
paying much attention to the biological relevance of this operation. Actually, there exist bio-
logically plausible models exhibiting the behaviors presented above. An example is the Morris
and Lecar model [120,68] which was formulated in the context of the electrical activity of the
barnacle muscle fiber. The Sodium channels are replaced by Calcium channels. One calls m
the activation variable. The Calcium conductance is given by GCa = gCam(V ). There is no
inactivation variable h. The dynamics is given by:

Cm
dV

dt
= −gCam∞(V )(V − ECa)− gKw(V − EK)− gL(V − EL) + I (30)

dw

dt
= ε
[w∞(V )− w]

τw(V )
(31)

where:

m∞(V ) =
1

2

[
1 + tanh

(
V − V1
V2

)]
(32)

w∞(V ) =
1

2

[
1 + tanh

(
V − V3
V4

)]
(33)

τw(V ) =
1

cosh

(
V − V3
2V4

) (34)

w is the fraction of open K+ channels. This set of equations as a large number of parameter
that one may vary in order to study the behavior of the neuron when physical characteristics,
such has V1, V2, V3, V4, are varying. However, from an experimentalist point of view, the only
free parameter is the external current I.
The V nullcline corresponds to a situation where the applied current exactly cancels the

ionic current. It is given by

I = gCaw∞(V )(V − ECa)− gKw(V − EK)− gL(V − EL) (35)

It has a cubic shape and a variation of I as simply the effect of translating it parallel to
the V axis. The w nullcline is the activation curve w = w∞(V ). This model displays a wide
variety of dynamics such as spikes, oscillations emerging with zero or non-zero frequency and
bistability.

2.2.4 Integrate and fire models

A convenient and simple model producing spikes is the so called leaky integrate and fire model.
Consider the circuit drawn in Fig. 17. The device D is conducting when the potential is above
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Fig. 17. Schematic circuit of the integrate and fire model.

a threshold θ and has an infinite resistance otherwise. It acts therefore as a potential dependent
switch. The total current is I = IR + IC =

u
R
+ C du

dt
. Using the time constant τm = RC one

obtains the equation of the leaky integrate and fire model:

τm
du

dt
= −u(t) +RI(t) (36)

with the additional condition that u cannot increase above θ. Starting, say, from a zero po-
tential u, u(t) increases until it reaches the threshold value θ. Then D switches on and the
capacity unloads. Consequently, the potential u decreases exponentially fast. u is interpreted
as a membrane potential and τm as the membrane time constant of the neuron.

In integrate and fire models, the form of the action potential is not explicitly described.
Instead, one models the situation above by saying that, when the potential u reach the value θ,

at some time tf , it is immediately reset to a new value ur
def
= u(t+f ) < θ while a spike is emitted.

Then, the membrane potential keeps the value ur for a time τa corresponding to the refractory
period. In this sense, spikes are formal events characterized by the “firing time” tf .

A more general version of (36) is a non linear integrate and fire model [5]:

τm
du

dt
= F (u(t)) +G(u(t))I(t) (37)

where F,G are non linear functions of u.

Though the integrate and fire model is a rough modeling of a spiking neuron it has several
advantages. Firstly, the linear model (36) is exactly solvable. The potential u(t) resulting from
an excitation with a time dependent current is easily found. For example, the current after a
spike arising at time t1 and before the next spike (u(t2) = θ) is given by:

u(t) = ure
−( t−t1τm

) +
1

C

∫ t−t1
0

e(−
s
τm
)I(t− s)ds; t ∈ [t1, t2]

Also, it is easy to model a network of integrate and fire neurons6. In this framework the neuron
i receives the spikes coming from other neurons, and the total current Ii(t) is the sum of spikes
coming from each neuron j weighted by a quantity Jij roughly modeling the synaptic connexion
between j and i:

Ii(t) =
∑
j

Jij

nmax(j)∑
n(j)=1

α(t− tn(j)) (38)

where tn(j) is the n-th time of firing of the neuron j, α is a function modeling the spike, and

the sum
∑nmax(j)
n(j)=1 corresponds to an integration over a small time window. The spike function

6 Note however that the equation (38) holds in a more general setting.
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α can have different forms, but the simplest one is a Dirac δ distribution, corresponding to have
an “instantaneous” spike.
Note that an equation with the form (38) is particularly well suited for a stochastic approach,

where the firing times are randomly distributed e.g. according to a Poisson process. An example
of this is given in Paper II.
Most of the analysis use a stochastic approach. However the evolution can also be investi-

gated in a deterministic context, where the firing condition is determined e.g. by an Heaviside
function. Then one has to handle a deterministic dynamical system with singularities. These
singularities are responsible from a weak form of initial conditions sensitivity, different from
the usual notion of chaos since it arises punctually, whenever a trajectory intersects a zero
Lebesgue measure set, called the singularity set. Similar effects are encountered in billiards [48]
or in Self-Organized Criticality [20], [21], [39]. Applying methods from dynamical systems the-
ory one can derive rigorous results describing the asymptotic dynamics and the correspondence
between membrane potential dynamics and spike coding can be precisely investigated [44].

2.3 Qualitative analysis of the Hodgkin-Huxley equations

We now return back to the Hodgkin-Huxley equations. The analysis made in section 2.1 was only
quantitative. But it has allowed us to understand the spike generation, by simple arguments on
the characteristic times of the variablesm,n, h, and their interpretation in terms of probabilities
that a gate of a given ionic species is open or closed. A further analysis requires however
to consider the complete non linear dynamical system (8–11) and its dependence in control
parameters such as the external current I. Actually, the simplifications made in section 2.2
lead us to find several situations having a correspondence with experiments on real neurons.
Since the equations (28) are a simplification of the Hodgkin-Huxley system, one expects to
observe similar effects in the dynamical system (8–11). However, the reduced systems were two
dimensional while the Hodgkin-Huxley system has four dimensions. Therefore, bifurcations and
dynamical regimes (such as chaos) occurring in phase space having more than two dimensions
are not observed in reduced systems like (28). Rinzel and Miller [131] first gave evidence of
this. Doi and Kumagai [61] recently showed the existence of chaotic attractors in a modified
Hodgkin-Huxley model that changes the time constant of one of the current by a factor 100,
and, more recently, Guckenheimer and Oliva [86] showed rigorously the existence of a Smale
horseshoe (hence of chaos) in the Hodgkin-Huxley model with its original parameters. Finally,
the reduction performed to obtain the equations (28) used several simplifications that can be
discussed and that may bring some exogenous properties, not present in the initial model.
For all these reasons, there is a clear need to perform an analysis of the Hodgkin-Huxley

system. Obviously, it is always possible to make numerical simulations of this dynamical sys-
tem and many papers have been written on the subject (see for example [116] and reference
therein). Also, there exists currently a lot of “on line” simulators on the Internet [77,91]. How-
ever, analytical results are also useful since they allow in particular to locate bifurcations points.
This is certainly useful because this permits to reduce the explored area in the (huge) para-
meters space and to locate small regions that could be missed by a discrete sampling in a
numerical simulation. In this section we present one example of such an investigation, due to
Guckenheimer & Labouriau [85]. This paper presents actually an approach combining rigor-
ous methods from dynamical systems theory with numerical tools of formal calculus (for more
details on this type of approach see also [87]). This allows the authors to draw a bifurcation
diagram in a two dimensional parameter space corresponding to the potassium reversal poten-
tial7 νK = Vrest − EK and to the current I (the reversal potential of Sodium and Potassium
can indeed be controlled experimentally [93,101]). Consequently, the bifurcations presented are
generic codimension one and two bifurcations. Actually, the bifurcation diagram presented in
Fig. 18 presents an overwhelming richness of dynamical behaviors in a rather small parameter
space region. This is a “zoo” in which one meets basically all species described in standard

7 In the paper, the variable ν corresponds to a clamped potential with the opposite convention as in
the section 2.1 (see note 3) ν = Vrest − V where V is the membrane potential.
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Fig. 18. Bifurcation diagram of the Hodgkin-Huxley equations when varying the parameters I, νK .
This figure has been drawn “by hand” from the Figure 1 in [85]. Stable equilibrium points are shown
as black dots, unstable focus as white dots, stable limit cycles are closed curves with solid lines and
unstable periodic orbits are dashed lines. One dimensional unstable manifolds of equilibrium points are
shown together with curves of the “weak stable manifolds” of equilibrium points with three dimensional
stable manifolds (see e.g. in the “tsl” and “pd” regions).

textbooks about bifurcation theory [84,132] (see the appendix) plus some more “exotic” indi-
viduals such as the twisted saddle loop bifurcations. This is one reason why we have chosen
this example: it shows how deep the dynamical systems analysis can go and how rich are the
Hodgkin-Huxley equations. Additional references are [88,110,61].

Let us start from elementary remarks. It is easy to show that the asymptotic solutions of
eq. (8)–(9) are contained in the set

{
m,h, n ∈ [0, 1]3 × ν ∈ [ν− − r, ν+ + r

}
, for some r > 0, and

where ν− = min(νNa, νK , νL) and ν+ = max(νNa, νK , νL). Fortunatelym,h, n stay dynamically
in [0, 1]3 (these are probabilities !!). Indeed, if m (resp. h, n) is equal to zero dm

dt
> 0 and if

m = 1, dm
dt

< 0. Also, if ν > ν+,
dν
dt

< 0 and if ν < ν−, dνdt > 0. As t → ∞, m,h, n →
m∞, h∞, n∞. Consequently, if ν∗ is a equilibrium of eq. (8) then (ν∗,m∞(ν∗), h∞(ν∗), n∞(ν∗) is
an equilibrium of eq. ((8)–(11)). Also, dν

dt
= 0⇒ G(ν∗,m∞(ν∗), h∞(ν∗), n∞(ν∗))

def
= f(ν∗) = I.

Consequently, there exists a unique value of I for which A = (ν∗,m∞(ν∗), h∞(ν∗), n∞(ν∗) is
an equilibrium. When νK has the value found by Hodgkin-Huxley, f is monotonic and (8–9)
has a unique equilibrium for each value of I. For fixed lower values of νK there are two saddle
node bifurcations as I is varied, creating a region with three equilibria and corresponding to
multistability (as in the example depicted in the previous section, Fig. 8). The two curves of
saddle node terminate at a cusp point. These curves are obtained by varying ν∗, considered as
a parameter and taking into account the transversality conditions TSN1,TSN2 in the appendix.
In particular the determinant of the Jacobian matrix has to vanish. Given the equilibrium point,
one also obtains the parameters value where Hopf bifurcations occur. Hopf bifurcation requires
that two complex conjugate eigenvalues appear or disappear. This corresponds to conditions on
the coefficient of the characteristic polynomial of the Jacobian matrix. This polynomial has the
form x4+c3x

3+c2x
2+c1x+c0. Considering ν

∗ as a control parameter and solving simultaneously
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Fig. 19. (a) Untwisted saddle loop. (b) Twisted saddle loop.

the fixed point equations and the transversality conditions (TH1,TH2 in the appendix) one finds
the set of parameters νK , I where a Hopf bifurcation occurs. At the intersection of the Hopf
bifurcation line and the saddle-node bifurcation line, a Bogdanov-Takens bifurcation occurs (see
the appendix). One observes also global bifurcations: collapse of two limit cycles, homoclinic
connexion at the Bogdanov-Takens point, twisted saddle loop, degenerate Hopf bifurcation,
etc ... The various bifurcations are depicted in Fig. 18. We used the following nomenclature
(from [85]). For a description of the corresponding bifurcations see the appendix.

Codimension one bifurcations

– sn: Saddle-node bifurcation: two fixed point coalesce and disappear (resp. appear), see
Fig. 46 in the appendix.

– h: Hopf bifurcation. A fixed point changes its stability and a limit cycle appear with a radius
increasing with the control parameter (resp. a limit cycle decreases until it is reduced to a
point and disappear while the point at the center changes its stability), see Fig. 49 in the
appendix. As discussed above this corresponds to type II excitability.

– sl: Saddle-loop or homoclinic bifurcation. The amplitude of a periodic orbit increases until
it captures a saddle point and disappears, its period tending to infinity when the con-
trol parameter tends to the critical value. As discussed above this corresponds to type I
excitability.

– tsl: Twisted saddle-loop bifurcation. In dimension larger than two an orientation reversal
along a homoclinic may occur. The homoclinic orbit is a two dimensional ribbon which is
invariant under the flow with tangents in the directions of the weakest contraction at the
saddle point. A twisted saddle loop occurs if the ribbon is not orientable.This bifurcation
is also met in physical experiments about Rayleigh-Benard convection in a small geometry
(see [99] for a mathematical analysis). Note that this bifurcation is usually related to period
doubling. Also, for any n value, n integer, there exists a dynamical system, arbitrary close to
the bifurcating system, having homoclinic connexions with loops of order n. The dynamics
can therefore be quite complex in the vicinity of this bifurcation.

– dc: Double cycle or saddle-node bifurcation of cycles. Two periodic orbit coalesce and
disappear.

– pd: Period doubling bifurcation. A periodic orbit changes its stability, while a periodic orbit
of twice its period coalesce with the bifurcating periodic orbit.

Codimension two bifurcations

– c: Cusp. Three equilibria coalesce into one (see Fig. 46 in the appendix).
– tb: Takens-Bogdanov bifurcation (see appendix, Fig. 50).
– nsl: Neutral saddle-loop or homoclinic bifurcation. A periodic orbit changes its stability in
a saddle loop at a point where the sum of the eigenvalues of the Jacobian matrix is zero.

– tnsl: Twisted neutral saddle-loop bifurcation.
– snl: Saddle-node loop.
– dh: Degenerate Hopf bifurcation.

We have also represented some qualitative changes in the dynamics arising when varying the
Nernst potential VK in Fig. 20a,b,c.
These results illustrate the complexity of the dynamics occurring in the Hodgkin-Huxley

equations. There are many possibilities for the spiking patterns when the parameters are
changed. One may however ask about the biological relevance of these results. Note that in
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Fig. 20. Bifurcations occurring when following the paths I (Fig. 20a), II (Fig. 20b) drawn in figure 18.
The corresponding values for the potential VK range from −5.155 to −5.129mV.

Fig. 18 the usual value of VK ∼ 10mV is far on the right of the graph and does not appear in a
scaled figure. Indeed, the region corresponding to the path II ranges from −5.155 to −5.129mV.
Thus its width is of order 20µV. . . . Thus, some of these regimes may be difficult to find exper-
imentally, since they correspond to very tiny regions in the parameters space and quite unusual
value of parameters8. Another related question is: what happens when coupling such neurons?
For example, do the regions sl, pd, tsl, exhibiting a complex behavior, still exist when consid-
ering a neural network of Hodgkin-Huxley neurons? We shall see in this paper that coupling
neurons with complex dynamics does not necessarily imply that the coupled dynamical system
will have a complex dynamics. On the opposite, coupling neuron models with a simple evolution
may lead to a complex evolution.

2.4 Axon propagation

The Hodgkin-Huxley equations (8–11) describe the behavior of a small piece of neuron mem-
brane. From the fundamental laws of Physics, one can use them to obtain an equation describing
the propagation of the action potential along the axon. One can in particular obtain the propa-
gation speed. In this section we derive the propagation equation. We then discuss the existence
of propagating solutions in a simplified version of the propagation equations, based on the
FitzHugh-Nagumo model.
Let V be the local membrane potential and R the resistance per unit length (as discussed

in section 2.1 it depends on V ). For simplicity, we shall use in this section the convention where
V = 0 at rest and we shall set VX = Vrest − EX where X = Na,K,L and EX is the Nernst
potential. Denote by x the coordinate longitudinal to the axon. One decomposes the current
in the membrane into an longitudinal part (ia) and a transverse part im. From local charge
conservation one has: ia(x+ dx) = ia(x)− im(x)⇒ ∂ia

∂x
= −im(x), while the Ohm’s law writes:

V (x+ dx)− V (x) = −Ria(x)⇒ ∂V
∂x
= −Ria(x). Consequently:

∂2V

∂x2
= Rim(x) (39)

The local transmembrane current is given by the Hodgkin-Huxley system (8–11):

imdx = dx

(
Cm

∂V

∂x
+ Iion

)
= Cm

∂V

∂x
dx+ S(x)

[
gNam

3h(V − VNa)

+ gKn
4(V − VK) + gL(V − VL)

]
(40)

8 Note that the Authors of [85] also explored the changes induced by a variation of the Potassium
conductance gK but we do not discuss this here.
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where S(x) = 2πr(x)dx is the membrane surface per unit length and r(x) the axon radius at
x. Finally, the equations describing the spike propagation along the axon are:

1

R

∂2V

∂x2
= Cm

dV

dt
+ 2πr(x)

[
gNam

3h(V − VNa) + gKn4(V − VK) + gL(V − VL)
]
(41)

dn

dt
= αn(V )(1− n)− βn(V )n =

n∞(V )− n
τn(V )

(42)

dm

dt
= αm(V )(1−m)− βm(V )m =

m∞(V )−m
τm(V )

(43)

dh

dt
= αh(V )(1− h)− βh(V )h =

h∞(V )− h
τh(V )

(44)

Since we are interested in traveling solutions, it is natural to seek solutions of type V (x, t) =
U(x − ct) ≡ U(ξ), where c is the propagation speed. To avoid boundary conditions problems,
one may assume that the neuron is infinite. Moreover the neuron is at rest at infinity, namely
we are looking for solutions such that:

lim
ξ±∞
U(ξ) = 0 (45)

The variable change ξ = x − ct allows us to convert the partial differential equation above in
an ordinary differential equation where ξ plays the role of a formal time:

1

R

d2U
dξ2
= −cCm

dU
dξ
+
[
gNam

3h(U − VNa) + gKn4(U − VK) + gL(U − VL)
]

(46)

dn

dξ
= αn(U)(1− n)− βn(U)n =

n∞(U)− n
τn(U)

(47)

dm

dξ
= αm(U)(1−m)− βm(U)m =

m∞(U)−m
τm(U)

(48)

dh

dξ
= αh(U)(1− h)− βh(U)h =

h∞(U)− h
τh(U)

(49)

where we assumed for simplicity that 2πr(x) = 1,∀x.
Instead of solving these equations we shall study the corresponding equation for the

FitzHugh-Nagumo model. They are indeed simpler and they allow us to figure out why traveling
wave with a determined speed c are selected. The equivalent of the equations (46, 47, 48, 49)
for the FitzHugh-Nagumo model (28) are:

ε2v̈ + εcv̇ + f(v, w) = 0 (50)

cẇ + g(v, w) = 0 (51)

where f(v, w) has a cubic shape (e.g. f(v, w) = v− v3−w) and g(v, w) is linear (e.g. g(v, w) =
(v−a−bw)). More specifically we shall assume that we are in the situation of the Fig. 10 where
only one fixed point exists for the model (28). In eq. (50, 51) we forgot Cm and R which play
no relevant role in the mechanism described below. Since ξ plays the role of a formal time we

used the notation du
dξ
= u̇, d

2u
dξ2
= ü. Note that the variable v, representing the local membrane

potential, is spatially coupled by the diffusion term, while w, representing a slow ionic current
or gating variable, is not.
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Fig. 21. Potential V of eq. (50) for : Fig. 21a : w < 0; Fig. 21b : w = 0; Fig. 21c : w > 0.
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Fig. 22. Phase portrait of eq. (54) for : Fig. 22a : c = 0; Fig. 22b : c > 0 ; Fig. 22c : c = c0.
The situation corresponds to w > 0.

We describe the spike propagation by using the singular perturbation theory. If we set ε = 0
in the equations (50, 51) we obtain the system of equations (called “outer equations” [104]):

f(v, w) = 0 (52)

cẇ + g(v, w) = 0 (53)

As in section 2.2.2 the solution of (52) is the v nullcline and v depends parametrically on w.
The trajectory moves slowly on the stable branch N+v (resp. N

−
v ) and this motion corresponds

to the excited phase (resp. recovery phase) of the pulse (see Fig. 24).
The pulse appears then as a trajectory connecting the two branches. To characterize the

dynamics between the two branches, it is convenient to rescale the variable ξ as ξ
ε
and to

write (50, 51) in the following form:

v̈ = −cv̇ − ∂V
∂v

(54)

ẇ = − ε
c
(v − a− bw) (55)

where we have introduced the “potential”:

V(v, w) = v2

2
− v4

4
− wv (56)

Indeed, introducing V allows us to interpret the equation (54) as the formal equivalent of the
motion of a particle moving in a potential well with a shape V, with a “friction coefficient” c
and where ξ plays the role of time. This picture is especially useful to understand intuitively the
mechanism at work. The potential V depends parametrically on w and has the typical shape
depicted in Fig. 21.
When c = 0 there is no effective dissipation and the phase portrait of the dynamical

system (50) is sketched in Fig. 22a. In particular, there is an homoclinic trajectory con-
necting V + to itself. When c is large enough, the phase portrait has the shape depicted in
Fig. 22b. Consequently, by continuity, there is an intermediate value of c, c0(w) depending
on w, where there is an heteroclinic orbit connecting the point V − and V +. This heteroclinic
orbit corresponds to a moving transition layer, traveling with a speed c0(w). More precisely,
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Fig. 23. Front corresponding to the heteroclinic connection
represented in Fig. 22.
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t Fig. 24. Schematic sketch of spike propaga-
tion in the spatially extended Fitzhugh-Nagumo
model.

the heteroclinic orbit corresponds to an “ascending” front connecting neurons where v belongs
to the − branch and with a coordinate ξ → −∞ to neurons where v belongs to the + branch
and with a coordinate ξ → +∞ (see the Fig. 23). Note that for each w there is a unique such
c0: this is the dissipation rate required to reach asymptotically the lower bump of V (V

− in the
case w > 0) with an orbit starting from an arbitrary small neighborhood of the higher bump
(V + in the case w > 0) with a zero initial speed.

Obviously the same argument can be done when w is negative. One obtains then a descending
front connecting connecting neurons where v belongs to the + branch and with a coordinate
ξ → −∞ to neurons where v belongs to the − branch and with a coordinate ξ → +∞.
The complete picture is the following9. In most space the outer equations (52, 53) are

satisfied. When a transition between the two branches occurs, there is a sharp transition
in v, traveling at a speed c(w, ε) connecting the two branches (and w is essentially a con-
stant during the transition). This corresponds to a traveling pulse consisting in an excita-
tion front followed by a recovery back (see Fig. 24). Note however that the medium needs
to be sufficiently excitable to maintain a propagation. This corresponds to the mathematical

condition:
∫ V +(w+)
V −(w+) f(v, w

+)dv > 0 ensuring that there is a positive speed of propagation.

This picture has therefore allowed us to understand the mechanism of spike propagation
in neurons, by using simple dynamical systems arguments. It is important to note the role of
the refractory period. If the action potential reaches a given point, the neighboring points that
have not been yet reached by the spike are depolarized to the threshold, while the neighboring
points that have just been reached by the spike are in the refractory period and cannot emit a
new spike. This imposes a propagation direction.

Finally, note that the existence of traveling spike in the Hodgkin-Huxley model can also be
shown rigorously [46] For the typical values for squid axon one finds a speed value c = 21mm/ms
very close to the experimental value found by Hodgkin and Huxley (21.2mm/ms).

9 Strictly speaking, one has still to show that this picture, obtained for ε = 0, persists when ε > 0.
One can indeed show that the heteroclinic orbit persists by using perturbation theory and Fredholm
arguments.
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3 Neural coupling

Up to now we have only considered the behavior of individuals neurons described more or less
accurately by a set of differential equations. But neurons are not isolated entities and it is
absolutely clear that the brain functions are the result of collective effects. If formal Neural
Networks are (more or less rough) models for the brain, the emergent collective dynamics
resulting from the coupling of individual (formal) neurons should exhibit properties such as
information storage, recognition tasks, learning, that a lone neuron should not able to perform.
If we stay at the level of mathematical models, then dynamical systems theory should be able
to provide us some hints about the collective evolution when parameters are varied, external
inputs are presented, learning is performed, etc. . . . This aspect are further addressed in the
next sections.

3.1 Synapses and synaptic plasticity

The main function of neurons is to propagate informations via electric signals. This is reflected
in their structure. They have two types of specific extensions: dendrites and axons. The den-
drites form a tree like structure. They collect signals coming from other neurons and transmit
them to the neural cell nucleus. The axon transmit spikes towards other neurons via connections
called “synapses” (from Greek “syn” (together) et “haptein” (join)). There exists two type of
synapses: electrical and chemical. In the first case (electric synapses) neurons are touching and
the neural flux can directly go from one neuron to the other. In the second case (chemical
synapses), the neurons are not touching and the neural flux is transmitted vi neurotransmitters
(Acetylcholin, Dopamin, Gamma-Aminobutyric Acid, Glutamat etc . . . ). The action potential
opens ion channels producing an influx of Ca2+, leading to the release of a neurotransmit-
ter into the synaptic cleft. The transmitter diffuses then to the other side of the cleft and
binds to receptors, causing ion-conducting channels to open. This results in a excitatory or
inhibitory post synaptic current, depending on the nature of the ion flow. Most synapses are
chemical.
When two neurons are connected via synapses the emission of spikes from the pre-synaptic

neurons may evoke spikes in the post-synaptic neuron. These spikes have a variable height
depending on the synaptic efficiency. Synaptic efficiency evolves with time via different mech-
anisms. Long Term Potentiation (LTP) is a synaptic reinforcement mechanism involved in
memory. It corresponds to an increase in the post-synaptic response after an intensive presy-
naptic excitation, applied on a short time scale (∼1 s), but with a high frequency (>100Hz),
inducing a strong depolarization in the post synaptic neuron. Long Term Depression (LTD)
is complementary to LTP. This mechanism arises when the pre-synaptic neuron has a low fre-
quency activity (1-5Hz) but the post-synaptic neuron essentially does not fire. This lack of
synchrony between the two neurons has the effect of reducing the synaptic efficiency. It is be-
lieved that LTD is used in structures such as hippocampus, to bring back to a normal level of
efficiency synapses whose efficiency has increased via LTP, rendering them available for new
informations storage. A last mechanism, called Spike Timing Dependent Plasticity (STDP) has
recently attracted much efforts. One can experimentally show that LTP and LTD can be elicited
by carefully adjusting the timing of the pre- and post- synaptic activity. If the post-synaptic
spike fires just before the pre-synaptic cell then the association between the two neurons weak-
ens. On the opposite this association is reinforced if the post-synaptic spike fires just after the
pre-synaptic cell. Important references for STDP studies were published in [72,24]. However,
there seem to be a wide variety of different rules which may have different functionalities for
dynamical neural networks [3].

3.2 Modeling neural networks

Synapses are complex objects, as neurons are. However, the more accurate one desires to model
the evolution of a neural assembly, the less it is possible to handle analytically the dynamics.
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Consequently, one has to simplify the neurons and/or synapses description in order to obtain
tractable models. Therefore, in many models synapses are roughly represented by a “wire”
connecting the pre- and post-synaptic neuron and weighted by a number Jij modeling the
efficiency of the synaptic connection from neuron j to neuron i. This number can be positive
(excitatory synapse) or negative (inhibitory synapse). It can be random or constant, and may
evolve in time (via learning for example, see sections 3.3 and 6.5). Although the synapses are
asymmetric in general (the influence of j on i is not the same as the influence of i on j),
some models consider symmetric synapses (sections 3.3, 5.2). Indeed, the symmetry in the
interactions lead, for some models, to convergence properties, useful for performing tasks (see
section 5.2).
Obviously, representing the synaptic connections between two neurons by an edge between

two nodes is certainly a very rough way of sketching a neural network structure. Nevertheless, it
is widely used in this community. We would however like to point out the following remark. Since
synapses are used to transmit neural fluxes (spikes) from a neuron to another one, the existence
of synapses between a neuron (A) and another one (B) is implicitly attached to a notion of
“influence” or causal and directed action10. However, a neural network is a highly dynamical
object and its behavior is the result of complex interplay between the neurons dynamics and
the synaptic network structure. Moreover, the neuron B receives usually synapses from many
other neurons, each them being “influenced” by many other neurons, possibly acting on A,
etc. . . . Thus the actual “influence” or action of A on B has to be considered dynamically and
in a global sense, by considering A and B not as isolated objects, but, instead, as entities
embedded in a system with a complex interwoven dynamical evolution. Thus the mere analysis
of the synaptic graph topology is in general not sufficient to handle the neural dynamics. A
prominent example of this is given in the section 6.6.
On mathematical grounds this aspect can be addressed as follows. Assume that the coupled

neurons evolution is described by a dynamical system:

dui

dt
= Fi(u1, . . . , uN ;Γ ) (57)

where ui is a variable describing the “state” of neuron i (e.g. its membrane potential). N is
the total number of neurons. Γ is a set of parameters accounting for neurons characteristics,
external stimuli, and also including synaptic couplings (more specific examples will be given
throughout this paper). In the sequel we shall use the notation u for the vector {ui}.
Assume now that we weakly modify the state of neuron j, for example by adding an external

stimulus, such that the new neuron state at time t is uj(t)+δj(t). The change induced on neuron
i at time t+dt can be formally computed by writing a Taylor expansion of Fi in powers of δj(t).

At the lowest order the change will be proportional to the Jacobian matrix element ∂Fi
∂uj
(u).

This element measures in some sense the linear “influence” of the neuron j on the neuron i,
when the system is in the state u. More precisely, it characterizes, to the first order in a Taylor
expansion, the modification induced on ui when uj has a small variation.
Although (57) is generally a non linear system, this Jacobian matrix can provide useful

insight in the dynamical properties as discussed in the sections 5.3 and 6.6. It is in particular
possible to construct a graph from the Jacobian matrix such that there is an oriented edge
j → i iff ∂Fi

∂uj
(u) �= 0. The edge is positive if ∂Fi

∂uj
(u) > 0 and negative if ∂Fi

∂uj
(u) < 0. (Obviously,

this graph depends in general on the state u). This graph has circuits or feedback loops. If e
is an edge denote by o(e) the origin of the edge and t(e) its end. Then a circuit is a sequence
of edges e1, . . . , ek such that o(ei+1) = t(ei), ∀i = 1 . . . k − 1, and t(ek) = o(e1). A circuit is
positive (negative) if the product of its edges is positive (negative). A positive feedback loop
basically induces (to the linear order) a positive feedback inducing an increase in the activity
of the neurons in this loop. Obviously, there is no exponential increase since rapidly non linear
terms will saturate this effect.

10 Note that the notion of influence roughly sketched here is very close to the definition of synaptic
weights discussed by Hebb in [89].
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The graph induced by the Jacobian matrix is usually distinct from the synaptic graph. In
particular, it depends on the state u of the set of neurons. However, in models such as the
recurrent neural networks discussed in the section 5.2 and 6 ∂Fi

∂uj
(u) is proportional to Jij with

a positive (u dependent) coefficient. Thus this graph preserves the excitation/inhibition nature
of the synapse. Nevertheless, even in this case, the mere fact that the graph of linear influence
depends on the state of the system may have dramatic effects e.g. on signal propagation. As
discussed in section 6.6, the notion of linear influence (and more generally linear response) allows
to handle to some extent the interplay between the network topology and neurons dynamics
and rather unexpected effects will be exhibited.

3.3 Synaptic plasticity and learning

Synaptic plasticity occurs at many levels of organization and time scales in the brain. It alters
excitability of the brain and regulates behavioral states (e.g. transition between sleep and
wakeful activity). It is also involved in short and long term memory and learning. In this
section and in this paper we shall only focus on this last issue.
The synaptic weights are evolving in time during learning. In formal neural network learn-

ing is thus represented by evolution schemes for the synapses, called learning rules. Although
learning rules can be proposed using precise description of LTD, LTP and STDP, most of them
rely on some fundamental recipes inspired from D. Hebb’s work. One speaks then of Hebbian
learning. We shall focus on Hebbian learning in this paper.
D. Hebb has proposed in [89] a theory of behavior based on the physiology of the nervous

system. The most important concept to emerge from Hebb’s work was his formal statement
(known as Hebb’s rule) of how learning could occur.
When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes

part in firing it, some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.
Most of the learning rules in neural networks are based on Hebb’s observations plus a few

well established facts. They rely upon a few recipes that can summarized as [98]:

– Learning results from modifying synaptic connections between neurons.
– Learning is local i.e. the synaptic modification depends only upon the pre- and post- synaptic
neurons activity and does not depend upon the activity of the other neurons.

– The modification of synapses is slow compared with characteristic times of neuron dynamics.
– If either pre- or post- synaptic neurons or both are silent then no synaptic change takes
place except for (exponential) decay which corresponds to forgetting.

The first item implies that learning results in a modification of the Jij ’s. The second one
basically says that the synaptic modification of Jij writes J

′
ij = εh(J

T
ij ,mj ,mi) where J

′
ij is the

value of the synapses j → i after the learning rule has been applied. The parameter ε has been
added for convenience and will be discussed below. The numbers mi (mj) denotes the “state”
or “activity” of the neuron i (j). We do not precise yet what is this “state” since it can vary
according to the model. Several examples will be discussed below. The third item implies then
that ε is small parameter, whose inverse corresponds to the characteristic time for a significant
change of Jij . The fourth item may lead to different forms according to the model (see below).
But if one assumes that the changes in the Jij ’s are slow (item 3) and if h is a smooth function
then one may simply consider a Taylor expansion of a generic regular function h. This gives,
up to the second order in mi,mj.

J ′ij = ε (a000 + a100Jij + a010mj + a001mi + a011mimj + h.o.t.)

where h.o.t. means “higher order terms” such as Jijmimj , etc. . . . In this paper we shall focus
on this form, forgetting the other terms. Note that the terms a100, a010, a001, a011 have all a
“biological” interpretation. We shall not consider the term a000. Writing λ = εa100 the corre-
sponding term models passive “forgetting”: if a synapse is not solicited its intensity decreases
with a decay rate 1

λ
(we shall assume that 1 ≥ λ > 0). On biological grounds, the situation is a
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little bit more complicated. The decay of the synapse and more generally its evolution depend
on the activity of the pre synaptic (j) and post synaptic (i) neuron, as we saw. These activities
determines the production of Ca2+ ions, which acts in turn on the width of ionic channels in-
volved in the synapse activity. The production of Ca2+ increases whenever i and j are “active”
increasing the synaptic efficiency. On the other hand, when xi or xj are active then the con-
centration [Ca2+] stays constant, and enzymatic phenomena result in an effective decay of the
synapse (Long Term Depression). This gives an interpretation of the 3 terms a010, a001, a011.
Thus, setting εa100 = λ, εa011 = α, εa010 = −β, εa001 = −γ we obtain a synaptic evolution

having the form:
J ′ij = λJij + αΓij − βmi − γmj (58)

ΓTij is a function of the activity of the pre- and post- synaptic neurons. In most case Γ
T
ij ∼ mTi mTj

but the form (3.1) affords natural generalization that we shall briefly discuss. Note that all the
coefficients α, β, γ, λ are proportional to ε, which fix somehow the characteristic time scale of
the synaptic dynamics.
Some examples of learning rules will be presented in this paper but we shall focus on

situations where β = γ = 0. A more detailed discussion can be found in paper II of this issue.

4 Weakly connected neurons

What happens when neurons, having their own dynamics, are coupled via synapses? Though
this question is too general to have a precise answer, it is possible to address it when consider-
ing a weak coupling limit with some additional assumptions discussed below. In a nutshell, the
basic idea is to consider the situation where a collection of neurons is coupled as a perturbation
of the uncoupled case, where each neuron evolve independently from the other. The perturba-
tion resulting from the coupling can however be either irrelevant, when the coupled and the
uncoupled systems are essentially equivalent from the dynamical point of view (section 4.2),
or it can have a drastic effect. As argued below, this is basically the case when some neurons
are close to a bifurcation point. In this case a rather detailed analysis can be made by using
standard tools from bifurcations theory theory such as center manifold reduction and normal
forms (sections 4.3 and 4.4) provided one restricts the overwhelming possibilities of bifurcations,
that may potentially occur in a collection of coupled neurons, to some canonical “scenarios”
(sections 4.5, 4.6). This is, of course, an important restriction, but the results obtained are quite
illuminating from many aspects, especially with respect to the ability of such Neural Networks
to perform task, such as pattern recognition, manifested by changes in the dynamics when a
pattern is presented to the network (section 4.7). We present here a short review of results
mainly due to Hoppensteadt and Izhikevich (see [98]).

4.1 General setting

From now on, we consider therefore an assembly R of N coupled neurons. Summarizing the
previous section, the dynamics of individual neuron is governed by an equation of the form:

dXi

dt
= Fi(Xi;λ), i = 1 . . . N (59)

where Xi is a vector in IR
m describing the state of the neuron. This form is quite general and

includes in particular the Hodgkin-Huxley equations (8–11) and the general form of excitable
membrane equations (17). λ is a set of parameters on which the neurons dynamics depends.
An example is the applied current I. We may assume that λ belongs to a space Eλ. Without
loss of generality, and for technical reasons we shall assume from now on that Xi ∈ M where
M is a compact m dimensional manifold.
The basic requirement of the theory of weakly connected neural networks is that the

contribution of activity of one neuron to the activity of another one is very small. More
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precisely, following [98] we callWeakly Connected Neural Network (WCNN) a dynamical system
of the form:

dXi

dt
= Fi(Xi;λ) + εGi(X1, . . . , Xn;λ, ρ, ε); Xi ∈M, i = 1 . . . N (60)

or, in a more compact form:

dX

dt
= F(X;λ) + εG(X;λ, ρ, ε) (61)

where we note in boldface the n
def
= N×m dimensional vectors X = (Xi)Ni=1, F = (Fi)

N
i=1, G =

(Gi)
N
i=1. Note therefore that F as a diagonal structure. In equation (60) Gi is a smooth,

bounded function of (X1, . . . , XN ;λ, ρ, ε) that models the synaptic connections between the
other neurons X1, . . . , XN and the neuron i. It depends on the set of parameters λ ∈ Eλ ⊂ IRp
describing the state of individual neurons, on the coupling parameter ε, and on an additional
set of parameters ρ ∈ Eρ ⊂ IRr corresponding to external constraints (for example the external
environment influence, a static input, etc . . . ). Finally, it is assumed that ε is small, namely
ε � 1. This purely “mathematical assumption” is required to perform the analysis presented
below.
Of course, one may wonder whether this restriction still provides models for biologically

realistic situations. Note however that the mathematical condition ε� 1 is abstract and refers
to the particular set of differential equations (60) which attempts to model some aspects of neu-
ronal dynamics. Henceforth, questions such as: “How small is ε in the real brain” are essentially
meaningless. There are nevertheless different and non equivalent ways to estimate the strength
of connexions between neurons, One of them is based on the analysis of cross correllograms from
pairs of neurons. Performing such an analysis Abeles [1] concluded that interactions between
adjacent neurons in the cortex are weak and the interactions between distant neurons is even
weaker. Another way to characterize weakness of synaptic connections is to measure the am-
plitude of post synaptic potentials (PSP) in the soma while the neuron membrane is far below
the threshold value. Indeed, in this state the size of PSP reflects the weakness of connections.
A detailed discussion can be found in [98].

4.2 Structurally stable case

In spite of the restriction to weak couplings, the dynamics of (60) can be very rich since,
as we have seen in the previous sections, the behavior of individuals neurons can already be
quite complex. Consequently, it is impossible to analyze (60) without further restrictions or
specifications. A starting point is to consider first the case when each neuron has an equilibrium
point and is in a rest state when ε = 0. In order to simplify the computations, and without loss
of generality, one may assume that this point is the origin when λ = 0, namely F(0, 0) = 0.
Denote by:

L
def
= DXF(0, 0) =




L1 0 . . . 0

0 L2 . . . 0

. . . .

. . . .

. . . .

0 0 . . . LN




(62)

the Jacobian matrix of F at the point X = 0, λ = 0, where Li
def
= ( ∂Fik

∂Xij
)k,j=1...m. A fixed point

may be hyperbolic or not. The following result derived by E. Izhikevich [100] is an example
of application of the Hartmann-Grobman theorem (see appendix) in the context of Neural
Networks dynamics.
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Theorem 1 If the dynamics of each neuron is near an hyperbolic equilibrium when ε = 0 then
the uncoupled network, the weakly coupled one (61) and the linear system:

dX

dt
= LX (63)

are topologically conjugated.

This means that the entire coupled neural network is essentially a linear system and is
not more complex. If we admit that non linearity plays a fundamental role in neural dynam-
ics, the corollary leads to the following conclusion. A WCNN with an hyperbolic fixed point
is not interesting as a “brain” model11. The corresponding dynamical system being struc-
turally stable, we are led to the bewildering conclusion that a neural network model where
each neuron has an equilibrium point and is in a rest state when ε = 0 needs (at least) to be
structurally unstable in order to exhibit (real) non-linear effects and to be relevant for brain
dynamics.
At this point we must pose. Indeed, it might be difficult to find out a biologically realistic

situation where the neural network is in a state corresponding to a fixed point. There is at
least an evident one: death (this is indeed a structurally stable situation). But this is not a
very interesting example. This led us to several remarks. First, as shown below, even if the
uncoupled system consists of neurons in a rest state, the coupled dynamics can be quite a bit
more complex, even if the coupling are weak (see section 6.3). As soon as neurons are coupled,
many different situations and dynamical regimes may occur. We shall see several examples in
this paper, from periodic to chaotic regimes, with one or several attractors etc . . . Consequently,
coupling neurons with a rest state corresponding to a fixed point does not necessarily mean
that the coupled dynamics will be at rest.
A more important issue concerns hyperbolicity. Though the theorem 1 deals with hyperbolic

fixed points, the notion of hyperbolicity extends to quite more general attractors than fixed
point, such as strange attractors (see appendix). If we are interested in the ability of a Neural
Network model to perform tasks such as recognition of an external pattern, and if we agree
that this recognition corresponds to some dramatic change in the dynamics, then one can, in
principle, extend the wisdom coming from theorem 1: to be dynamically reactive to solicitation
from the outside the neural network needs to be close to a point in the parameter space where the
dynamics is structurally unstable with respect to perturbations corresponding e.g. to a specific
(learned) pattern. To be efficient and adaptable the system needs to be close to a critical point
in order to display punctuated response to external world changes. We shall actually propose
an example in section 6.5 exhibiting a behavior that can be related to this statement. It might
well be that this conclusion extends more generally to biological systems and to living systems
(see [19], [22]).

4.3 Central manifold reduction

As we shall see right now, the situation is already quite a bit richer when some of the neurons
have a rest state (corresponding to a fixed point) which is not hyperbolic. Assume therefore
that there is a subset B ⊂ R of neurons such that the Jacobian matrix Li of the uncoupled
neuron i, i ∈ B has eigenvalues with a zero real part. We shall call these neurons critical since
they are close to a bifurcation point. This means that the slightest change in the parameters,
induced either by the inputs of other neurons, or by an external stimulus, etc . . . , may provoke
a non linear dynamical response of the neuron such as spike, train of spikes, etc. . . .Moreover
we order the neurons such that the k first neurons are critical.
Even when focusing on this situation, the analytical study of the changes occurring when

the coupling ε is switched on, and when the parameters ρ, λ are modified is not tractable in

11 More modestly, one may consider, instead of the brain, small functional units such as cortical
columns or simple nervous systems (worms). Fortunately, the same conclusion holds.
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general. Indeed, in the most general situation, each matrix Li have a number ni ≤ m of neutral
eigenvalues, some neurons may be at the threshold for a Hopf bifurcation, some others close to
a saddle-node bifurcation, etc . . .. Moreover, if m, the number of control parameters, is suffi-
ciently large (depending on the accuracy of the underlying model) one may have bifurcations of
codimension larger than one or two. It is therefore natural to start from the simplest situations,
namely the case where all neurons undergo the same (codimension one) bifurcation. Therefore,
we focus now on the case where either the matrix Li of each critical neuron has a simple zero
eigenvalue, or a pair of complex conjugate imaginary eigenvalues. In these cases the techniques
of central manifold projection and normal form reduction (see appendix) allows us to reduce
the dynamical system (60) to a canonical form, close to the bifurcation point, and provided ε
is sufficiently small.
The result presented below is rather abstract (though it is a direct application of the cen-

ter manifold theory [32] adapted to the present context). But it has interesting consequences
discussed in the next subsection. Basically, this results shows that the dynamics of the coupled
system is locally governed by the critical neurons.

Theorem 2 (Izhikevich [100]) Suppose that each of the first k Jacobian matrices Li, i = 1 . . . k
is non hyperbolic. Then the dynamics of (60) is locally governed by a dynamical system of the
form:

dxi

dt
= fi(xi;λ) + εgi(x;λ, ρ, ε), i = 1 . . . k (64)

where12 xi ∈ Eic and Ji = Dxifi(z, 0) = Li|Eci . Moreover, if E
u = {0}, there is a function

Z : Ec × Eλ × Eρ × IR → Mn such that any local solution X(t) of (60) close to X = 0 tends
exponentially to Z(x(t), λ, ρ, ε) where x(t) is a solution of (64).

4.4 General normal form

Once the center manifold reduction has been done and once one has identified the type of
instability occurring for the uncoupled neurons one can further reduce the dynamical equa-
tion (64) to a canonical form or normal form, allowing somehow to classify the models into
equivalence classes. For this, one needs however to provide some additional restrictions on the
type of couplings (function Gi), and on the parameter dependence (transversality conditions).
In the more general case, ε, ρ, λ are independent parameters and the situation is quite

complex. A way to simplify it is to assume that λ, ρ have the following form:

λ ∼ λ(ε) = 0 + ελ1 + ε2λ2 +O(ε2) ;λ1, λ2 ∈ Eλ (65)

ρ ∼ ρ(ε) = ρ0 + ερ1 + o(ε
2) ; ρ0, ρ1 ∈ Eρ (66)

such that λ(0) = 0 and ρ(0) = ρ0. This form is convenient to handle but it is not a loss of
generality since λ1, λ2 (resp. ρ0, ρ1) are still independent control parameters and can assume
any value in Eλ (resp. Eρ). As discussed above, λ corresponds to control parameters allowing
for example to tune the neuron characteristics, while ρ mimics “external constraints”. In the
form (66) ρ0 may correspond to some “background” influence ρ0 while ρ1 models an external
input13.
For ε = 0 the uncoupled neurons have a control parameter λ = 0, the critical neurons are

located at the bifurcation point, and the influence of the external environment is modeled by

12 The tangent space of each Jacobian matrix Li can be decomposed as:

IRm = Esi ⊕ Eui ⊕ Eci = Ehi ⊕ Eci
where Esi , E

u
i , E

c
i are respectively the stable, unstable and central space.

13 A similar description is made in the model of section 6. The microscopic parameters of the
model (102) corresponds to λ while the external input ξ of section 6.5 corresponds to ρ1. Note however
that the analysis performed in section 6 does not require the assumption of weak coupling and closeness
to a rest state.
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the parameter ρ0. When the coupling is switched on, the physiological parameter λ of indi-
vidual neurons is modified unless λ1 = 0. Similarly, the external world influence is manifested
by an additional term ερ1 superimposed upon the “background” influence ρ0. A particularly
interesting issue is to study the reactivity of the set of coupled neurons with respect to an
external input, modeled by the parameter ρ1. If one thinks for example of recognition task one
expects a non trivial sensitivity to the input pattern ρ1, manifested by qualitative dynamical
changes. E. Izhikevich analyzed this situation in great details and made a classification of the
normal form for the coupled system according to the type of bifurcations the individual neurons
are close to.
Let us give the main ideas and results. Assume that we are in the situation of the theorem 2

and that the center manifold reduction (64) has been performed. Using the form (65)(66) for
λ, ρ one rewrites the dynamical system (64) in the form:

dxi

dt
= fi

[
xi; ελ1 + ε

2λ2 +O(ε
2)
]
+ εgi

[
x; ελ1 + ε

2λ2 +O(ε
2), ρ0 + ερ1 + o(ε

2), ε
]
=

= fi(xi; 0) + ε [Dλfi(xi, 0).λ1 + gi(x; 0, ρ0, 0)]+

+ ε2
[
D2λfi(xi, 0).(λ1, λ1)+Dλfi(xi, 0).λ2+Dλgi(x; 0, ρ0, 0).λ1+

+Dρgi(x; 0, ρ0, 0).ρ1+
∂

∂ε
gi

]
+ o(ε3)

Close to the fixed point x = 0 this reduces to:

dxi

dt
=
∂fi

∂xi
(0; 0)xi + hix

2
i + εai + ε

2di + ε

n∑
j=1

sijxj + o(ε
3) (67)

where:

ai = Dλfi(0; 0).λ1 + gi(0; 0, ρ0, 0) (68)

hi =
1

2

∂2fi

∂x2i
(0; 0) (69)

di = D2λfi(0; 0).(λ1, λ1) +Dλfi(0; 0).λ2

+ Dλgi(0; 0, ρ0, 0).λ1 +Dρgi(0; 0, ρ0, 0).ρ1 +
∂

∂ε
gi (70)

sij =
∂gi

∂xj
(0; 0, ρ0, 0) (71)

It is particularly remarkable that the coefficient sij acts as a “formal synapse” coupling the
neuron j to the neuron i. But, contrarily to the usual synapses, which establish a “wired” link
between two neurons, the coefficient sij is essentially generated by the (nonlinear) dynamics.
Note that it is given by the Jacobian matrix of g. This is thus a first illustration of the concept
introduced in the section 3.2. It corresponds to an effective link that is not necessarily supported
by a wired link. This fundamental aspect is discussed below and in more details in the section 6.6
(see in particular the equation (128)).
Up to now we have written general equations without consideration about the (codimension

one) bifurcations of the critical neurons. To each type of bifurcations is associated a set of
transversality conditions (see appendix) that allows to reduce further the equations (67).
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The result (67) is rather abstract but it has interesting development in particular in the
following case. Assume that we slightly perturb the dynamical system with an external input
corresponding to the parameter ρ1. What is the effect of this perturbation on the dynamics?
In particular, assuming that some neurons are close to a bifurcation point, does a perturbation
of the form (65) have an effect on the global dynamics? Such a change can be considered
as an effective reaction of the system to the external input, that can be used, for example,
to perform recognition tasks. Consequently, it can be useful to have analytical results on the
normal form of the coupled dynamics near the bifurcation point. We shall not discuss all the
cases investigated by Hoppensteadt and Izhikevich. We shall focus instead on two examples
that we find particularly rich and enlightening.

4.5 Saddle-node and pitchfork bifurcations

Let us first analyze the case when the k critical neurons are close to a saddle-node bifurca-
tion. Then, for each critical neuron i = 1 . . . k the uncoupled vector field fi(xi, λ) satisfies the

transversality conditions (see appendix) ∂fi(0;0)
∂xi

= 0; ∂
2

∂x2i
fi(0; 0) �= 0 and Dλfi(0; 0) �= 0 (which

means that Dλfi(0; 0) has no zero eigenvalue). Therefore, it follows from (67) that the normal
form of a WCNN where k neurons undergo a saddle-node bifurcation is:

dxi

dt
= hix

2
i + εai + ε

2di + ε

n∑
j=1

sijxj + o(ε
3) (72)

The variable change xi → ε
1
2xi and the time change t → ε−

1
2 t transforms these equations

into:

dxi

dt
= ai + hix

2
i +
√
ε

n∑
j=1

sijxj + εdi + o(ε
3) (73)

We now want to analyze the effect of an external input ρ1 on (61). From eq. (68) ai depends
only on ρ0, λ while hi is independent on these parameters. Moreover, if ai �= 0, the dynamical
system (73) admits, to the zeroth order in ε, the fixed points ±

√
ai
hi
, which are both hyperbolic.

Since hyperbolicity is structurally stable, when ai �= 0 the dynamical system (73) is insensitive
to the input pattern ρ1 (and, at least in this sense, cannot perform recognition task). It can
react only to ρ0 and this reaction is trivial (by the implicit function theorem).

Consider now the case when ai = 0. Then the variable change xi = εh−1i yi and the time
change τ = εt in (72) lead to:

dyi

dτ
= ri + x

2
i +

n∑
j=1

cijxj +O(ε) (74)

where:

ri = hidi (75)

cij = hisijh
−1
j (76)

The dynamical system (74) is the normal form of (73) under the condition ai = 0. It depends
now on the external input ρ1 via di. The fixed points of ((74) are now determined by:

ri + x
2
i +

n∑
j=1

cijxj = 0 (77)
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Consequently, they depend on the structure of the matrix C def= {cij}ni,j=1 (corresponding to the
effective links induced by the nonlinear dynamics). The condition ai = 0 writes:

Dλfi(0; 0).λ1 + gi(0; 0, ρ0, 0) = 0; ∀i = 1 . . . n. (78)

This specific condition is called by E. Izhikevich, the adaptation condition. He showed in par-
ticular this interesting result: in order for the reduced dynamical system (61) to exhibit a non
trivial sensitivity to the input pattern ρ1, one needs that the neurons adapt to the pattern, via
the internal parameter λ. In other words, λ is not independent on ρ but it must satisfy (78)
which means that the internal parameter λ counterbalances (up to order ε) the steady state
input from the entire network onto each neurons. This notion has deep implications, because it
suggests that a suitable training of a Neural Network such as (61) requires an evolution of the
control parameters λ, under the influence of the external input ρ1, with the constraint that the
condition (78) is achieved. In some sense, learning is efficient if the training leads the system
into a very specific part of the parameters space, corresponding to the condition (78), where the
system is close to a bifurcation point and where this bifurcation is only induced by the presen-
tation of the learned pattern (or a weakly perturbed version of it). This has interesting echoes
with the discussion of the effect of Hebbian learning in the model described in the section 6.5.
The adaptability condition is also important if one considers other types of bifurcations such

has the pitchfork (in this case the transversality conditions impose that (78) is automatically
satisfied) and the cusp bifurcation.
In the case of pitchfork bifurcations, for example then the normal form is:

dxi

dt
= bxi ± x3i +

n∑
j=1

cijxj (79)

We shall return back to this form in the section 4.7 where we shall consider the effect of having
a synaptic matrix constructed via Hebbian learning.

4.6 Hopf bifurcations

Assume now that the uncoupled system has k neurons close to a Hopf bifurcation. This means
that the Jacobian matrix of each corresponding critical has a pair of purely imaginary eigen-
values ±Ωi at the critical value of the parameters. Call vi, v̄i (resp. wi, w̄i) the corresponding
right (resp. left) eigenvectors. Moreover, the vector field satisfies the transversality conditions
TH1 in the appendix. Using similar techniques as in the previous example one can prove the
following [98]:

Theorem 3 If the dynamical system (64) is near a multiple Hopf bifurcation then there is a
variable change and a time rescaling τ = εt reducing it to the normal form:

dzi

dτ
= bizi + dizi|zi|2 +

k∑
j �=i

Cijzj +O(
√
ε) (80)

where bi, di are complex coefficients and where the coefficients Cij are given by:

Cij =

{
wi.Dxjgi.vj if Ωi = Ωj

0 if Ωi �= Ωj (81)

This results is quite interesting. It shows that close to the bifurcation point the oscillating
neurons can be divided into pools according to their natural frequency. There is an effective
coupling Cij between the neurons in the same pool, while the coupling between neuron from
different pools is negligible (namely weaker than O(

√
ε)) even if there is a synaptic connexion

between them in the global system. This strongly suggests that resonances appear in such system.
Indeed, one can exhibit Arnold like tongues in this situation (see [98] page 173). Also, a periodic
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input with a frequency ω one can establish interactions between oscillators transmitting on
different frequencies or it can disrupt interactions between oscillators transmitting on the same
frequency.
This result as strong implications going far beyond the field of Neural Networks. Indeed,

it suggests that non linearity may induce effective paths among units that are not directly
connected to the graph of interactions. Moreover this type of behavior is not specific to weakly
coupled neural networks with a rest state close to a Hopf bifurcation. In the section 6.6 we shall
exhibit a similar behavior for a chaotic Neural Network and we shall show that a linear response
theory based on recent results by D. Ruelle [134] might be used to locate these resonances.

4.7 An example of “Hebbian” learning

In this section we give a first example of Hebbian learning rule allowing the neural network to
perform tasks such as pattern recognition. We start from the “generic” form of Hebb’s rule (58)
with β = γ = 0 and where the “state” of the neuron i (mi in eq. (58)) is given by xi and where
Γij = xixj .

J ′ij = λJij + αxixj + higher order terms. (82)

Suppose now that we have several “patterns” or “images” ξ1, . . . , ξp to be “memorized” by our
neural network. What means “memorized”? Many definitions are possible but, in the context
of this paper, we shall consider that a pattern is memorized if the neural networks has acquired,
via learning, the capacity to dynamically evolve towards a “state” “associated to the pattern”,
provided that it was “suitably prepared”. We insist on the fact that this property must be
acquired, namely, it should not exist when no learning is performed. This definition is however
still rather ambiguous. What is a “state”? What means “can be associated” to the pattern,
“suitably prepared”? Again, there are many possible interpretations. But let us start with a
very simple one. Assume that the “patterns” are vectors corresponding to points in the phase
space of our neural network. Assume then that, after learning, the dynamic evolution admits all
patterns as stable fixed points. Then, starting from an initial condition in the attraction basin of
the pattern k, say, the dynamics will converge to this pattern. Here “suitably prepared” means
that we start from an initial condition in the attraction basin and the “state associated to the
pattern” is the pattern itself and this is fixed point of the dynamics. Since an initial condition
in the attraction basin of the pattern is a (possibly small) perturbation of it, one may interpret
the convergence as a recognition of the pattern by the neural network when a perturbed version
of it is presented.
How to manage such a “learning ability”? Consider the equation (82) and assume first that

the coupled neural network admits only a stable fixed point corresponding to the pattern ξ1.
Then the Hebbian rule implies that Jij → −αλ ξ1i ξ1j . A possible generalization to p pattern
is then:

Jij =
1

N

p∑
k=1

βkξ
k
i ξ
k
j (83)

We shall actually see, in the section 5.2, the effect of this rule in a recurrent neural network. We
shall also show another application of Hebbian learning in a situation where the recognition of
a pattern does not correspond to the convergence to a fixed point, but to a more complicated
object in the phase space (section 6.5). For the moment and to stay in the spirit of the section 4
we will address the following question. What is the effect of the Hebbian synapses (83) in a
neural network where some neurons are close to a bifurcation?
Let us for example consider the case of a pitchfork bifurcation and assume therefore that

the dynamics is given by:

dxi

dt
= bxi − x3i +

n∑
j=1

Jijxj (84)
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corresponding to having a subset of neurons close to a pitchfork bifurcation (see section 4.5).
It is easy to see that x∗ = 0 is always a fixed point and that its Jacobian matrix is given
by DFx∗ = bI + J , where I is the identity matrix and J the matrix of synaptic couplings.
Assume now that J is given by eq. (83). Note that, according to this equation, J can be
written in the form J = 1

N

∑p
k=1 ξ

k ξ̃k where ξ̃ denotes the transpose of ξ. Assume now that

the patterns ξk are orthogonal and take binary values ξki = ±1 (thus (ξk, ξl) = Nδk,l). The
mutual orthogonality of the patterns imposes that the number p of patterns is lower than
the dimension of the phase space (p ≤ N). Then it is easy to see that J ξk = βkξ

k. Thus
β1, . . . , βp are eigenvalues of J with corresponding right eigenvectors ξ1, . . . , ξp. The remaining
N − p eigenvalues are all zero and the corresponding eigenvectors belong to the orthogonal of
span

{
ξ1, . . . , ξp

}
(the kernel of J ). If we finally assume that β1 ≥ β2 ≥ . . . βp then we see

that DF0 has p eigenvalues b + β1 ≥ b + β2 . . . ≥ b + βp. Consequently, 0 looses its stability
when b ≥ −β1. This destabilization arises via a pitchfork bifurcation occurring in the direction
ξ1. Indeed, set xi = y1ξ

1
i then

dy1
dt
= (b + β1)y1 − y31 . Hence, two symmetric fixed points

x1± = ±
√
b+ β1ξ

1 appear, proportional to the pattern ξ1. If we further increase b we have a

sequence of similar pitchfork bifurcations, in the direction ξk, whenever b ≥ −βk. Finally, a
stability analysis of these new fixed points show that if b > −βm+ β1−βm2 , there are m pairs of

stable nodes corresponding to the patterns ξ1, . . . , ξm. In this sense, the Hebbian rule (83) gives
to a neural network of type (84) the capability to retrieve memorize patterns corresponding to
stable fixed points. We shall return on a more general version of eq. (84) in the section 5.2.
Note finally that if one increases b beyond a positive value then “spurious” memories appear,
that is, stable fixed points that do not correspond to any of the memorized patterns. These
new patterns belong to KerJ (see [98] for details).

5 Recurrent models

In the previous section we have considered the effects of weakly coupling neurons, in a situation
where uncoupled neurons are close to a bifurcation point. We have presented some rigorous
results obtained from bifurcations and normal form theory. They reveal some illuminating
aspects of the emergent dynamics, such has the adaptation principle or the existence of an
effective network induced by the dynamics and not necessarily identical to the synaptic network.
We depart now from this setting. We want to analyze the collective dynamics of a neural

network where the couplings are not necessarily weak and where neurons are not necessarily
close to a bifurcation point. For this, we consider a recurrent neural network whose dynamics is
given by the equations (87) (continuous time) or (102) (discrete time). One can indeed go quite
a bit deep in the dynamics description. Moreover, the model presents an overwhelming richness
and it can be partially analytically studied. This is also a good benchmark for developing tools
in non linear networks analysis (see section 6.6).
We first show how this recurrent model can be derived by switching from a spiking descrip-

tion of the neuron to a frequency rate description (section 5.1). We then discuss the dynamics
of the model when the synaptic weights are symmetric (section 5.2). General results from dy-
namical systems theory allow one to prove a convergence property and to exhibit a Lyapunov
function (see appendix for a definition). This function has some analogies with the magnetic
energy in a system of interacting spins. Actually, the “energy” landscape presents a structure
similar to the rich and complex energy landscape of spin glasses models. There exist a large
number of minima (fixed points), whose number increases exponentially with the system size.
The existence of these many minima is closely related to the competition excitation/inhibition
induced by synapses, and corresponding to frustration in spin glasses. Actually, the techniques
developed in statistical mechanics of spin glasses can be adapted to estimate the number of
minima [114] and to have an good description of energy landscape. The convergence to minima
can then be used to store informations if one uses the Hebbian rule (83) [97].
In section 5.3 we present briefly cooperative systems, where one still have a convergent

dynamical system even if the synapses are not symmetric. We discuss in particular shortly a
fundamental result by Hirsch having recent extensions in the field of genetic networks [80], [145].
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But usually, when symmetry is broken, the dynamics is not convergent and can be, for example,
chaotic. The section 6 is entirely devoted to a chaotic model, which has, furthermore, nice
properties when submitted to an Hebbian like learning.

5.1 From spiking neurons to firing rate neurons

In section 4 we have discussed the effect of coupling neurons without giving a detailed descrip-
tion of the individual neuron dynamics. For further development we have now to specify it.
For this purpose and in the spirit of table 1 we switch now from neurons having an activity
described in terms of spikes to neurons described in terms of firing rate.
Assume therefore that each neuron is emitting spike trains and call xj(t) the firing rate of

the neuron j at time t. Note that the definition of firing rate requires an integration over a
certain time window, (see the introduction), that we shall assume to be short compared to the
time scale for the evolution of the variables considered in this description. Call ũi(t) be the time
average of the membrane potential on this time window. In standard models the firing rate is
a function of ũi: xi(t) = fi(ũi(t)) where fi is a sigmoidal function such as

14 fi(x) = Erf(giu)

or 1+tanh(giu)2 . gi is called the ‘gain’ of the transfer function fi. Since the slope at the inflexion
point of fi is proportional to gi and since fi(−∞) = 0 and fi(+∞) = 1 this parameter measures
the level of non linearity of the function. The sigmoidal shape of fi can be understood by the
following argument.
A spike is emitted each times the average membrane potential exceeds the neuron threshold

θi. This threshold, as we saw, depends on time. In particular, after emission, it increases to
infinity during a time τa, assumed here to be identical for all neurons, corresponding to the
absolute refractory period. Then it decreases to reach its initial value. Hence, if θ(τ) is the
threshold value at time τ , the initial time being the time where a spike is emitted, one has:

θ(τ) =

{
∞ if 0 < τ < τa
decreasing function if τ > τa

(85)

At each time τi such that θi(τi) = ũi there is an emission of a spike, therefore the corresponding
average time of firing (the initial time being the time where a spike is emitted) is given by
τi = θ

−1
i (ũi) and the (normalized) frequency rate is:

xi =
τa

τ
=

τa

θ−1i (ũi)
≤ 1

Consequently, xi is an monotonously increasing function of ũi with values in [0, 1]. In the case of
integrate and fire neurons driven by an external stochastic current I(t) one has has an explicit
equation for fi. The membrane potential evolution is given by:

τm
du

dt
= −γu(t) +RI(t)

(eq. 36, section 2.2.4). Assume that I(t) is random (e.g. Poisson process) with a (stationary)
probability distribution P. Then the probability that the neuron fires at a time t+dt is given by

P [u(t+ dt) ≥ θ] = P
[
(1− γ

τm
dt)u(t) +

RI(t)dt

τm
≥ θ
]
=

= P
[
I(t)dt ≥ τm

R
(θ − u(t)) + u(t) γ

R
dt
]
∼ 1−F

[τm
R
(θ − u(t))

]
= f(u)

where F is the repartition function of I.
Consider now an assembly of such neurons. The neuron i receives the spikes coming from

other neurons, and the total current Ii(t) is the sum of spikes arriving from each neuron j,
weighted by Jij . The membrane potential ũi of the neuron i depends on the frequency rates of

14 One also finds in the literature the case where fi(u) = tanh(giu). Hence f takes its values in [−1, 1].
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the spikes trains emitted by the neurons connected to i. The current received by i is therefore∑N
j=1 Jijxj(t) where xj can be viewed as an integration over a small time window of the current

appearing in eq. (38). Then the analog to the evolution equation (36), section 2.2.4, is:

dũi

dt
= −ũi(t) +

N∑
j=1

Jijxj(t) (86)

where we have dropped the time constant in front of −ũi, incorporating it into the time scale dt.
Fixing some threshold reference (e.g. θ0i = θ(2τa), setting ui(t) = ũi(t)− θ0i and xi = fi(ui)

one finally obtains:

dui

dt
= −ui(t) +

N∑
j=1

Jijfj(uj(t))− θi; i = 1 . . . N. (87)

The model (87) displays a wide variety of dynamical behavior according to the form of J the
matrix of synaptic couplings.
The equation (87) is a particular form of the Cohen-Grossberg model [50]. The general

form is:

dui

dt
= ai(u)


bi(ui(t)) + N∑

j=1

Jijfj(uj(t))


 ; i = 1 . . . N. (88)

where ai, bi are mild functions (e.g. ai is bounded, positive and locally Lipschitz continuous
and bi, b

−1
i are locally Lipschitz continuous). In the sequel we shall however restrict to the

model (87).

5.2 Symmetric synapses

Consider first the case with symmetric synapses Jij = Jji. One shows then that (87) is conver-
gent whenever J is symmetric.
Here is an elegant proof due to M. Benaim [26]. It has the advantage to hold in more general

case than for symmetric synapses. M. Benaim proved indeed the following theorem:

Theorem 4 [26] Consider the differential system:

dui

dt
= bi(u)Gi(u) = Fi(u), i = 1 . . . N (89)

where bi :IR
N → IR∗+ are strictly positive C1 functions and assume that there exist a family

of strictly positive C1 functions ψi :IR → IR∗+ such that the following holds (“detailed balance”
condition)15:

∂Gj

∂ui
∂Gi

∂uj

=
ψj(uj)

ψi(ui)
(90)

Then:

1. (89) admits a strict Lyapunov function.
2. The isolated equilibria of (89) are generically hyperbolic.

15 The name “detailed balance” comes from the evident analogy with the equilibrium conditions for
the stochastic evolutions, such as Glauber dynamics, used in statistical physics.
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The proof relies on the remark that the differential form ω =
∑N
i=1 ψi(ui)Gi(u)dui is exact

(dω = 0) since:

dω =
∑
i<j

(
ψi(ui)

∂Gi

∂uj
− ψj(uj)

∂Gj

∂ui

)
dui ∧ duj = 0

It follows that there exists a function V such that ω = −dV . Consider now the Riemmanian
metric defined by:

〈x,y〉u =
N∑
i=1

ψi(ui)

bi(u)
xiyi (91)

Then dV = − <F, du>u and consequently dVdt = − < F,F >u. Hence V is strictly decreasing
along the trajectories of the dynamical system (89). Thus (89) is a gradient field for the previous
metric and V is a strict Lyapunov function. Consequently, from the Lassalle invariance principle
(see appendix) the dynamical system is convergent and the fixed point are generically isolated.
The Jacobian matrix being self adjoint for this scalar product its eigenvalues are real and are
generically non zero.
In the case of the dynamical system (87) one can write:

dui

dt
=

1

f ′i(ui)


−ui(t)f ′i(ui) + N∑

j=1

Jijfj(uj)f
′
i(ui)− θif ′i(ui)


 def= Gi(u)

f ′i(ui)
(92)

(since f ′i vanishes only at infinity, one may assume that the initial conditions are chosen in
some compact set of IRN ). Then bi(ui) =

1
f ′i(ui)

and:

∂Gi

∂uj
= −δij ((ui + θi)f ′′(ui) + f ′(ui)) + Jijf ′j(uj)f ′i(ui)

The detailed balance condition holds if Jij = Jji and it writes
∂Gi
∂uj
=
∂Gj
∂ui
(hence one may take

ψi = 1 in the scalar product (91)). Thus, (87) is a gradient system with a Lyapunov function

V given by dV = −
∑N
i=1Gi(u)dui =

∑N
i=1(ui(t)f

′
i(ui) −

∑N
j=1 Jijfj(uj)f

′
i(ui) + θi)dui. This

gives, up to an irrelevant additive constant:

V (u) =
∑
i

∫ ui
0

(u+ θi)f
′
i(u)du−

N∑
j=1

Jijfj(uj)fi(ui) (93)

This result has several important consequences. First it shows that (87) is convergent [50]. But
it gives substantially more. The equilibria are the minima of the function V . Actually, this
function looks very much like the magnetic energy in physical systems. Assume indeed, that
the slope of the sigmoid tends to infinity. Then f becomes a binary function. If f(u) = tanh(gu)
then xi = f(ui) takes value in {−1, 1} as the binary spins of the Ising model. The Lyapunov
function (93) writes, in this limit, −

∑N
j=1 Jijxixj (since f

′(u) → 0 everywhere but at u = 0
where it becomes infinite). The Lyapunov function as therefore exactly the form of the energy
resulting from the magnetic interaction between Ising “spins”.
The structure of the energy landscape of magnetic system with ferromagnetic (Jij > 0) and

antiferromagnetic (Jij < 0) magnetic interactions is astonishingly complex. Actually, when the
Jij ’s are randomly distributed (modeling the presence of impurities in a magnetic sample) one
obtains a model for a spin glass (for a review see for example [28], [117], [144]). Spin glasses have
extremely rich properties and the canonical models (such as the Edwards-Anderson model [67]
or the Sherrington-Kirkpatrick model [147]) are not yet entirely understood. This analogy with
magnetic spin glasses has been very fruitful and in particular Hopfield made a breakthrough in
the field of formal Neural Network by developing the analogy between a Neural Network with
binary neurons and a spin glass. He showed that information can be stored in the minima of
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V and he proposed a method, inspired from the Hebb’s rule to construct the interactions in a
way such that the patterns to be learned correspond to the minima of V .
Indeed, assume that the Jij ’s are now given by equation (83), where the ξ

k’s are some
patterns that we want to store and retrieve from the dynamics (87). For simplicity we take
βk = 1 in (83). We assume that the number of patterns , p, is ≤ N . Since, in the limit g →∞ the
phase space becomes {−1, 1}N , the ξki takes binary values {−1, 1}. Assume moreover that the
vectors ξk are mutually orthogonal, i.e. (ξk, ξl) = Nδ(k,l). The Lyapunov function writes then:

V (u) = − 1
N

N∑
i,j=1

p∑
k=1

ξki ξ
k
j xixj (94)

Note that in the case g → ∞ xi = sgn(ui). If x = ξ1 then V = − 1
N

∑N
i,j=1

(
ξ1i
)2 (

ξ1j
)2 −

1
N

∑N
i,j=1

∑p
k=2 ξ

1
i ξ
k
i ξ
1
j ξ
k
j = − 1N ‖ξ1‖4 −

1
N

∑p
k=2

(
ξ1, ξk

)2
. Since the ξk’s are orthogonal one

gets finally V = −N which is the absolute minimum of the magnetic energy. This results
holds obviously for all patterns. Consequently, all patterns are absolute minima of V and
they are stable16. When the number of patterns is larger than N , the patterns can not be

all orthogonal. Therefore, the second term 1
N

∑p
k=1

(
ξ1, ξk

)2
plays an important role, since

it generates spurious minima of V . The exact analysis of the Hopfield model for a finite
and infinite numbers of patterns have been performed by Amit, Gutfreund and Sompolin-
sky [2], in the thermodynamic limit N → ∞. For this, they uses spin glasses techniques
such as the replica methods (in the case p → ∞). Their results have been rigorously proved
in [73].
When g is finite the neural network (87) has still the capacity to store and retrieve pat-

terns via Hebb’s rule [97]. Moreover, for random symmetric Jij ’s the minima of V can still be
computed by using techniques coming also from the spin glasses literature. For example, using
a method developed by Bray and Moore [30] for spin glasses, Marcus & Westrevelt have been
able to compute the number of fixed points for (87), when the size N → ∞ (thermodynamic
limit), in the case where J is a (symmetric) random matrices with independent entries and
such that E[Jij ] = 0 and V ar[Jij ] =

1
N
. They found equations for the fixed points which

are similar to the Thouless-Anderson-Palmer equations [153] giving the mean-field solutions in
the Sherrington-Kirckpatrick model, and the Bray & Moore techniques gave a similar result:
the number of fixed points increases exponentially with the system size.

5.3 Cooperative systems

When the synaptic couplings Jij are not symmetric, (as in biological systems) there is in general
no Lyapunov function, and many kinds of dynamics are possible. However, for some systems
called cooperative systems one has still convergence properties, without Lyapunov function, but
relying on a specific property of the flow, that preserves some pseudo order on the phase space.
The results presented here are due to Hirsch [92].
A dynamical system

dui

dt
= Fi(u) (95)

is called cooperative if:

∂Fi

∂uj
(u) ≥ 0, ∀i �= j (96)

16 Actually, we have still to define the “limit” of the dynamical equations (87) when g → ∞. The
Hopfield model with binary states uses a discrete time sequential dynamics (see [95] for details).
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and it is called competitive if:

∂Fi

∂uj
(u) ≤ 0, ∀i �= j (97)

This has the following interpretation. As discussed in the section 3.2 the Jacobian matrix
element ∂Fi

∂uj
(u) measures in some sense the “influence” of the neuron j on the neuron i, when

the system is in the state u. More precisely, it characterizes, to the first order in a Taylor
expansion, the modification induced on ui when uj has a small variation. In cooperative systems
the corresponding interaction graph has therefore only positive edges, whatever the state of the
neural network and consequently, only positive circuits. They have moreover the following
property. Assume that the phase space is convex and define the partial order u ≤ v ⇔ ui ≤
vi, i = 1 . . . N . A cooperative flow preserves this order. Thus u(0) ≤ v(0)⇒ u(t) ≤ v(t), ∀t > 0
(this corresponds to the positive feedback discussed above). Note that if F is competitive a
reversal of the time arrow leads to u(0) ≤ v(0)⇒ u(t) ≤ v(t) ∀t > 0. From these inequalities,
Hirsch [92] was able to prove that for a two dimensional cooperative dynamical system, any
bounded trajectory converges to a fixed point. In larger dimension, one needs moreover a
technical condition on the Jacobian matrix of F: it must be irreducible. Then Hirsch proved
that the ω limit set of almost every bounded trajectory is made of fixed points. One does not
have the same property for competitive systems [148].
Some extension of these results have been recently made [80,145]. Though these works where

intended to obtain mathematical results about metastability in the context of genetic networks,
they hold in a very general context, and, in particular, in the context of neural networks. In
1981, R. Thomas made the following conjectures [152]. 1) A positive feedback loop in the graph
of interactions of a differential dynamical system is a necessary condition for the existence of
several equilibria. 2) A negative loop is a necessary condition for a stable periodic behavior.
J.L. Gouzé proved these conjectures under the hypothesis that the sign of the Jacobian matrix
elements do not depend on the state. Consequently, the graph is the same everywhere in the
phase space. The proof of the conjecture 1 has been extended by Soulé in [145]. The main idea
in the proof of conjecture 1 is that if the dynamical system has several fixed points then F
has several zeroes and thus cannot be injective. Thus knowing sufficient conditions for F to be
injective, their negation give necessary conditions for F to have several zeros. The injectivity
is ensured by conditions on the determinant of the Jacobian matrix. The proof of the second
conjecture uses the fact that if all semi circuits (closed path in the non oriented graph) of length
2 ≤ p ≤ N are nonnegative then the dynamical system is equivalent, up to change of sign of
some variables, to a cooperative system. Then there is no attracting periodic trajectory.
As a conclusion, let us remark is that the notion of negative circuits is related to a notion of

frustration introduced in the context of spin glasses. A loop is frustrated if the magnetic energy
cannot be minimized for all the edges of this loop. This implies that the magnetic energy of
this loop cannot reach its absolute minima and that severals spin configurations lead to the
same local minimum. The loop is frustrated because there are always “unsatisfied” edges where
the spins are not in a configuration allowing them to minimize their energy. Flipping one spin
may satisfy them but then others link will become unsatisfied. The notion of positive circuits
is similar to the notion of non frustrated loop. Actually, one can obtain convergence results for
symmetrically signed networks (sgn(Jij = sgn(Jji)) provided that the corresponding graph is
not frustrated [149,26]. The notion of frustration has therefore nicely been adapted here.
Finally, note that feedback effects can generate very complex situations, even if the dynamics

is convergent. For example, in the case of symmetric synapses where a Lyapunov function exists,
the presence of feedback terms (and frustration) induces a multiplicity of stable fixed points.
This effect is analogous to the multiplicity of solutions for the Thouless-Anderson-Palmer [153]
equations giving the various phases in the Sherrington-Kirckpatrick spin glass.

5.4 Neural oscillators

What happens now if the synapses have no particular symmetry? Actually, there are many
possibilities including chaos. An example is presented below. But to end up the section 5 we
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Fig. 25. Example of a system of two oscillating neurons (provided that g > 1).

would like to point out an easy way to generate oscillations in a system of two neurons having
the dynamics (87). Consider therefore the dynamical system (87) with two neurons where, for
simplicity, θ1 = θ2 = 0:

{
u̇1 = −u1 + J11 tanh(gu1) + J12 tanh(gu2)
u̇2 = −u2 + J21 tanh(gu1) + J22 tanh(gu2) (98)

where g controls the non linearity. It is easy to see that u = 0 is always a fixed point. Moreover
the Jacobian matrix at u = 0 is:

DF0 =

(−1 + gJ11 gJ12

gJ21 −1 + gJ22

)
= −I + gJ (99)

where I is the identity matrix and J the matrix of synapses. Therefore, the eigenvalues of DF0
are λk = −1+ gsk where s1, s2 are the eigenvalues of J . We note therefore that the stability of
the origin is determined, in this case, by the eigenvalues of J . We shall return back to this point
in the section 6. The eigenvalues of J are straightforward to compute and the eigenvalues of
DF0 are given by λ1,2 = −1−g J11+J222 ± g2

√
(J11 − J22)2 + 4J12J21. Consequently, it is possible

to have oscillations in the system, provided that (J11− J22)2+4J12J21 ≤ 0. This imposes that
J12J21 < 0. Namely one neuron (say the first one) excites the second one while the second
neuron inhibits the first one (see Fig. 25). Note however that this is only a necessary condition.
Actually, a sufficient condition corresponds to having a Hopf bifurcation destabilizing u = 0 and
generating stable oscillations. This happens whenever the two following conditions are fulfilled.

g
J11 + J22
2

≥ 1 (100)

(J11 − J22)2 + 4J12J21 ≤ 0 (101)

For example, the following matrix (corresponding to the diagram drawn in Fig. 25) generates

oscillations whenever g ≥ 1: J =
(
1 1
−1 1

)
.

This example shows that once the synaptic symmetry is broken the dynamics usually does
not settle onto a fixed point but on a more complex attractors. Even with two neurons the
competition of excitation/inhibition can generate periodic oscillations. When the number of
neurons increases, one can have pools of synchronized and oscillating neurons, as discussed in
the section 4.6. But one can also have more complex situations ranging from oscillations to
chaos. An example is given in the next section.
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6 A complete example

In the previous section we have discussed various aspects of a recurrent model with convergent
dynamics. Actually, in the early eighties a large effort was devoted to the study of conver-
gent recurrent neural networks. Indeed, convergence was interpreted as a retrieval of a stored
pattern [95]. As shown above the symmetry of the synaptic connexions ensures, in the Cohen-
Grossberg, model, the existence of a Lyapunov function and, consequently, the model is con-
vergent. When the synapses are not symmetric, the dynamics can be quite a bit more complex,
exhibiting a wide variety of dynamical regimes such as periodicity, quasi periodicity, chaos,
existence of several complex attractors, etc . . .
In the end of the eighties, some attention have been paid to recurrent neural networks

exhibiting such complex dynamics. Indeed, the real brain is clearly a highly dynamical system
and the convergence of the EEG to a fixed point is not a sign of a good health. From the
biological point of view, accurate models have been designed to model temporal phenomena in
the brain: synchronization of oscillations for feature linking [81], [65], [82], transition between
coherent states [106], and chaos [15], [16], [17], [18], [74]. Relying on recent neurophysiological
results, the study of chaos in neural networks seemed a very promising way in at least two
directions: the comprehension of the cognitive processes in the brain [142], [25], [47] and the
development of new technologies involving the control of chaos and the massively parallel com-
putability of neural networks. However, due to their complexity, they were very difficult to treat
onto a mathematical ground and they lacked a theoretical background explaining the behavior
of the networks in function of a few relevant control parameters.
In this setting particularly astonishing experiments were made by Freeman and his col-

laborators on the olfactory bulb of the rabbit [69], [70]. They suggested that the spontaneous
dynamics of the olfactory bulb could be chaotic. But they also lead the authors to conclude
that the recognition of a previously learned smell is manifested by a temporary reduction of
the chaotic activity. On the basis of these experiments, Skarda and Freeman [142] proposed an
interpretation and a modeling scheme of the learning and recognition processes. In this scheme,
the spontaneous dynamics of the neurons is chaotic and the retrieval of some previously learned
pattern corresponds to a reduction of the chaotic attractor towards an attractor of lower di-
mension. During the alert waiting state, the network explores a large region of its phase space
through chaotic dynamics. When the learned stimulus is presented, the dynamics is reduced
and the system follows the lower dimensional attractor which has been created during the
learning process.
This idea is exciting but quite controversial, since, in particular, it is extremely difficult to

measure quantities, such as fractal dimensions, on the basis of time series which are, intrinsically,
non stationary. Nevertheless, this paradigm merits to be explored. For this, and to escape from
the inherent limitations of data measurements in biological experiments, one possibility is to
propose a model, that can be an oversimplification of the biological reality, but which captures
some important features. The advantage of such a model is that one can simulate it numerically
and have a better control on the time series. Also, sometimes, it is possible to obtain analytical
results.
This section is entirely devoted to such a model. Its structure is directly inspired by the

Cohen-Grossberg model (but with a discrete time). Despite its simplicity, it displays an astonish-
ing variety of dynamical behaviors and it has quite unexpected properties. Moreover, a relatively
deep mathematical analysis can be performed combining concepts and methods from dynami-
cal systems theory, statistical physics and ergodic theory. The subsections 6.1, 6.2, 6.3, 6.4 are
devoted to a preliminary analysis of the spontaneous dynamics of the model, namely without
learning. In the subsection 6.5 we discuss its behavior when an Hebbian learning is applied
and we show that a behavior similar to Freeman’s paradigm is exhibited. Namely, this Neural
Network has the ability to store information and to retrieve it by reduction of chaos. Finally,
the subsection 6.6 explores an important aspect and propose a new analytical tool to par-
tially answer a basic question, arising naturally from the discussion above. Assuming that
the model presented here as some relevance for brain dynamics, how can a chaotic network
process information?
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6.1 Model description

Let us consider a discrete time version of the equations (87):

xi(t+ 1) = f(ui(t+ 1))

ui(t+ 1) =
∑
j Jijxj(t) + θi i = 1 . . . N

(102)

where f is a sigmoidal function such as f(x) = tanh(gx) or f(x) = 1+tanh(gx)
2 . Henceforth,

f maps IR to an interval [a, b] and the dynamics (102) occurs in a compact space Ω = [a, b]N .
The parameter g controls the non linearity of f . This nonlinearity plays an important role in
many aspects. Firstly, it is directly related to the transition to chaos described in section 6.3.
But it has also an important influence when discussing the amplification/saturation effects on
the propagation of a signal transiting via a neuron (see section 6.6).
In this model, each neuron interact with each other (fully connected model). The “out-

put” state xi(t + 1) is a function of the weighted sum of the signals arriving at i at time t,
ui(t) =

∑
j Jijxj(t). We call ui(t) the local field. Moreover, the “synapses” Jij are indepen-

dent, identically distributed random variables, with expectation E[Jij ] and variance V ar[Jij ]
given by:

E[Jij ] =
J̄

N
; V ar[Jij ] =

J2

N
(103)

such that the expectation and the variance of the “synaptic potential”
∑
j Jijxj(t) remains

bounded as N → ∞. For technical reasons we shall furthermore assume that the probability
density of the Jij ’s, ρ, obeys:


(i) ∃β > 1 s.t.

∫
ρβ(x)dx <∞

(ii) ∃δ > 0 s.t. E
[
|J2+δij |

]
<∞

(iii) ∃α > 0 s.t. E
[
|Jnij |

]
≤ nαn,∀n ≥ 2.

(104)

Note that these conditions hold for a Gaussian or a uniform distribution. In the sequel the
matrix of synaptic couplings will be denoted by J .
In the section 6.5 we shall discuss the effect of an Hebbian learning on the synapses and on

the dynamical evolution. But at the present stage, assuming independence between the Jij ’s
may be viewed as an attempt to model a neural network initially “empty” of any information
encoded in its synaptic structure (tabula rasa). Note that the synapses are therefore (almost-
surely) asymmetric in this model. The situation is thus different from the previous section,
where the symmetry allowed us to exhibit a Lyapunov function, ensuring convergence to fixed
points. In the present model, the attractors of the dynamics are in general not fixed points, but
complex objects (e.g. strange attractors).
In eq. (102) the quantities θi play two different roles. In the present case (without learning)

they correspond to a threshold in the neuron response. To take into account neuron diversity we
assume that the θi’s are Gaussian, independent, and identically distributed random variables,
such that:

E[θi] = θ̄; V ar[θi] = σ
2
θ . (105)

We call θ the vector {θi}Ni=1.
In section 6.5 we shall consider the effect of an input on the dynamics. In this cases, the

θi’s will correspond to the input submitted to the neuron i. Also, we shall discuss in section 6.6
the case where the input is time dependent. Finally, note that in eq. (102) the synapses and
thresholds do not evolve in time (quenched disorder).

The dynamical system (102) depends a priori on N def
= N2+N+1 parameters (N2 synapses,

N thresholds, and g). We call the vector λ = (g,J , θ) the vector of microscopic parameters. λ
has therefore N2 + N random entries. In the sequel, it will be useful to write the dynamical
system (102) in the form:

u(t+ 1) = F[u(t);λ] (106)
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Note that the Jacobian matrix as a simple form:

DF[u;λ] = JΛ(u) (107)

where Λ(u) is the diagonal matrix such that Λ(u)ij = f
′(uj)δij .

Let us now denote by P
(N)
J ,θ the joint probability distribution for couplings and thresholds,

in a N dimensional system. This probability distribution determines therefore the actual real-

ization of the Jij ’s and θi’s. Moreover, P
(N)
J ,θ is determined by the parameters J̄ , J, θ̄, σθ. Hence,

these parameters fix the statistical properties of the microscopic parameters Jij and θi. we shall
call the parameters17 g, J̄ , J, θ̄, σθ the macroscopic parameters. Note that we have only four
independent macroscopic parameters because the dynamical system (102) is invariant under
the transformation.

g → gJ ; Jij →
Jij

J
; θi →

θi

J
; (108)

Hence J is somewhat irrelevant.
From the dynamical system point of view widely developed in the previous sections, it is

natural to seek the generic (in a topological sense) behavior of (102) when the microscopic
parameters are varied. However, this is a formidable task and one may argue that, since these
parameters are random, it is certainly more useful to investigate the generic behavior (in a
probabilistic sense) when the macroscopic parameters are varying. In some sense, we substitute
the analysis of the dynamical system (102), with uncountably infinitely many possible realiza-
tions of the microscopic parameters, by an “averaged” dynamical system depending on four
independent deterministic macroscopic parameters. In this spirit, a few results are given in the
next section, obtained by combining dynamical systems theory and probabilistic results about
random matrices (section 6.2). But, essentially, this approach is the core of the dynamic mean
field theory, that will be fully developed in the paper II of this issue. In the present paper
(section 6.4), we derive the mean field equations by an heuristic argument, and discuss their
dynamical properties in relation with the dynamical system (102).
Before entering into the detailed analysis let us make a last remark. The dynamics

of the uncoupled neurons in the dynamical system (102) is rather poor. It indeed writes
xi(t + 1) = f(gJiixi(t) + θi). This dynamical system exhibit either a stable fixed point or
bistability (appearing by a saddle node bifurcation). Contrarily to the examples studied in the
section 2 there is no Hopf bifurcation, no homoclinic loops, etc. . . . Nevertheless, the coupled
system, as we shall see, has a rather rich dynamics. This provides a prominent example of
emergent collective behavior.

6.2 Preliminary results

Let us first establish a few preliminary results. Firstly, it is easy to show that, for each realization
J (ω) of J , there exists a g value, gas(ω), independent of θ, and given by:

gas(ω) =
1

α‖J (ω)‖ (109)

such that F is a contraction whenever g < gas [35]. In (109) ‖ ‖ is the operator norm induced
by the Euclidean norm and α is such that α = f ′(0). This result is straightforward since

‖F(u;λ)− F(v;λ)‖ ≤ sup
w∈Ω
‖DF(w;λ)‖‖u− v‖ = ‖J ‖‖u− v‖ sup

w∈Ω
‖Λ(w)‖

17 In this particular case g is both a microscopic and a macroscopic parameter. This is simply because
all neurons have the same g. One can imagine a generalized version where the nonlinearity of the neuron
i, gi, depends on the neuron and where the gi’s are randomly distributed. In this case the gi would
be additional microscopic parameters, while the parameters controlling their probability distribution
would be additional macroscopic parameters.
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sion one bifurcation occurring in (102)
when the non linearity g increases.

where the last inequality holds from eq. (107). Since Λ(u) is a diagonal matrix such that
Λij(u) = f

′(uj)δij and since f is a sigmoidal function where the maximal slope is equal to αg,
F is a contraction provided that αg‖J ‖ < 1. The result follows.
When F is a contraction the dynamical system (102) is absolutely stable i.e. it admits a

unique fixed point, attracting all trajectories. The matrix J is random and the result (109)
holds for each realization. One can obtain from this a statistical result by using a theorem
proved by Geman [76]. Provided that the Jij ’s obey the condition (104(iii)), J converges almost
surely, when N → ∞, to a finite value that can be explicitly computed [37,35], depending on
the parameters J̄ , J . From this, one obtains the asymptotic limit of gas when N → ∞. This
provides, for finite N , an estimate of the g parameter values where the system is absolutely
stable with a high probability.
When g increases, one expects bifurcations leading to dynamical changes. When

f(x) = tanh(gx) and when there are no thresholds, the function F(u;λ) has the symmetry
F(u;λ) = −F(−u;λ). Thus, u = 0 is always a fixed point. Also, in this case DF(0) = gJ .
Consequently, the stability of this fixed point is determined by the spectrum of the random
matrix gJ . Obviously, the eigenvalues of gJ are proportional to the eigenvalues of J with
a coefficient g. J being real, the eigenvalues are either real or complex conjugated. When g
increases, the spectrum is dilated and for sufficiently large g some eigenvalues are crossing
the stability circle {z ∈ IC||z| = 1} (see Fig. 26). However, the probability that several eigen-
values cross simultaneously this circle is zero18 if one excepts the case of a pair of complex
conjugated eigenvalues. We expect therefore a destabilization of 0 by a codimension one
bifurcation. The possible codimension one bifurcations for a map having the symme-
try F(u;λ) = −F(−u;λ) are described in Fig. 26. They are (see the appendix for
details):

– Case I. Pitchfork bifurcation. The fixed point destabilizes and two symmetric stable fixed
points appear.

– Case II. Period doubling bifurcation. The fixed point destabilizes and stable periodic orbit
of period two appears.

– Case III. (Discrete time) Hopf bifurcation. The fixed point destabilizes and stable periodic
orbit appears. Note that, stricto-sensu, orbits of period 2,3 and 4 do not correspond to a
Hopf bifurcation (the normal form is different, see [13] for details). Orbits of period 3 and
4 are observed for small N ’s [63].

18 Having several eigenvalues crossing simultaneously the stability circle corresponds to impose alge-
braic relations of codimension larger than one between the coefficients of the characteristic polyno-
mial of J . Since the Jij ’s are selected randomly the probability to fulfill these algebraic conditions
is zero.



Topics in Dynamical Neural Networks 53

Call ρ(J ) the spectral radius of J (the value of the largest modulus of the eigenvalues). Then
the destabilization occurs when:

g0 =
1

ρ(J ) (110)

This is a random variable. However, the statistical behavior of random matrices obeying the
conditions (104 (i), (ii)) is well known when the size tends to infinity [79]. The limiting spectral
density converges almost surely to the uniform density in the disc of center 0 and radius J
in IC. Consequently, g0 converges almost surely to

1
J
and the destabilization value is given by

g0J = 1. Note that the same result can be obtained from the dynamical mean field theory
(see [151] and [53] for a continuous time version of (102)).
The repartition of eigenvalues is also known in the finite size case [66]. One can show that

there is an over density of real eigenvalues that disappear in the limit N → ∞. Consequently,
for finite size, one observes destabilization by pitchfork and flip bifurcations, but the Hopf
bifurcation becomes more and more frequent whenN increases [63,34,38]. Finally, in the infinite
system an infinite number of eigenvalues cross simultaneously the unit circle. This corresponds
to a sharp transition from fixed point to white noise discussed in section 6.4 (see also [38]).
Let us now make a remark about the Hopf bifurcation. As we somehow anticipated in the

sections 4.6,5.4 oscillations arise because there is a competition between excitation/inhibition
effects among the neurons. Actually, one expects from the study performed in 4.6 to have, near
the bifurcation, pools of almost synchronized neurons oscillating coherently. This is revealed
in the study of the correlation function which has usually a bloc structure as revealed from
example in [57]. Note also that the period of oscillations is generically irrational. Finally, the
results above the spectrum of J imply that the phase ν of the largest eigenvalue, generating
the Hopf bifurcation, is uniformly distributed between [0+, π]. Hence Prob[0+ < ν < θ] = θ

π

and, since the period is T = 2π
ν
, Prob[T > τ = 2π

θ
] = 2

τ
. Therefore the probability density

of the period is ρT (τ) =
2
τ2
. Thus, there is a high probability to have oscillations with a low

period.
These results have been obtained by combining elementary results from dynamical system

theory, holding for each realization of the disorder, and convergence results in random matrices
theory. The convergence results, holding when N →∞, are then used as a guideline for a typical
realization of the finite dynamical system. They are however quite restricted. For example, we
have assumed that the system has the symmetry F(u;λ) = −F(−u;λ). But when we consider
the equation (102) with thresholds, this symmetry disappears. Then, the fixed point of the
absolutely stable regime is a random variable. Moreover, when g > gas new fixed points can
appear by saddle-node bifurcations: they are also random. Finally, we have been able to analyze
the first bifurcation relatively easily but, after the destabilization the usual techniques (central
manifold reduction, normal forms) are difficult to handle since the coefficients are random
(hence, for example, the eigenvectors of J are random).
One has therefore to develop an alternative statistical approach. This is done in the sec-

tion 6.4. Before this, we discuss in the next section the typical behavior of the dynamical
system (102) when g further increases. The results presented are a combination of genericity
results in dynamical systems theory and numerical simulations.

6.3 Transition to chaos

Numerical simulation is a fundamental tool for the exploration of the wide dynamical richness of
the model (102). But clearly, exploring the parameters space of this system at “random”, with-
out any preliminary idea of what is going on is like “searching a needle in a straw pile” (it is in
fact a bit more tricky since a straw is only a three dimensional object). Indeed, basically, dynam-
ical systems are structurally stable on wide ranges of parameter values and only the points where
structural stability fails (bifurcations points) matter. But bifurcations occur for parameter val-
ues usually located on manifold of smaller dimension than the ambient space. For example the
codimension one bifurcations discussed above correspond to a N − 1 = N2 +N manifold in the
microscopic parameters space. Since we select the Jij ’s and θi’s with an absolutely continuous
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Fig. 27. Effect of breaking the symmetry
F(u;λ) = −F(−u;λ) on a pitchfork bifur-
cation.

probability distribution (i.e. having a density), the probability to fall on a bifurcation point is
zero. Obviously, since we are seeking statistical properties, we are rather interested in locating
the bifurcation points in the macroscopic parameter space. Having a bifurcation map in this
space would correspond to having statements such as: “If you fix the parameters J̄ , θ̄, σθ in this
region of the macroscopic parameters space, and if you vary g between such and such value,
then, typically you will observe this type of bifurcation”.
For this, we need to have theoretical guidelines. The preliminary results given above are an

example of such guidelines. The mean field approach briefly discussed below provides additional
hints. Consequently, the numerical simulations described in the present section have been made
with the informations given by these theoretical results, plus a few standard and generic facts
in bifurcation theory. These facts are:

– Breaking the symmetry F(u;λ) = −F(−u;λ) transforms pitchfork bifurcations into saddle-
node bifurcations as depicted in Fig. 27. We observe indeed such bifurcations and we have
an analytical way to locate them (see the next section).

– The fixed points can be destabilized when g increases. They generically do it by Hopf
bifurcation (namely with an increasing probability as N increases).

– As shown in Fig. 28, after the first Hopf bifurcation, the standard scenario is the “Ruelle-
Takens-Newhouse” transition to chaos by quasi periodicity [133] (though our system is a
discrete time system). As g increases the limit cycle generated from the first Hopf bifurcation
destabilizes by a second Hopf bifurcation giving rise to a two dimensional (T 2) torus. Near
the bifurcation, the trajectories densely fill the torus since the frequencies corresponding to
the first and second Hopf bifurcation are, in general, irrational. However, a further increase
of g leads to a frequency locking: the frequencies corresponding to the first and second
Hopf bifurcation synchronize in a rational fashion and the trajectories are periodic orbits
on the torus. Though frequency locking is structurally stable, increasing enough g finally
lead to chaos, by different ways (for a detailed explanation in general models see [75,113];
for a detailed description of this model see [37]). Note however that there may exist “re-
stabilisation phases” when g further increases. This corresponds usually to the crossing
of “Arnold tongues” where the dynamics locks on a quasi periodic orbit. An example is
given in Fig. 30a where have plotted the first and the second Lyapunov exponents. The first
Lyapunov exponent increases with g except at some points where it takes a zero value. Since
the second Lyapunov exponent is also zero this corresponding to a reduction of the chaotic
dynamics on a T2 torus. If one excepts these points, the positive Lyapunov exponents and
the fractal dimension of the strange attractor increases as g increases.
In fig. 30b we have plotted the Lyapunov spectrum for g = 3.5. One notes that, in the
example chosen, there is only one positive exponent. Thus the corresponding (Kaplan-Yorke)
dimension is low (DKY = 1.967). More generally, one observes that the strange attractor
is usually a low dimensional object (compared to the dimension of the embedding space).
One consequence is that an arbitrary perturbation of a point on the attractor has almost
all its components outside the attractor. Note finally that this transition to chaos generates
resonances peaks in the power spectrum (Fig. 29) some of them resulting from the Hopf
bifurcations. Thus, even if in the chaotic regime the power spectrum is continuous, it is not
flat, like white noise, but it has peaks or resonances. These remarks lead to important issues
discussed in the section 6.6.
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Fig. 28. An example of transi-
tion to chaos by quasi periodic-
ity in the model (102). We used
the representationm(t+1) versus
m(t) where m(t) = 1

N

∑N
i=1 xi(t)

is the empirical average of the
neurons state at time t. This
representation provides a projec-
tion of the dynamics of m(t) in
a two dimensional phase space.
The insets represent the evolu-
tion of m(t) versus t. In the
two last figure λ1 is the largest
Lyapunov exponent.

– As N increases the transition to chaos occurs on a g range becoming more and more narrow.
This leads to the conjecture that a sharp transition from fixed point to infinite dimensional
chaos occurs in the thermodynamic limit. This conjecture is related to the observation above
that the eigenvalues of the Jacobian matrix accumulate on the stability circle as N → ∞.
Exact equations and analytical description are discussed in the section 6.4.

6.4 The mean-field dynamical system

The mean field “approximation” is quite well known in statistical physics. Though it is stricto-
sensu wrong in many cases (for example it gives a wrong critical temperature for the Ising
model), it provides often an astonishingly good qualitative insight in the description of many
models of phase transitions in statistical physics. Also, for some models (such as the Curie-Weiss
model) it is exact in the thermodynamic limit. In the field of neural networks the use of mean
field approaches has a long history, for analogic networks [151] but also for spiking networks
(see for example [31]). The paper II of this issue is entirely devoted to mean field approaches,
and in the present paper, we shall focus only on the model (102).
Basically, the mean field approach applied to this model consists in assuming that the

xi(t)’s are independent from each others and independent from the Jij ’s!! Though this looks
very rough, this approach leads to exact results that can be rigorously proved (see paper II
of this issue). It can also be justified at an heuristic level [38]: one easily shows that the key
ingredients ensuring the success of this approach are the independence of the Jij ’s and the fully
connected structure of the model. Hence, the mean field approach breaks down as soon as some
correlation between the Jij ’s exist (e.g. after learning). Note also that it breaks down when
the Jij ’s are symmetric. More precisely, one has to correct the mean field equations derived
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below by adding a feedback term corresponding to the delayed action that a neuron has on
itself [153,117,52,38] (this action cancels, on average, when the Jij ’s are independent [38]).
Assume therefore that xi(t)’s are independent from each others and independent from the

Jij ’s. Then the central limit theorem states that the “local fields” ui(t+ 1) =
∑
j Jijxj(t) + θi

are Gaussian processes in the limit N →∞. Moreover, they are independent and identically dis-
tributed. Hence the joint probability of the ui(t)’s factorizes in an (infinite) product of identical
Gaussian distributions. To characterize the Gaussian distribution at time t one needs the aver-
age value µ(t) = E[ui(t)], the variance v(t) = E[u

2
i (t)]−µ2(t) and the time covariance ∆(t, t′) =

E[ui(t)ui(t
′)]− µ(t)µ(t′) (note that the left hand side terms are independent of i since all the

local fields have the same distribution). It is straightforward to see that these quantities are func-
tions of m(t) = E[x(t)], q(t) = E[x2(t), and C(t, t′) = E[x(t)x(t′)] (see eq. (111), (112), (113))
below. Finally, since x(t) = f(u(t)) and since u(t) is Gaussian one obtains:

µ(t+ 1) = J̄m(t) + θ̄ (111)

m(t) =

∫ +∞
−∞

e−
h2

2

√
2π

f(h
√
v(t) + µ(t))dh
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v(t+ 1) = J2q(t) + σθ (112)

q(t) =

∫ +∞
−∞

e−
h2

2

√
2π

f2(h
√
v(t) + µ(t))dh

∆(t+ 1, t′ + 1) = J2C(t, t′) + σ2θ

C(t, t′) =
∫ +∞
−∞

∫ +∞
−∞

e−
h2

2

√
2π

e−
h′2
2

√
2π

f

(√
v(t)v(t′)−∆2(t, t′)√

v(t′)
h+

∆(t, t′)√
v(t′)

h′ + µ(t)

)

×f
(
h′
√
v(t′) + µ(t′)

)
dhdh′ (113)

These are the dynamic mean field equations of the model (102). The parameter m, q are
called “order parameters” in the statistical physics literature. They characterize the emergent
behavior of a system with a large number of degree of freedom and they exhibit drastic changes
corresponding, in statistical physics, to phase transitions, and in our context to a macroscopic
bifurcation.
Let us now make a few remarks. Firstly, these equations can also be derived from the

computation of a generating functional for the probability distribution of the trajectories
{u(t)}∞t=1. This has been developed by Crisanti et al. [53] for a continuous time version (with-
out thresholds) and by Molgedey et al. [119] for a discrete time version. Both approaches lead
obviously to the same equations. But they also deal with the same type of convergence namely
weak convergence. As said above, the idea below the mean field approach is to have informations
about the “average” behavior of the dynamical system (102). This is what we have obtained,
but in a very rough sense. The equations (111), (112), (113) tell us about the evolution of the
average value of u(t) when the average is performed over infinitely many realizations of the
disorder. But, weak convergence does not give any information about one typical system whose
size tends to infinity. For this, one needs a stronger convergence, the almost-sure convergence19.
The large deviations approach developed in paper 2 [159] of this issue will allow us to show the
almost sure convergence (and incidentally that the equations (111), (112), (113), derived from
a “questionable” Ansatz, are correct).
Let us now discuss these equations, their solutions and their interpretation. One remarks

firstly that, for t = t′, the equation of ∆(t, t) is the equation of (112) for the variance v(t) (as ex-
pected since ∆(t, t) = v(t)). Also, ∆(t, t′) ≤ v(t). One can therefore write the equation (113) in
the form

∆(t+ 1, t′ + 1) = Hg,J̄,J,θ̄,σθ [∆(t, t
′)] def= J2C(t, t′) + σ2 (114)

where H is defined only when ∆2(t, t′) ≤ v(t)v(t′) and is given by (113).
Having these equations in hand, the idea is now to study the reduced dynamical

system (111), (112), (113) and to infer informations about the typical dynamics of (102). More
precisely, we are interested in the time asymptotic that corresponds to a stationary regime
of (111), (112), (113). The stationary equations are given by:

µ = J̄m+ θ̄ (115)

m =

∫ +∞
−∞

e−
h2

2

√
2π

f

(
h
√
J2q + σ2θ + J̄m+ θ̄

)
dh

v = J2q + σ2θ (116)

q =

∫ +∞
−∞

e−
h2

2

√
2π

f2
(
h
√
J2q + σ2θ + J̄m+ θ̄

)
dh

19 Almost sure convergence corresponds to the statistical physics notion of self averaging. The em-
pirical average of a quantity in one realization of the disorder converges with probability one to the
average of this quantity over the disorder.
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∆(t− t′) = J2C(t− t′) + σ2θ = Hg,J̄,J,θ̄,σθ [∆(t− t
′)] (117)

C(t− t′) =
∫ +∞
−∞

∫ +∞
−∞

e−
h2

2

√
2π

e−
h′2
2

√
2π

f

(√
v2 −∆(t− t′)√

v
h+

∆(t− t′)√
v

h′ + µ

)

×f
(
h′
√
v + µ

)
dhdh′

These equations give important informations about the statistical behavior of the model (102)
with an increasing accuracy when the size increases. Moreover,m, q,∆ act as “order parameters”
allowing us to distinguish different dynamical regimes and to draw an effective bifurcation map
in the space of the macroscopic parameters. Let us list a few results [34], [36], [37], [38].

1. In the absolutely stable regime the fixed point is a random variable. One checks numer-
ically that the corresponding distribution of the local fields is Gaussian and the equa-
tions (115), (116) give the mean and variance of this distribution with a very good accuracy.
For fixed N the empirical mean and variance computed over a large number of networks is
close to the theoretical values. Moreover, the statistical dispersion of these empirical values
decreases as N grows (as expected from the almost-sure convergence proved in paper 2 [159]
of this issue).

2. The equations (115), (116), have several solutions in some regions of the macroscopic para-
meter space. More precisely, they exhibit saddle-node bifurcations. The critical values where
saddle-node bifurcations occur in the space of macroscopic parameters can be computed from
equations (115), (116). It is remarkable that these bifurcations have a direct correspondence
with the saddle-node bifurcations observed in the system (102) in the following sense.
On one hand if one fixes the parameters θ̄, σθ, J̄ in a region where the mean field equations
predict a saddle-node bifurcation as g increases one observes indeed (in general) saddle-node
bifurcations in the system (102). Of course, the exact g value where the bifurcation occurs
is random and depends of the actual realization of the disorder. However, if one performs a
statistical analysis of these values, one finds an average value close to the value predicted by
the mean field equations. Moreover, the empirical variance decreases with the system size.
On the other hand, the various fixed points appearing from saddle-node bifurcations in the
dynamical system (102) are also random. But the coordinates of these points (in the ui
space) are distributed according to a Gaussian distribution whose mean and variance are in
good agreement with the value obtained from the fixed points of (115), (116).
As a conclusion, the analysis of the fixed points of (115), (116) allow us to draw a bifurcation
map in the macroscopic parameter space giving the average g value where saddle-node
bifurcations occur, for a given value of the parameters θ̄, σθ, J̄ . It gives also the probability
distribution of the corresponding fixed point in the dynamical system (102).

3. Once we know the statistical distribution of the fixed points, one can compute a destabi-
lization condition by estimating the spectral radius of the Jacobian matrix in the same way
as we did above (but now the distribution of eigenvalues depends on the distribution of the
fixed points [36]). This condition is given by:

g0ρ(JΛ(x∗)) = 1 (118)

where ρ() is the spectral radius, x∗ the fixed point, and Λ the diagonal matrix Λij(x∗) =
f ′(u∗i )δij . This condition generalizes (110) since for f(u) = tanh(gu), x∗ = 0 and Λ(0) is the
identity matrix. From this one obtains the average g value where destabilization occurs, for
a given value of the parameters θ̄, σθ, J̄ . Moreover, the Jacobian matrix as similar spectral
properties as in the case F(u;λ) = −F(−u;λ) and when a fixed point destabilizes it does
this (generically) by a Hopf bifurcation. Therefore the mean field equations allow us to draw
a bifurcation map in the macroscopic parameter space giving the average g value where a
Hopf bifurcations occurs (see ref. [34]).

4. A finer analysis of the complete set of equations ((115), (116), (117)), and especially of
the equation for the time covariance (114)), reveals that there are in fact two regimes. The
equation (117) admits always the solution ∆ = v. This solution is stable for the map (114)
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if dH
d∆

< 1. The destabilization condition is therefore given by20:

dH

d∆
(∆ = v) = J2

∫ +∞
−∞

e−
h2

2

√
2π

f ′2
(
h
√
J2q + σ2θ + J̄m+ θ̄

)
dh = 1 (119)

This equation defines in the space of macroscopic parameters
(
g, J̄ , θ̄, σθ

)
a codimension 1

manifold which separates this space into two regions.
In the region corresponding to dH

d∆
< 1 the solution ∆ = v is stable and it is the only solution

of (117). The asymptotic stochastic process described by the mean field equations is then
stochastically equivalent to the Gaussian process given by:{

Y (0) = X
Y (t+ 1) = Y (t)

(120)

where X is a Gaussian random variable N (µ, v). Henceforth, Y is a process with almost-
surely constant trajectories. Its interpretation is easy: it corresponds to a regime of (102)
where we have only fixed points.
In the other region, one can write vδ(t, t′) + ∆∗(1 − δ(t, t′)) = (v − ∆∗)δ(t, t′) + ∆∗.
Consequently, the asymptotic stochastic process described by the mean field equation is
stochastically equivalent to the Gaussian process given by:{

Z(0) = X
Z(t+ 1) = Z(t) +B(t)

(121)

where X is a Gaussian random variable N (µ,∆∗) and where B(t) is a white noise with
zero mean and variance (v − ∆∗). Z(t) is therefore the superimposition of a process with
almost-surely constant trajectories plus a white noise.
It is also remarkable that the equation (119) corresponds exactly to the equation of desta-
bilization of the fixed point. We conclude therefore that the crossing of the manifold (119)
corresponds, in the infinite system, to a sharp transition from fixed point to infinite dimen-
sional chaos. Note however that this “manifold“ is a very rough representation of the edge of
chaos for finite size systems. Indeed, it is known [75,113] that in the transition to chaos by
quasi periodicity, the edge of chaos has a fractal structure corresponding to the intersections
of Arnold tongues.

The theoretical results described in the sections give a fairly good description of the various
dynamical regimes generically exhibited by (102). However, mean field equations have the draw-
back to hold only when the size of the system tends to infinity. And we have just seen that
this limit is rather poor (either fixed points or white noise). Therefore, though mean field equa-
tions are a good guideline for describing the statistical behavior of (102) they miss a lot of
important aspects: intermediate regimes between fixed points and chaos, dynamical properties
of a given realization of the network, etc. In the next section we depart from the rough vision
provided by the mean field theory and develop two aspects drastically related to the finite size
system.

6.5 Hebbian learning effects

Let us now consider the effect of Hebbian learning on the dynamical system (102). For this, we
return back to the recipes discussed in the section 3.3. Learning is based on the modification
of synaptic connections between neurons. In the present context, this is interpreted as a a slow

20 The equations ((115), (116)) are similar to the Sherrington-Kirkpatrick equations describing
the Sherrington-Kirkpatrick spin glass model [147] at high temperature, while the equation ([59])
corresponds to the De Almeida-Thouless line. A detailed discussion of this aspect has been done
in [36,38].
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Fig. 31. An example of bifurcation map. The sur-
face drawn in the parameter space θ̄, σθ, g corre-
sponds to the sharp transition from fixed point to
chaos, obtained from the mean field equations in
the thermodynamic limit.

evolution of the synapses Jij when the network is submitted to a pattern that one would like to
“teach” to the network. In our model, a pattern is a vector ξ = {ξi}i=1..N and a presentation
consists in adding the vector ξ to the vector of thresholds θ (i.e. θi → θi + ξi, i = 1 . . . N).
Several (many) learning rules can be proposed, based on the recipes presented in the

section 3.3 (see for example [57]). A straightforward implementation, very similar to equa-
tion (82) is:

Jij(t+1) = λJij(t)+
α

N
(xi(t+1)−η)×(xj(t)−η)×H(xj(t)−η) i, j = 1..N ; T > 1 (122)

The parameter 0 < λ ≤ 1 corresponds to a decay of the synapse when it is not used. H is the
Heaviside function (H(x) = 1 if x > 0 and 0 otherwise). η defines a level of activity allowing us
to decide whether a neuron is “active” at time t(x(t) ≥ η) or “silent” (x(t) < η). Consequently,
the term (xi(t + 1) − η)(xj(t) − η)H(xj(t) − η) corresponds to modifying the synapse only if
the post-synaptic neuron is active. This corresponds to the fourth21 “recipe” in the section 3.3.
Finally, a weight Jij cannot change its sign (this corresponds to demanding that a synapse
cannot switch from excitatory to inhibitory or vice-versa).
On biological grounds, the learning rule (122) can be interpreted as follows. The synaptic

weight Jij connects the neuron j to the neuron i and the output signal emitted by j at time t
is transmitted to the neuron i at the next time step with the weight Jij . Let us assume that
λ = 1 (no forgetting). Then, the learning rule has the effect of enhancing the synaptic strength
Jij if the neuron j is active at time t and if the neuron i is active at time t+ 1. On the other
hand, if j is active at time t and the neuron i is inactive then the synapse decreases.
The joint evolution of (102) and (122) occurs as follows. The initial couplings and thresh-

olds J0ij , θ
0
i are fixed to an initial random value determined by the probability distribu-

tions (103), (105), for a determined value of the macroscopic parameters (J̄ , θ̄, σ2θ). These pa-
rameters and g are fixed such that the corresponding dynamics is chaotic. The values of these
parameters can be roughly determined from the bifurcation map described above (see Fig. 31).
After a sufficiently long time such that the neurons dynamics has “reached” its chaotic

attractor, one presents a pattern ξ. This means that one modifies the thresholds: θ1i = θ
0
i + ξi.

The weight Jij are not modified at this stage. The pattern is a random vector ξ whose entries are
independent, identically distributed, Gaussian, with a mean ξ and a variance σξ. Henceforth,
each neuron feels an effective threshold θ1i = θ

0
i +ξi. This modifies the dynamics. However, from

the macroscopic parameters point of view, this amounts to have the transformation θ̄ → θ̄+ ξ,
σθ → σθ + σξ. Hence, it is still possible to know the average behavior of the perturbed system

21 We have removed the condition that the pre-synaptic neuron is active. Indeed, in this naive model,
a term (xi(t+ 1)− η)×H(xi(t+ 1)− η)× (xj(t)− η)×H(xj(t)− η), always positive or zero, would
lead to an increase of the synapses linking active neurons and to an exponential decay of the other
synapses toward 0. Hence we would rapidly have a network composed by positive synapses only, with
a value increasing in time. Thus, rapidly, all active neurons would saturate.
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Fig. 32. Fig. 32a Inverse quasi periodicity route induced by learning. In this simulation N = 64, g = 8
α = 10−4, η = 0.5, λ = 1 (no forgetting). 30000 learning steps are represented. The plotted quantity is
the average value of the output states m(t) = 1

N

∑N
i=1 xi(t). Fig. 32b Graphical representation of the

learned pattern.

by using the bifurcation map. In the experiments described below, the pattern is chosen such
that the perturbed dynamics remains chaotic. Then one iterates the learning procedure (122).
The stimulus is always present. Once the learning phase is finished one removes the stimulus ξ
(i.e. the thresholds are reset to their initial value θ0i ).
What is the effect of the learning rule (122) (1) on the neurons dynamics? (2) on the

synapses? The typical effects on the neurons is depicted in Fig. 32. One observes generically an
inverse quasi periodicity route. Namely, starting from a chaotic attractor, the modification of
the Jij ’s by the Hebbian rule (122) leads first to a T 2 torus, then to a limit cycle and, finally,
to a fixed point (with possibly a crossing of several Arnold tongues leading to temporary
synchronizations). Thus, too long a learning phase basically “kills” the dynamical activity (see
Fig. 32).
Now, assume that we stop learning when the systems is in an intermediate phase (e.g. quasi

periodic or periodic). Different results are possible depending on the time where we stop learning
but also on the pattern, the spontaneous dynamics, the learning rule etc. . . . Nevertheless, it
is possible to observe the following phenomenon, reminiscent of Freeman’s paradigm. In some
cases, removing the pattern when the activity of the network+pattern is periodic gives back a
strange attractor. Then, a new presentation of the pattern leads back to the limit cycle. An
example is given in Fig. 33. The initial regime is chaotic (Fig. 33a I) and presenting the pattern
does not change the chaotic nature of the dynamics (Fig. 33a II). Obviously, this changes
the attractor, but nothing significant happens. In particular a glance to Fig. 33b does not
reveal any clear cut effect induced by the pattern presentation, before learning. The situation is
drastically different after learning. If one stops the learning phase corresponding to the figure 32
after 11.000 learning steps one ends with a periodic attractor (Fig. 33a III). Then, removing
the pattern leads back to chaos (Fig. 33a IV). Again, the form of the attractor is different from
(Fig. 33a I, II) but observing the dynamics does not tell us that learning has been performed.

Fig. 33. Learning and effect of a pattern presentation after learning. Fig. 33a Attractors. I. Attractor
before learning and before the pattern presentation. II . Attractor before learning when the pattern is
presented. III. Attractor after 11000 learning steps with the pattern. IV. Attractor after 3000 learning
steps without the pattern. Fig. 33b Time trajectories.
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However, a new presentation of the pattern induces a sharp reduction of the dynamics onto the
limit cycle (Fig. 33b). Since, the pattern presentation didn’t lead to this effect before learning,
this property has been acquired via learning.

Consequently, in this situation, the learning process associates to a given pattern a dynamical
pattern, and recognition is manifested by a dynamical reduction from chaos to the associated
dynamical pattern. We have therefore another possible interpretation for the loose statement
given in the section 3.3: “a pattern is memorized if the neural networks has acquired, via learning,
the capacity to dynamically evolve towards a “state” “associated to the pattern”, provided that
it was “suitably prepared” ”. Here the “state” is an attractor22, and “suitably prepared” means
that we add the pattern ξ to the vector of thresholds θ (pattern presentation). Hence, the effect
of learning is quite different from the Hebb-Hopfield learning where a pattern is associated to a
fixed point and “suitably prepared” means choosing an initial condition in the attraction basin
of the pattern.

The remarkable fact is that the learning dynamics has lead the system in a state different
from the initial one. Without excitation by the stimulus, the neuron dynamics is chaotic and
there is no apparent difference between this case and the situation before learning. More pre-
cisely, certainly the learning phase has changed the characteristics of the strange attractor, but
this change does not tell us anything about the fact that an information has been encoded in the
network. This fact is revealed only if one presents the stimulus and its manifestation is drastic
(remember that the presentation of the pattern before learning didn’t reduce the dynamic).

This observation raises however many questions in particular with respect to the robustness
of this behavior, and the mechanisms leading to it. We postpone these questions to the end
of the section and we investigate now the second point listed above. What is the effect of the
learning rule (122) on the synapses?

The remarkable fact is that no clear cut changes are observed even if the learning phase is
long. Obviously the Jij ’s are modified by the learning rule (122) but there is no striking change
in the structure of the matrix or in the histogram of the Jij ’s, even if these infinitesimal changes
in the Jij ’s are sufficient to modify the dynamics. An example is given in Fig. 34. After 11000
times steps, the dynamics settle onto a limit cycle but the histograms and the matrix J looks
very much like the initial one. To observe significant changes one has to iterate the learning
phase far beyond the time where the dynamics has died. The Fig. 34 shows the distribution of
the Jij ’s and the matrix after 10

6 time steps. Here a clear modification is revealed. The weights
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Fig. 34. Fig. 34 Effect of learning on the synapses. 34a Histogram of the Jij ’s. I Initial. II After 11000
learning steps. III. After 106 learning steps. 34b Matrix J I Initial. II After 11000 learning steps. III.
After 106 learning steps. The radius of the circle is proportional to the absolute value of the synapses.
Blue circles correspond to inhibitory synapses and red circles to excitatory synapses.

22 To be more precise the state is an ergodic probability measure with support on the attractor.
A natural choice is the SRB measure introduced in the appendix. Thus, in the present context, the
notion of state is closer to statistical mechanics framework where a (macro) state is a probability
measure on the phase space.
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Fig. 35. Effect of learning on the activity of the
neurons. First row. Average output activity 〈xi〉
of the neurons Second row. Average value of the
local field 〈ui〉.

emitted by some neurons have increased, while the others have not been modified. But the time
scale to observe a significant change is substantially larger than the time necessary to have a
dynamical reduction.

From the theoretical point of view, one is far from the degree of understanding of the model
without learning and there is no quantitative theory allowing to predict and control the effect
of learning. As a matter of fact, the dynamic mean field cannot be applied, since the learning
dynamics (122) creates correlations between the weights. However, one can give the following
heuristic explanation of the phenomenon. First, the mean field approach developed in the
section 6.4 has left us with a somewhat misleading picture of the neural network. Indeed, in
the mean field treatment all neurons are equivalent and thus they have all the same level of
activity. This is correct if one considers the activity of the neurons averaged over a large number
of networks. But the situation is different when one considers one particular realization of the
Jij’s. In the figure 35 we have represented the time averaged (see the appendix) value of ui
and xi, in the various phases of the learning procedure. In the first row we have represented
the average output activity 〈xi〉 only for the neurons such that 〈xi〉 < η = 1

2 . Thus these
neurons are (on average) active neurons. Though the learning rule (122) uses the instantaneous
activity of the neurons and not the average (for a variant of this rule, see eq. (123) below), this
representation gives us an indication of the repartition of “active” and “silent” neurons. This
repartition is clearly not uniform, since it results from the interplay of the neuronal connections
Jij ’s and the non linearity of the transfer function (this interplay and the resulting properties
are discussed in more details in the section 6.6).

The pattern presentation as a direct but weak effect on the local fields and an even weaker
effect on the activity (the pattern is represented in Fig. 122b; note that obviously 〈xi〉 =
〈f(ui)〉 �= f(〈ui〉)). The learning rule selects then the active neurons and modify their outgoing
synapses in the following way. Assume that j is an active neuron. Then if i is active Jij increases.
Thus Jij becomes more excitatory if it positive and it becomes less inhibitory if it is negative.
On the opposite, if i is “silent” then Jij decreases. Thus Jij becomes less excitatory if it positive
and it becomes more inhibitory if it is negative. In all other cases Jij stays constant (for λ = 1).
If we admit that one step of learning has a small influence on the level of activity of the
neurons23 then the picture remains essentially the same at the next learning step. Thus, in
this rough picture, we have a set of active neurons whose outgoing synapse gradually evolves.
The excitatory links towards active neurons become more and more excitatory, the inhibitory
links towards silent neurons become more and more inhibitory; in the same time the excitatory
(inhibitory) links towards silent (active) neurons decay to zero and eventually vanish since a
weight cannot change its sign. Consequently, a very long learning phase leads to an histogram
such has Fig. 34a III, with a high peak at zero, two bumps corresponding to excitatory and

23 This can be assumed away from bifurcations point (see section 4) but it is incorrect near a
bifurcation.
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inhibitory synapses with a large24 absolute value, and finally a background of synapses that
have essentially not been modified during learning. The active neurons become “hubs” for
the dynamics, in the sense that they have a relatively large connectivity and some weights
with big absolute values. This corresponds to the vertical bands with big circles revealed in
Fig. 34c. One also has horizontal bands with mainly either red or blue big circles. The “red
lines” corresponds to the links received by active neurons coming from active neurons, while the
blue ones corresponds to the links received by silent neurons also coming from active neurons.
It is thus remarkable that the Hebbian like learning rule (122) leads to a structuration of
the network25 into “pools” of neurons. Finally, from the dynamical point of view, since active
neurons become more and saturated the dynamics converges to a fixed point.
This pictures gives us a fair understanding of the (somewhat trivial) behavior of the system

when learning is performed on long time scales. But, what about the small time scales and
what about the inverse quasi periodicity route ? For this, let us use the wisdom acquired in the
preceding subsections. The dynamical system (102) can be represented by a (randomly) chosen
point in a space of parameters with N = N2+N +1 dimensions. In this space, many “critical”
manifolds exist, whose crossing corresponds to various type of bifurcations. As discussed above
a complete investigations of this space is impossible but standard results in dynamical systems
theory, completed with numerical simulations and mean field theory have allowed us to roughly
locate the “boundary of chaos” as a function of the macroscopic parameters. Note however that
the “bifurcation manifold” obtained from the mean field approach in the figure 31 is a very
rough representation of the edge of chaos. Indeed, it is known [75,113] that in the transition
to chaos by quasi periodicity, the edge of chaos has a fractal structure corresponding to the
intersections of Arnold tongues. Thus the transition is usually not sharp when one modifies the
parameters but one has succession of phase locking with various rotation numbers and chaos
(see e.g. Fig. 30a and 32).
On the other hand, the manifold corresponding to the destabilization of the fixed point

has a nicer structure. It is indeed given by eq. (118) g0ρ(JΛ(x∗)) = 1. Now, the learning
dynamics corresponds to a motion of the representative point of the dynamical system in the
subspace of synaptic weights, while the presentation or removal of the pattern correspond to
a translation in the subspace of thresholds. These motions lead to bifurcations when crossing
critical manifolds. Consider now the destabilization condition (118). Since learning has the effect
of slowly increasing the level of activity of active neurons (and inhibit more and more the silent
ones), the derivatives of the transfer function of the neurons has a tendency (on average) to
become smaller. Thus, the entry of Λ(x(t)) become smaller on average. If we (roughly!) replace
the condition g0ρ(JΛ(x∗)) = 1 by g0ρ(J < Λ(x) >) = 1 and if we neglect the modifications
of the Jij ’s induced by learning, one sees that the g value to destabilize the network increases
while learning is performed. Thus, the effective motion induced by learning in the parameter
space corresponds to get closer and closer from the destabilization manifold, with an eventual
crossing when learning is too long. Finally, since for large N , the destabilization manifold and
the edge of chaos are very close one concludes that learning lead the system closer and closer
from the edge of chaos.
What about presentation or removal of a pattern? The learning rule (122) depends on

the activity of the neurons. Since the initial presentation of the pattern leads to changes in
the distribution of the neuronal local fields ui, this activity is (possibly slightly) modified
by a pattern presentation. From the parameter space point of view the pattern presentation
corresponds to a translation in the subspace of thresholds, in the direction of the vector ξ.

24 Note that there is no upper or lower bound on the synapses in the learning rule (for a variant see
eq. (123)). Thus, the modified synapses diverge asymptotically.
25 The Hebbian learning generates in fact small word structures, as shown in [23]. This is basically
because Hebbian learning builds “shortcuts”. If two neurons are not wired (thus far apart from the
synaptic graph point of view) but if they are “synchronized” (e.g. i is active at time t+1 whenever j is
active at time t) then the learning rule will construct a synapse between them. Note that, as discussed
in the section 4 and in the next section, 2 neurons can be synchronized even i they are not wired, by
the mere effect of the non linear dynamics (see section 6.6 for a discussion of this aspect in chaotic
networks).
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The whole learning phase is conditioned by the presence of the pattern. It has the effect of
increasing the numbers of saturated, xi = 1 or silent, xi = 0 neurons. The global effect is
similar to having an effective threshold whose value grows during the learning phase, leading
to the observed dynamical collapse. Removing the pattern has in general the effect of reducing
the width of the distribution of neural local fields and the number of saturated/silent neuron
decreases. If the system is close to the edge of chaos (this happens when we stop learning
slightly after the reduction of chaos to a periodic or quasi periodic attractor) this can induce
the drastic dynamical change observed. Thus, this scenario lead us to conclude that the learning
dynamics leads the system “to the border of the chaos”, in a state where it is sensitive to the
learned pattern (i.e. a translation in the direction of the pattern (presentation, resp. removal)
induce the crossing of the border of the chaos). In some sense, the network has adapted itself
to the pattern, via learning. This has an interesting echo with the adaptation condition (78)
of the section 4. In particular, there should exist transversality conditions ensuring that the
presentation/removal of the pattern leads to a “transverse crossing of the edge of chaos”.
This discussion gives us interesting hints but is not entirely satisfactory. Firstly, as already

said, we don’t have a real theory to validate this scenario. Also, we didn’t discuss the effect of
presenting another pattern, after the learning phase. More generally all the discussion above
dealt with a specific example of a specific rule. What about the genericity of this result? What
about its robustness? What happens if one changes the learning rule?
Actually, the rules (122) is rather rough and not really robust. It has been introduced as

a straightforward implementation of the recipes in section 3.3 providing an interesting peda-
gogical example. However, to have robust effects one needs to consider more elaborated rules.
Systematic investigations have been performed in [137], [57], [56]. Various learning rules have
been proposed, having the general form (58)

J ′ij = Jij +
α

N
Γij i, j = 1..N ; (123)

where Γij may either depend on the value of the “instantaneous” pre- (t) and post-synaptic
(t + 1) neuron or on averages such has Γij = mimj or Γij = Cij(1), where Cij(1) is the
time 1 correlation function between j and i. In the case where Γij depends on average values,
one has to consider two coupled dynamical systems. A fast one corresponding to the neurons
evolution and a slow one corresponding to the evolution of the Jij ’s. In the joint evolution one
has then to wait that the fast neurons dynamics settle onto its attractor before performing one
learning step.
The main observations above remain [135,56]. Moreover, it is possible to improve the learn-

ing rule so that the response of the system to the pattern in terms of chaos reduction is
selective and specific. Presenting another, completely distinct stimulus, does not lead to a dy-
namical reduction. However, a weakly noisy version of the stimulus has this effect. Henceforth,
this mechanism is robust to noise. It is also possible to learn several stimuli but the storage
capacity of the learning rule (123) is weak. More elaborated versions can reinforce the storage
capacity [57].
These results are fascinating since they are the demonstration of an effect similar to Free-

man’s paradigm (even one should take care when drawing biological conclusions from this
simple model). To the best of our knowledge this model is the first example of a formal neural
network exhibiting this effect. However, one may can ask what are the potential applications
of this. Actually, one may complain that to observe this dynamical reduction one needs to
somehow “assist” learning since one has to stop it before the dynamics irremediably die. Also,
learning left us with an association pattern/attractor, but how can we use this? In fact, the
more interesting observations are on one hand that the spontaneous dynamics is chaotic and
on the other hand that learning a given stimulus leads to a repartition of active neurons that
depend on the stimulus [141]. Chaos allows the spontaneous dynamics of the neural network
to explore a wide range of “possibilities” each of them corresponding to a state of the network,
while having neurons selectively responding to stimuli/patterns can be used to perform tasks or
make decision. In this sense, the Neural network (102) can be used as a first layer of a complex
neural architecture. This has been for example used in the training of an autonomous robot
designed to adapt its motion to a random environment [141].
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This subsection leave us with an interesting conclusion. The Hebbian learning rule (123)
allows us to store some information in the chaotic neural network (102) and this information can
be somehow retrieved. But this leads to several natural questions: How can a chaotic network
store and treat information? Where is the “learned” information stored? Is there a way to see
that such a network has learned something without presenting the pattern? The collapse effect
is clearly a collective effect, but this does not mean that all neurons play the same role in the
dynamics? These questions will not be answered in this paper but in the next subsection we
present a new analytical tool that may, in the long term, be used to tackle such problems.
Recent developments have been recently made in this direction in [43].

6.6 Influence of a time dependent input: Signal propagation and linear response theory

Let us first return to the point raised in section 3.2. Since synapses are used to transmit neural
fluxes (spikes) from a neuron to another one, the existence of synapses between a neuron (A)
and another one (B) is implicitly attached to a notion of “influence” or causal and directed
action. However, as we saw, a neural network is a highly dynamical object and its behavior
is the result of complex interplay between the neurons dynamics and the synaptic network
structure. Moreover, the neuron B receives usually synapses from many other neurons, each
them being “influenced” by many other neurons, possibly acting on A, etc. . . . Thus the actual
“influence” or action of A on B has to be considered dynamically and in a global sense, by
considering A and B not as isolated objects, but, instead, as entities embedded in a system
with a complex interwoven dynamical evolution. In this context it is easy to imagine examples
where there is a synapse from A to B but no clear cut influence, or, in the opposite, no synapse
and nevertheless an effective action.
Consider indeed the figure 36. Neuron 1 excites neurons 3, but in the same time it excites

neuron 5, which inhibits neuron 3. What is the effective action of 1 on 3? This clearly depends
not only on the synaptic weight, but also on the state of the neurons 1, 3, 5. More generally, the
spikes or signals emitted by a neuron can follow different paths, and its effective influence results
from the contribution of all these paths. Actually, one can easily figure out by a simple glance
at figure 36 that feedback loops (that is closed circuits in the synaptic graph) play an important
role. However, as pointed out several times in this paper one has to consider topological aspects
(such as the feedback circuits) and dynamical aspects.
One way of doing this is to compute cross correllogramms. Indeed, the time correlation

function CAB(t) between the “state” of A and the state of B incorporates the dynamical
evolution and the effective effects due to the neural network as a whole. However, correlations
functions do not really provide causal information. Indeed, a strong correlation between A
and B at time t does not tell us if A acts on B or if B acts on A (note in particular that
CAB(t) = CBA(−t)).
Another way to measure a causal action consists in exciting neuron A, say with a weak

signal, and observe the effects on B, e.g. by comparing its evolution with and without the
signal applied on A. We shall give later on an explicit way to do this. Nevertheless, there is a
common wisdom, coming from non equilibrium statistical mechanics, stating that the response
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Fig. 36. Example of network illustrating the effect of feedback
loops.
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Fig. 37. Nonlinear effects induced by a transfer function with a sigmoidal shape on signal transmission.
Fig. 37a. Amplification. Fig. 37b. Saturation.

of B to a weak perturbation on A (linear response), if it exists should actually be a correlation
function. This is the celebrated fluctuation-dissipation theorem (FDT). We shall however see
below that the FDT may not hold in simple neural networks models, due in particular to
saturation effects in the spike rate emission.
Finally, a natural choice for an excitatory signal is a periodic signal, with a tunable fre-

quency. Thus, the response function, drawn versus frequency, provides similar information as
the complex susceptibility in physics. In particular, peaks in the susceptibility corresponds to
resonances, that is a response of maximal amplitude. We shall see below how these resonances
can be used to provide an effective, frequency dependent notion of network structure. We shall
also see how they incorporate non linear effects in the dynamics even though they are obtained
in the context of linear response theory.
With these ideas in mind consider the model (102) in the chaotic regime and assume that

we superimpose upon the state uj(t) of the node j a small external signal ξj(t). How does this
signal propagate inside the network? Because of the sigmoidal shape of the transfer functions
the answer depends crucially, not only on the connectivity of the network, but also on the value
of the uk’s. Assume, for the moment and for simplicity, that the time-dependent signal ξj(t)
has variations substantially faster than the variations of uj . Consider then the cases depicted
in Fig. 37. In the first case (a) the signal ξj(t) is amplified by f , without distortion if ξj(t) is
weak enough. In the second case (Fig. 37b), it is damped and distorted by the saturation of the
sigmoid. More generally, when considering the propagation of this signal from the node j to some
node i one has to take into account the level of saturation of the nodes encountered in the path,
but the analysis is complicated by the fact that the nodes have their own dynamical evolution
(Fig. 38). A mathematical formulation of this is given e.g. in eq. (128) below. This shows
once again that the analysis of this signal propagation must take into account the topological
structure of the graph as well as the nonlinear dynamics.
In this context we would like to measure the average “influence” of neuron A on neuron

B (namely how a weak signal applied on A perturb on average the state of B), including the

Jk  k12
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Jk  k4 3

Jk  j1

1k  ,t=1
3k  ,t=3

k  ,t=44

2k  ,t=2

j,t=0

i,t=5

J
4ik

Fig. 38. The propagation of a signal along a path
in the network depends not only on the weights
of the links but also on the level of saturation of
the nodes that the signal meets. The level of sat-
uration depends on the current state of the node
(schematically represented as a red point in the
figure). This state evolves with time.
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effects of the non linear dynamics. There is a natural notion of average in chaotic systems such
as (102) related the so-called Sinai-Ruelle-Bowen measure ρ (SRB) [146] (see appendix) which
is obtained as the (weak) limit of the Lebesgue measure µ under the dynamical evolution26:

ρ = lim
n→+∞G

nµ. (124)

In the following we will assume that all Lyapunov exponents are bounded away from zero.

Then for each u ∈ suppρ, where suppρ is the support of ρ, there exists a splitting E
(s)
u ⊕

E
(u)
u such that E

(u)
u , the unstable space, is locally tangent to the attractor (the local unstable

manifold) and E
(s)
u , the stable space, is transverse to the attractor (locally tangent to the local

stable manifold). Let us emphasize that the stable and unstable spaces depend on u (while the
Lyapunov exponents are µ almost surely constant). Let us consider a point u on the attractor
and make a small perturbation δu. This perturbation can be decomposed as δu = δuu + δsu
where δuu ∈ E

(u)
u and δsu ∈ E

(s)
u . δuu is locally amplified with an exponential rate (given by the

largest positive Lyapunov exponent). On the other hand δsu is damped with an exponential
speed (given by the smallest negative Lyapunov exponent).
Assume now that we superimpose a signal of weak amplitude upon some of the “membrane

potentials” (uk) in such a way that the dynamics is still chaotic (with only a tiny variation of
the Lyapunov exponents). (This means that the method of signal injection is intended to be
non invasive). For simplicity, we suppose that the signal does not depend on the state of the
system, but we can consider this generalization without difficulty (linear response still applies

in this case, but the equations (126, 127) do not hold anymore). Denote by ξ the vector {ξi}Ni=1.
The new dynamical system is described by the equation:

ũ(t+ 1) = G [ũ(t)] + ξ(t) (125)

The weak signal ξ(t) may be viewed as a small perturbation of the trajectories of the unper-
turbed system (102). At each time this perturbation has a decomposition ξ(t) = ξ(s)(t)+ξ(u)(t)
on the local stable and unstable spaces. The stable component ξ(s)(t) is exponentially damped.
The unstable one ξ(u)(t) is amplified by the dynamics and then scrambled by the nonlinear
terms. Consequently, it is impossible to predict the long term effect of signal ξ(t) on the global
dynamics.
This is true for individual trajectories. However, the situation is substantially different if one

considers the average effect of the signal, the average being performed with respect to the SRB
measure ρ of the unperturbed system. Indeed, as an application of the general theory [134], it
has been established in [40], [41] that the average variation δui(t) of the membrane potential
ui under the influence of the signal is given, to the linear order, by:

〈ũi(t)− ui(t)〉 =
∞∑
σ=0

∑
j

χij(σ)ξj(t− σ − 1) (126)

We used the shortened notation < > for the average with respect to ρ. In this expression χij(σ)
are the matrix elements of:

χ(σ) =

∫
ρ(du)DGσu (127)

Thus χ(σ) is a matrix representing the average value of the iterate σ of the Jacobian. Let us note
that the fact that χ(σ) stay bounded for σ → ∞ is not a trivial result because DGσu diverges
exponentially with σ. The convergence of χ(σ) has been rigorously shown by Ruelle under the
hypothesis of uniform hyperbolicity. It results from the exponential correlation decay (mixing)
in the unstable directions and on the exponential contraction. In our framework, this means

26 A crucial property is that a SRB measure has a density along the unstable manifolds, but it is
singular in the directions transverse to the attractor. This feature is at the origin of the distinction
between unstable and stable poles of the susceptibility (see below).
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that, provided that ξ(t) is sufficiently small, and for any smooth observable A, the variation
< A >t − < A > is proportional to ξ(t) up to small non linear corrections. In other words, ρt
is differentiable with respect to the perturbation. The derivative is called the linear response.
It is interesting to note that the response at time 1 is < DG(u) >, namely this is the average

value of the Jacobian matrix. Thus, at time 1 we have a complete correspondence between the
notion of influence discussed in the section 5.3 and the linear response. This suggests us to
construct circuits of influence as we did in the section 5.3. Unfortunately, this correspondence
does not hold for larger times. This is basically because the quantity < DGτ (u) > does not
obey the chain rule (contrarily to DGτ (u)). Therefore, if j influences i and if i influences k, this
does not imply that j influences k. In the case of dynamical system (102) one can decompose
χij(τ) as:

χij(τ) =
∑
γij(τ)

τ∏
l=1

Jklkl−1

〈
τ∏
l=1

f ′(ukl−1(l − 1))
〉
, (128)

The sum holds on each possible paths γij(τ), of length τ , connecting the neuron k0 = j to
the neuron kτ = i, in τ steps. One remarks that each path is weighted by the product of a
topological contribution depending only on the weight Jij and a dynamical contribution. Since,
in the kind of systems we consider, functions f are sigmoid, the weight of a path γij(τ) depends
crucially on the state of saturation of the neurons k0, . . . , kτ−1 at times 0, . . . , τ − 1. Especially,
if f ′(ukl−1(l − 1)) > 1 a signal is amplified while it is damped if f ′(ukl−1(l − 1)) < 1. Thus,
though a signal has many possibilities for going from j to i in τ time steps, some paths may be
“better” than some others, in the sense that their contribution to χij(τ) is higher. Therefore
eq. (128) underlines a key point. The analysis of signal transmission in a coupled network of
dynamical neurons with non linear transfer functions requires to consider both the topology of
the interaction graph and the nonlinear dynamical regime of the system.
One can decompose the response function (127) into two terms. The first one is obtained

by locally projecting the Jacobian matrix on the unstable directions of the tangent space.
This term will be named the “unstable” response function. It corresponds to linear response of
the system to perturbations locally parallel to the local unstable manifold (roughly speaking
perturbations “parallel to” the attractor). One can show that the linear response associated
with this type of perturbation is in fact a correlation function, as found in standard fluctuation-
dissipation theorems [134]. Hence, as usual for correlation functions of a chaotic system, it decays
exponentially (because of mixing) and the decay rates are associated with the poles of its Fourier
transform. More precisely, these exponential decay rates correspond to the imaginary part of
the complex poles of the unstable part of the susceptibility (128). Thus they will be called
“unstable” poles. More generally, it can be shown that these poles are also the eigenvalues
of the operator governing the time-evolution of the probability densities (which we denoted
above as Gtµ), the so-called Perron-Frobenius operator [127]. Therefore, these poles, whose
signatures are visible in the peaks of the modulus of the correlation functions, do not depend
on the observable, though some residues may accidentally vanish for a given observable.
The second term 27 is obtained by locally projecting the Jacobian matrix on the stable

directions of the tangent space. It corresponds to the response to perturbations locally parallel
to the local stable manifold (namely transverse to the attractor). Therefore, it is exponentially
damped by the dynamical contraction. [Note that, according to the specific form of the Jacobian
matrix, this contraction is, in our case, mainly due to the saturation of the sigmoid transfer
function]. The corresponding exponential decay rates are given by the complex poles (“stable”
poles) of the stable part of the complex susceptibility. But here the poles depend a priori on
the observable. One can easily figures this out if one decomposes the stable tangent space of a
point in the orthogonal basis of Oseledec modes (directions associated to each of the negative
Lyapunov exponent). The projection of the i-th canonical basis vector on the k-th Oseledec
mode depends on i and k. This dependence persists even if one takes an average along the
trajectory, as in (127).

27 Note that a linear response theory has also been proposed in [156]. However, it requires the invariant
measure to have a density. This is only true for the conditional measure along unstable manifolds. As
a matter of fact, this theory does not contain the stable term.
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Hence, both stable and unstable terms are exponentially damped, ensuring the convergence
of the series (126), but for completely different reasons. Moreover, the stable and unstable
part of the linear response have drastically different properties. As a matter of fact, the stable
part is not a correlation function and it does not obey the fluctuation-dissipation theorem. In
particular, the unstable poles and stable poles are usually distinct. Moreover, the stable poles
allow to distinguish the neurons in their capacity to transmit a signal.
The existence of this linear response theory opens up the way to applications involving

chaotic neural networks used as a linear filter. Indeed eq. (126) describes a linear system which
transforms an input signal ξ(t) of small amplitude into an output signal 〈ũi(t)− ui(t)〉 according
to a standard convolution product. In particular, if the external signal is chosen as:

ξ(t) = εe−iωt êj (129)

(where êj is the unit vector in direction j), then the response of the system is also harmonic
with:

〈ũi(t)− ui(t)〉 = εχ̂ij(ω)e−iω(t−1) (130)

where the frequency-dependent amplitude:

χ̂ij(ω) =

∞∑
σ=0

χij(σ)e
iωσ (131)

is called the complex susceptibility. In ref. [40] a method have been conceived and implemented
allowing to compute χ̂ij(ω) numerically. The knowledge of the susceptibility matrix is very
useful as it enables one to detect resonances, i.e. frequencies for which the amplitude response
of the system to a periodic input signal is maximum. In fact the existence of a linear response
implies that χ̂ij(ω) is bounded for all ω ∈ [0, 2π]. Moreover, in view of eq. (131), it is analytic
in the complex upper plane. On the other hand, χ̂ij(ω) can have poles within a strip in the
lower half plane, e.g. in ω0 − iλ, λ > 0. In this case, and if λ is small, the amplitude |χ̂ij(ω)|
exhibits a peak of width λ and height |χ̂ij(ω0)| which can be interpreted in the present context
as follows: when unit j (whose state varies chaotically due to the global dynamics) is subjected
to a small periodic excitation at frequency ω0 and amplitude ε then the average response of
unit i behaves periodically with same frequency and amplitude ε|χ̂ij(ω0)| which is maximal in
a frequency interval centered about ω0.
Let us numerically computes the susceptibility χ̂(ω) for real values of ω (see [40], [41] for

details) in the following example. This is a sparse network where each unit receives connection
from exactly K = 4 other units (sparse neural networks of type (102) exhibits also chaos
via quasi periodicity [63]). The number of units was fixed to N = 9. The Jij ’s have been

drawn at random according to a Gaussian distribution with mean zero and a variance J
2

K
.

The corresponding network is drawn in Fig. 39. (Note that the corresponding graph is not
decomposable). Blue stars correspond to inhibitory links and red crosses to excitatory links. In
this example the unit 7 is a “hub” in the sense that it sends links to almost every units, while
0, 2, 3 or 5 send at most two links.
A small constant θi has been added to each ui to break down the symmetry u → −u

(i.e. ui(t) =
∑
j Jijxj(t) + θi). As expected the corresponding dynamics exhibits a transition

to chaos by quasi-periodicity. For g = 3 the dynamics has one positive Lyapunov exponent
(λ1 = 0.153) and 8 negative Lyapunov exponents (with λ2 = −0.427). The Lyapunov exponents
have been computed with the Eckmann-Ruelle algorithm [64]. The chaotic regime is stable to
small perturbations, as we checked.
Computing the susceptibility one obtains the curves shown in Fig. 40. Several remarks can

be made. First, some resonance peaks are rather high (∼20) corresponding to an efficient am-
plification of a signal with suitable frequency. It is also clear that the intensity of the resonance
has no direct connection with the intensity or the sign of the coupling and is mainly due to
nonlinear effects. For example, there is no direct connection from 0 to 3 or 5 but nevertheless
these units react strongly to a suitable signal injected at unit 0.
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Fig. 39. Connectivity matrix (Fig. 39a, on the left) and the corresponding network for the investigated
system (Fig. 39b, on the right). In Fig. 39b each node is represented by a circle. A filled circle means
that there is a link from the corresponding node to itself (red: self-excitation, blue: self-inhibition).
Inhibitory links are terminated by a vertical bar while excitatory links are terminated by an arrow.
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Fig. 40. Modulus of some susceptibilities. Fig. 40a (top). 7
(highly connected unit) excites the units: 1 (excitatory link
with intensity J17 = 0.007); 2 (no direct link); 3 (excitatory
link with intensity J37 = 0.722); 6 (inhibitory link with intensity
J67 = −0.041). Fig. 40b (middle). 0 (weakly connected unit) ex-
cites the units: 1 (inhibitory link with intensity J10 = −1.131);
3,5,8 (no direct link); Fig. 40c (bottom). 5 receives the excita-
tion from the units: 0 (no direct link); 1 (excitatory link with
intensity J51 = 1.015); 5 (no direct link); 6 (inhibitory link with
intensity J56 = −1.312).

Let us now compare the Fourier transform of the correlations function Cij(t) for the same
pairs (Fig. 41). One remarks that these functions exhibit less resonance peaks. This is expected
since the Fourier transform of the correlation function Cij(t) only contains unstable resonances
while the susceptibility contains stable and unstable resonances. Note also that the resolution
in resonance peaks is quite better in the susceptibility.
The previous analysis leads then us to propose a notion of “effective”, frequency dependent,

connectivity based on susceptibility curves. For a given frequency ω, we plot the modulus of
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Fig. 41. Modulus of the correlation functions corresponding to
the susceptibilities represented in the Fig. 40a,b,c.

the susceptibility |χij(ω)| with a representation assigning to each pair i, j a circle whose size is
proportional to the modulus. Some examples are represented in Fig. 42. We clearly see in this
figure that changing the frequency changes the effective network.
For example, with a frequency ω = 0.125 (Fig. 42a), the node 1 has a strong ability to

transmit signals towards the node 5 (namely the response of this unit is high). On the contrary,
nodes 5, 6 and 7 have weak performances in signal transmission at this frequency. Moreover, one
sees that 7 is a bad sender and a bad receiver. With a frequency 0.57 the effective network has
a rather symmetric structure and basically all units respond to this excitation (however with a
different amplitude). Also, some units present a strong affinity with some others, at a specific
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Fig. 42. Effective connectivity for : Fig. 42a (top
left) ω = 0.125; Fig. 42b (top right) ω = 0.57;
Fig. 42c (middle left) ω = 0.84; Fig. 42d (middle
right) ω = 1.0; Fig. 42e (bottom left) ω = 2.3;
Fig. 42e (bottom right) ω = 3.14.
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frequency. Obviously, one also checks that for frequencies that do not correspond to resonances
(such as ω = 2.33 in Fig. 42f) the response is essentially inexistent whatever the pair. Finally,
this figure shows that it is possible to excite any unit from any other one in such a way that
this unit (and possibly a few other but not all the other units) have a maximal response.
All these effects are due to a combination of topology and dynamics and they cannot be

read in the connectivity matrix J . Therefore, the example of neural networks treated in this
section shows convincingly that the analysis of neural circuits requires a careful investigation
of the combined effects induced by non the linear dynamics and the topology of the synaptic
graph. It also shows that the analysis of correlations provides less information than a linear
response analysis. This is particularly clear when looking at the resonances curves displayed
by linear response and correlations functions. As we saw, this difference is well understood
on theoretical grounds and has deep relations with salient characteristics of the non linear
dynamics (saturation in the transfer function closely related to the refractory period). Using
linear response in neural networks is not new (see for example [128] and references therein),
but the point of view adopted in the present section, is, we believe, less known and raises new
interesting questions.
Obviously, one may argue that the model (102) is a rather crude approximation of a real

neural network. Moreover, this is a firing rate model. One may wander what would bring this
approach in spiking neural networks, where the causal action from a neuron to another can be
somewhat “directly” read in the timing of pre- and post-synaptic neurons spikes. This is under
current investigations. Another remaining question is what would the use of linear response
analysis tell us in a model performing Hebbian learning (or STDP in a model with spikes). Note
that according to Hebb’s paradigm the synaptic graph evolves according to the causal actions
between neurons, leading, as we saw in section 6.5 to a dynamical rewiring. (The same effect
would hold applying STDP in a spikes model.) It might be that Hebbian (or STDP) evolution
leads to an optimisation of information transport in the network, when learned stimulus (acting
as signals) are applied to the network. This can be investigated in the context of dynamical
systems theory, ergodic theory and non equilibrium statistical mechanics [43–45].

6.7 Conclusion

This section was devoted to the analysis of some recurrent neural networks, which are a particu-
larly prominent example in this field. We have analyzed in some details the collective dynamics
and exhibit several important effects revealing the richness and complexity of the emergent
dynamics. Indeed, as noted in the begin of the section, the dynamics of the uncoupled neurons
is rather poor. This justifies somewhat the claim, made in the introduction, that one can make
rather drastic simplifications in the description of the neurons of a coupled system, and still get
a complex and relevant model. However, one must be cautious. Removing some characteristics
and still get an interesting behavior does not mean that the removed characteristics are irrele-
vant “details”. Actually, the models presented here are quite simplistic as “brain” models. To
our opinion, there main interest is to provide “benchmarks” for developing and testing tools
that one may use, later on, to analyze more realistic models.

7 General conclusion

In this paper, we have provided examples suggesting that the mathematical analysis of neural
networks dynamics can be pushed relatively far, in some simple models. However, a remaining
question is: can we perform the same kind of analysis for neural networks closer to biological
systems? At the actual stage of research the techniques of cerebral imagery; brain analysis and
neurophysiology allows to go relatively deep in the structure and dynamics of cerebral areas,
but it allows also to make an explicit cartography of the nervous system of primary animals
such as worms (e.g. Caenorhabditis elegans [33]). Thus, it is in principle possible to write the
explicit dynamical system accounting for the evolution of small area containing a relatively
small number of neurons (∼100–1000). However, the detailed analysis of these equations is
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still intractable. This is also, in some cases, useless. Indeed, often these area exhibit a relatively
simple collective behavior. It is thus profitable to define a phenomenological model, described by
a small set of differential equations and a few parameters that one can adjust to fit experimental
results.
A prominent example concerns the cortical columns implicated in vision. A cortical column

is a population of pyramidal cells receiving excitatory and inhibitory inputs from others cells
in the same column but also excitatory inputs coming from other columns, close or distant. A
celebrated dynamical model has been proposed by Lopes Da Silva [111] and Jansen & Rit [102]
describing the activity of cortical columns. A mathematical analysis of the bifurcations exhibited
by this model has been performed in [83]. It shows the existence of oscillations generated
by a Hopf bifurcation, induced by the variation of a parameter modeling the frequency of
stimuli emitted by an external source. The value of the oscillations frequency is about 10 Hz
corresponding to the α rhythm. One can also exhibit spikes emission, looking very much like
epileptic activity, and related to a saddle-node bifurcations on a cycle. In the vicinity of this
bifurcation, an excitation with an external stimulus with a specific frequency induces a spike
train emission. The techniques used by the Authors combine standard results from dynamical
systems theory and numerical analysis, in the spirit of the analysis presented in the section
2.3. Note that rhythm δ, θ, β, γ have also been numerically exhibited in [55], when varying the
excitatory-inhibitory effects in biologically realistic ranges.
This example shows that it is indeed possible to analyze neural networks closer to biology,

possibly after some simplification of the initial system. More details about vision and cortical
columns are given in paper 4 [160] of this issue.
We have made a trip in the world of Neural Network dynamics, following the path repre-

sented in Table 1. As said in the beginning many examples, models, etc. . . have been omitted.
However, we have tried to give an outlook of the various methods available for the study of
the dynamics. This excursion has also shown that, when going from a level of complexity (one
neuron dynamics) to another level (collective dynamics), it might be fruitful to adopt different
perspectives (accurate description of a neuron versus emergent behavior of “simplified” neu-
rons) and different (but complementary) methods (dynamical system theory versus probability
theory and statistical physics). It also shows us the necessity to develop accurate tools to handle
neuronal dynamics (this is well known and not new) and the possibility to do this by combining
existing theories and numerical analysis. This is a formidable task but the byproducts are on
one hand a better understanding of neuronal dynamics and on the other hand a possible insight
in other fields.

8 Appendix

This appendix is mainly devoted to non-specialists. It gives a brief summary of the con-
cepts and techniques in dynamical systems theory used in this paper. Our main references
are [12], [13], [84], [103], [132].

8.1 Elementary notions in dynamical systems theory

8.1.1 Basic definitions

The dynamical systems studied in this paper are either defined by a (finite) set of differential
equations:

dX

dt
= H(X;λ) (132)

or a set of recurrences28:
X(t+ 1) = F(X;λ) (133)

28 This implies that we do not consider the case of Neural Networks with sequential dynamics.



Topics in Dynamical Neural Networks 75

where X ∈ M, M being a compact set in IRN , where N is the number of degree of freedom
and X denotes the vector {xi}Ni=1. The vector fields H (resp. the recurrence F) in eq. (132),
(resp. (133)) do not depend explicitly on time. The corresponding dynamical system is then
called autonomous. We mainly deal with the autonomous case in the paper and in this appendix.
λ ∈ Eλ ⊂ IRp refers to a set of p (real) parameters on which the system depends. This might be
an external current applied to a neuron, an external input submitted to an assembly of neurons,
the set of synaptic weights, etc . . .. Therefore, λ can have a large (though finite) dimension. It
can also be deterministic or random. The last case requires however combinations of techniques
from dynamical system theory and probability theory. An example is developed in section 6.
We assume that H,F are smooth (at least C2) functions of X, λ. In the continuous time

case (132) the Cauchy theorem ensures the local unicity of the solutions provided that H is
a Lipschitz function. Namely, if X ∈ M, there is a time interval [−c, c] and a neighborhood
U � X such that there is a unique solution of (132), X(t) ∈ U , t ∈ [−c, c] and such that
X(0) = X. Moreover, whenM is compact, the solutions extend to t ∈ [−∞,+∞] [49]. Denote by
x̃
def
= {X(t)}+∞t=0 the (forward) orbit or trajectory such thatX(0) = X and by x̃−

def
= {X(t)}0t=−∞

the backward trajectory. The unicity of trajectories implies that two trajectories cannot cross
(though they can accumulate on the same set, as shown below). Also, the equations (132) have
the meaning that any trajectory is locally tangent to the vector field H. In low dimensional
cases (namely N ≤ 3) this is helpful to draw a qualitative sketch of the main dynamical system
features (phase portrait), without any computation (see for example the sections 2.2.2, 2.4).
In the case of the recurrence (133) the forward trajectory is simply constructed by iterating

the map F. Therefore it is always defined (provided that the initial condition is in the domain
of definition of F). The backward trajectory is uniquely defined only if F in invertible. In the
sequel we shall assume that F is a C2 diffeomorphism. For the dynamical system (132) one
can prove the existence of a one parameter family of diffeomorphisms φt (or flow), such that
φ0 = id, φt ◦φs = φt+s and X(t) = φt(X). In the sequel, we shall use the notation X(t) = f t(X)
for both dynamical systems (132), (133). Consequently, f will refer to the flow in the case (132)
and to the map F in the case (133).
The dynamical systems (132), (133) may exhibit a wide variety of dynamics, from very

simple (rest state attracting all trajectories), to complex (chaotic behavior) and even more
complex (coexistence of many chaotic attractors, etc . . . ). Consequently, in most cases the
explicit solution of (132), (133) are not known. The current philosophy in dynamical systems
theory, initiated by H. Poincaré [125], is that finding a general solution is not only impossible,
but also useless. Indeed, in many cases, a qualitative study of the dynamical system is enough to
extract quite a large amount of informations which often allows us to capture the main features
of the dynamics. In particular, one can extract characteristic ensembles such has attractors,
repellors, periodic orbits, etc . . ., which contains the main informations one needs. In many
cases, one is indeed interested in the asymptotic behavior of the forward orbits. The ω-limit
set of X is the set of accumulation points of the forward trajectory X(t). The ω-limit set of f
is the union of the ω-limit sets for all X ∈ M. The same notion (α-limit) set can be defined
for the backward trajectory when it is defined. A more general and related notion is the non
wandering set. This is the set of points X such that for any open neighborhood U � X there is
a time t0 > 0 such that f

t0(U) ∩ U �= ∅. This set contains the main elements of the dynamical
system such as the ω limit set.
The ω-limit set can have a quite complex structure. However, it contains in general some

characteristic objects such as fixed points, or periodic orbits. X∗ is a fixed point if its orbit
consists of X∗ only. In other words, H(X) = 0 [resp. F(x) = X]. a is a periodic point if there
is some t > 0 such that f ta = a. The lower bound of such t is the period of a, T (a). The
set Γ = {f ta ; 0 ≤ t ≤ T (a)} is called a periodic orbit or a closed orbit. For a discrete time
dynamical system it is a finite set; for continuous time it is continuously infinite.

8.1.2 Fixed points and linear analysis

The first step of the analysis of (132), (133) is to seek for equilibria or fixed point. A fixed
point is stable if for any neighborhood U � X∗, there exists a neighborhood U1 ⊂ U such that
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center saddle sourcesink Fig. 43. Various kind of fixed points.

∀X0 ∈ U1, ∀t > 0, f t(X0) ∈ U . X∗ is asymptotically stable if there exists an open neighborhood
U1 such that ∀X0 ∈ U1, f t(X0)→ X∗ as t→∞. Asymptotically stable fixed points are called
sink. A stable fixed point which is not asymptotically stable is called a center (see Fig. 43). A
well known example is the stable equilibrium position of the undamped pendulum. A fixed point
is unstable if it is not stable. Note that the notion of stability is a local notion. Among the various
kind of fixed points, the stability of hyperbolic fixed points can be analyzed by linearization
about X∗. Indeed, call DHX∗ (resp. DFX∗) the Jacobian matrix of H (resp. F) at X∗. Since
the coefficients of this matrix are real, the eigenvalues are either real or complex conjugate. Call
Sp [A] the spectrum of a matrix A. One decomposes Sp [DHX∗ ] [resp. Sp [DFX∗ ] ]into three
parts : the stable eigenvalues are such that 	(λ) < 0 [resp. |λ| < 1]; the neutral eigenvalues are
such that 	(λ) = 0 [resp. |λ| = 1] and the unstable eigenvalues are such that 	(λ) > 0 [resp.
|λ| > 1]. Moreover, the Jacobian matrix can be reduced to a diagonal (or more generally to a
Jordan normal form) in a basis v1, . . .vN corresponding to the (generalized) eigenvectors. The

stable space Es(X∗) is the subspace of IRN generated by the eigenvectors corresponding to the
stable eigenvalues. In the same way one defines the central space Ec(X∗) and the unstable space
Eu(X∗).
Then X∗ is an hyperbolic fixed point of (132) if there is no neutral eigenvalues (resp.

Ec(X∗) = 0). X∗ is linearly stable if additionally Eu(X∗) = 0 (namely all eigenvalues are sta-
ble). A linearly stable equilibrium is asymptotically stable and the rate of convergence is given
by the largest real part of the eigenvalues in the case (132) (continuous time), and by the
largest modulus of the eigenvalues in the case (133) (discrete time). Unstable hyperbolic fixed
points are divided into saddle points (there are stable and unstable eigenvalues) and sources
(all eigenvalues are unstable) (see Fig. 43). Hyperbolic fixed point have the following important
properties29.

1. Hartman-Grobman linearization theorem. If X∗ is hyperbolic then there exists an homeo-
morphism h preserving the sense of orbits, locally mapping the orbits of the flow of (132)
(resp. the map (133)) to the orbits of the linear flow etDHX∗ (resp. the linear map DF tX∗).
The Hartman-Grobman theorem implies that the dynamics near an hyperbolic fixed is essen-
tially equivalent (up to a smooth variable change) to a linear system (for a nice application
to Neural Networks see section 4.2).

2. Invariant manifolds. Let U be a neighborhood of X∗. If X∗ is hyperbolic then there exists
local stable and unstable manifolds:

Wsloc(X∗) =
{
y ∈ U |f t(y)→ X∗ as t→∞ and f t(y) ∈ U , ∀t ≥ 0

}
(134)

Wuloc(X∗) =
{
y ∈ U |f t(y)→ X∗ as t→ −∞ and f t(y) ∈ U , ∀t ≤ 0

}
(135)

respectively with the same dimension ns, nu as the eigenspace E
s
X∗ , E

u
X∗ of the linearized sys-

tem, respectively locally tangent to EsX∗ , E
u
X∗ at X

∗, as smooth as the function H (resp. F)
and dynamically invariant. Moreover the angle between EsX∗ , E

u
X∗ is bounded away from

zero. The local stable and unstable manifold have global analogs:

Ws(X∗) = ∪t≤0Wsloc(X∗) =
{
y ∈M |f t(y)→ X∗ as t→∞

}
(136)

Wu(X∗) = ∪t≤0Wuloc(X∗) =
{
y ∈M |f t(y)→ X∗ as t→ −∞

}
(137)

29 Note that the notion of hyperbolicity extends to moving points (see section 8.3.2) and that the
result below can be generalized (see [103]).



Topics in Dynamical Neural Networks 77

x*

x*
W

s

x*
W

u

x*
E

s

x*
E

u

Uh(    )

h

U

x*

x*
E

u

x*
W

u

x*
W

sx*
E

s
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Stable and unstable manifolds may intersect in homoclinic (Fig. 45a,b) or heteroclinic in-
tersections (Fig. 45c). This has important consequences. In particular, the global stable and
unstable manifolds of a fixed point may have strong influence to the global dynamics, as in the
case of transverse homoclinic intersections for maps ([14,84]).
The notion of fixed point is related to a more general notion called “convergence”. Following

Hirsch [92] we say that a dynamical system is

– Convergent: if all trajectories converge to equilibria.
– Globally convergent or asymptotically stable: if all trajectories converge to a unique equilib-
rium.

8.1.3 Lyapunov functions

A Lyapunov function V is a differentiable30 function which decreases along the trajectories and
is bounded from below. In dissipative mechanical systems, the energy is a Lyapunov function.
This notion is useful to locate fixed points (they are extrema of V) and to analyze their stability.
Indeed if dV

dt
≤ 0 (resp. dV

dt
< 0) in the neighborhood of some fixed point X∗ then X∗ is stable

(resp. asymptotically stable.) More generally the Lasalle invariance principle [109] asserts that
the ω-limit set of any point X is included in the largest invariant set where V is a constant. An
important corollary is that if V is a strict Lyapunov function (dV

dt
< 0) on a compact set M

then the equilibria are isolated, and the system is convergent. Lyapunov functions are used in
section 5.2.
30 Note that the continuity is sufficient in the definition. However, differentiability allows us to replace
the condition dV

dt
≤ 0 by 〈∇V,H〉 ≤ 0, where <,> is a scalar product in IRN . This means that the

trajectories cross the level curves of V “inward”. Note that, reciprocally, if there exists a metric such
that < ∇V,H >≤ 0, V is a Lyapunov function for the corresponding dynamical system. This allows
one to show the convergence of some dynamical systems under quite general conditions (see section 5.2
and [26]).
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8.2 Bifurcations

The dynamical systems (132), (133) depend smoothly on a set of parameters λ ∈ Eλ. When
varying these parameters one modifies the dynamics. On open domains of parameters the
changes are essentially quantitative, namely a variables change maps the initial system to the
modified one. One says that two flows (or maps) f ,f ′ are topologically equivalent if there is
an homeomorphism mapping the orbits of f to the orbits of f ′ and preserving the ordering
of points along the orbits. Two topologically equivalent dynamical systems have therefore the
same phase portrait (but quantitative characteristics such as the convergence rate to a fixed
point may differ). A dynamical system f is structurally stable if any sufficiently close f ′31 is
topologically conjugated to f .
There exists in general a (closed) set of parameter values where the corresponding dynam-

ical system is not structurally stable. At these points, called bifurcations points, the dynamics
changes qualitatively. The codimension of the bifurcation is the number of independent parame-
ters one has to adjust in order to obtain the bifurcation. In this section we focus on bifurcations
occurring on fixed points. Moreover, we only consider the case where at most two independent
parameters are varying. This is indeed the only cases where a complete classification of fixed
bifurcations is known [84].
Assume therefore that X∗ is a fixed point, namely this is the zero of some function G(X;λ)

(G(X;λ) = H(X;λ) in the continuous time case, and G(X;λ) = F (X;λ) −X in the discrete
time case). When varying λ the implicit function theorem guarantees that X∗ moves along a
regular curve X∗(λ) provided that DG(X;λ) is invertible. This also implies that the eigenval-
ues of DG(X;λ) are moving continuously. Note that, since DG(X;λ) is real, the eigenvalues
are either real or complex conjugated. Then, at some parameter values, some eigenvalues can
intersect the real axis (resp. the unit circle in the discrete time case). There are two possibilities.
Either they cross at the origin (resp. at 1). In this case the implicit function no more applies and
several branches of solutions of the equation G(X;λ) = 0 appear or disappear (see Fig. 46, 48).
Or they cross at imaginary values. This induces in general a change of stability for X∗(λ) and
the appearance or disappearance of a limit cycle (see Fig. 49).

λ0
λ

x

λ0 λ

x

Fig. 46. Saddle node bifurcation.

The initial dynamical system has N degree of freedom. However, at the the bifurcation
point, say λc, one expects that the only relevant information is contained in the eigendirections
corresponding to the crossing eigenvalues. This leads to a general method called the central
manifold reduction. Let Ec(X∗) be the central space (it is non zero at the bifurcation point),
nc = dim(Ec(X∗)) the number of crossing eigenvalues and call Eh(X∗) = Es(X∗) ⊕ Eu(X∗).
Then the central manifold theorem [32] states that there is a function H(X;λ) : Ec × Eλ →
Eh(X∗) such that H(X∗, λ0) = 0, DxH(X∗, λ0) = 0 and such that the manifold:

Wc(λ) = {X+H(X;λ) | X ∈ EcX∗}

contains X∗ and is tangent to EcX∗ at this point. Moreover Wc(λ) is locally invariant for λ
sufficiently small and bounded. This means that there is an open neighborhood U of X∗ such
31 See [132] for a definition of a topology in a space of flows.
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that if X(0) ∈ Wc(λ) ∩ U then X(t) ∈ Wc(λ) as long as X(t) ∈ U . Finally Wc(λ) is locally
attractive if Eu(X∗) = 0. Therefore, in this case, all solutions staying in U tend exponentially
fast to some trajectory onWc(λ).Wc(λ) is called the center manifold (though it is not unique).
It is then possible to locally reduce the dynamics (60) to the dynamics on Wc(λ) by pro-

jection. Denote by Πc : IRN → Ec the projection onto Ec, by Πh : IRN → Eh(X∗) the
projection onto Eh(X∗), and set Xc(t) = ΠcX(t). Then if X(t) is a solution of (132) such that
X(t) ∈ Wc(λ)∩U , t ≥ 0 one hasXc(t) = X(t)+H(X(t);λ), namely, by a suitable (local) variable
change one can write down a smaller dynamically system leaving on Wc(λ) and characterizing
the relevant part of the dynamics about X∗.
It is then possible to further reduce the dynamics by removing some non linear terms

with the appropriate variable changes. Actually, one cannot remove all the non linear terms
in this way (otherwise the dynamical system is basically a linear system). Only the non linear
terms satisfying non resonant conditions (see [13,84] for details) can be removed. Finally, one
ends with a set of canonical equations called a normal form. In some sense, the normal form
reduction for a dynamical system is a generalization of the diagonalization for a matrix. There
are uncountably infinitely many matrices in IRN but many matrices have the same diagonal (or
Jordan) form. This means that they are equivalent, up to a basis change, and the canonical form
of their equivalence class is the Jordan form. In the same way, an infinite number of dynamical
system undergoing a bifurcation at a fixed point can be represented under a canonical form or
normal form.
It is remarkable that the different possible codimension one and two bifurcations are in fact

only a few. Moreover, it is possible to write down general conditions on the dynamical system,
called transversality conditions, allowing to characterize the type of bifurcation occurring. We
now briefly describe these bifurcations.

8.2.1 Codimension one bifurcations

In this section, we assume thatX∗ = 0 is a fixed point, and that λ is one dimensional parameter.
We review now the bifurcations arising generically in this case. We denote by λ0 the parameter
value where the bifurcation arises. We first consider the continuous case, and then the discrete
time one.

– Saddle-node bifurcation. The transversality conditions, when written in a great general-
ity, are rather abstract. However, it is easy to understand them by taking a one dimensional
example. Consider indeed the system ẋ = f(x;λ) such that x = 0 is a fixed point, and
λ0 = 0 is a bifurcation point. Performing a Taylor expansion about (0;λ0) gives:

f(x;λ) = f00 + f10x+ f01λ+ f11xλ+ f20x
2 + . . . (138)

Since we want to characterize the dynamical system in a neighborhood of (0, 0) it is natural
to consider the lowest order terms. Since 0 is fixed point f00 = 0. Moreover, λ0 = 0 is
a bifurcation point where ∂f

∂x
(0; 0) = 0 which implies f0,1 = 0. If we ask now that the

linear term in λ does not vanish we get the first transversality condition for the saddle-node
bifurcation (in one dimension): f01 =

∂f
∂λ
(0; 0) �= 0. At the bifurcation point the implicit

function theorem does not apply and two branches of equilibria emerge (or disappear), with

a vertical tangent (see Fig. 46). The second transversality condition, f20 =
∂2f
∂x2
(0; 0) �= 0

ensures that these curves have a quadratic tangency at (0; 0). One can then show that the
term f01 and all higher order terms in the expansion (138) can be removed. One can also use
variable changes which allows us to eliminate f10, f20. We finally end up with the normal
form for the saddle-bifurcation in continuous time case.

ẋ = λ− x2 (139)

The corresponding bifurcation diagram is drawn in Fig. 46.
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In a N dimensional dynamical system the previous discussion generalizes as follows. Assume
that:

(SN1) DH(X∗;λ0) has a simple eigenvalue 0 with right eigenvector v and left eigenvector w. It
has also k stable eigenvalues and N − k− 1 unstable eigenvalues (counting multiplicity).

(SN2)

w.
∂H

∂λ
(X∗, λ0) �= 0

(SN3)

wi.
∂2Hi
∂xj∂xk

(X∗, λ0)vjvk �= 0

where we used the Einstein convention (sum over repeated indexes),

then the normal form of the bifurcation is (139). Namely the dynamical system behaves
like eq. (139) in the direction of the zero eigenvector, with hyperbolic behavior in the com-
plementary directions. This bifurcation is in some sense the “most” generic since the set
of dynamical systems which satisfy the transversality conditions (SN1),(SN2) is open and
dense in the space of C∞ one parameter families of vector fields with an equilibrium with a
zero eigenvalue.
For discrete time dynamical systems, the normal form writes:

x(t+ 1) = x(t) + λ− x2 (140)

– Transcritical bifurcation. Assume now that X∗ is a fixed point before and after the
bifurcation. This implies that f01 must be zero and the corresponding transversality (TSN2)
condition cannot hold. If we replace it by the condition f11 we obtain a normal form.

ẋ = λx− x2 (141)

whose bifurcation diagram is depicted in Fig. 47. Two fixed points coexist and they exchange
their stability at the bifurcation point.

λ
0

λ

x

Fig. 47. Transcritical bifurcation.

In the general case one has to replace the transversality condition TSN2 by:

(TT2)

wi
∂2H

∂µ∂X
�= 0

For discrete time dynamical systems, the normal form writes:

x(t+ 1) = x(t) + λx− x2 (142)

– Pitchfork bifurcation. In some cases one has particular symmetries in the dynamical sys-
tem. A particularly prominent example corresponds to the symmetry X→ −X. Returning
to our one dimensional example we see that f1,1 and f2,0 has to be zero. We must then
consider higher order terms. It is clear that the first remaining non linear term is f3,3x

3
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Fig. 48. Pitchfork bifurcation.
Fig. 48 a. Supercritical. Fig. 48
b. Subcritical.
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λ

Fig. 49. Hopf bifurcation.

(and the next one is f5,5). All other terms of order ≤ 3 vanish. Note that according to the
sign of f3,3 one has supercritical (f3,3 > 0) or subcritical bifurcation (f3,3 < 0). In this last
case one has to take into account the term f5,5 in order to “saturate the instability”. The
normal form for the (supercritical) pitchfork bifurcation is

ẋ = λx− x3 (143)

The corresponding bifurcation diagram is drawn in Fig. 48.
– Hopf bifurcation. Assume now that there is a pair of complex conjugate eigenvalues of
the Jacobian matrix crossing the imaginary axis [resp. the unit circle] at the bifurcation
point. Note that this requires that the dynamical system has at least a dimension 2. Having
eigenvalues with an imaginary part implies that the trajectories are locally oscillating around
the fixed point. When the eigenvalues cross from the left to the right the oscillations are
exponentially damped before the bifurcation point, and they are exponentially amplified
after the bifurcation (see Fig. 49). The exponential amplification is obviously local. When
moving away from the fixed point the nonlinearities saturate the instability the trajectories
converge to a limit cycle. This corresponds to a Hopf bifurcation.
More generally, [115,84] suppose that the dynamical system (132) as an equilibrium (X∗;λ0)
such that

(TH1) DH(X∗;λ0) has a simple pair of pure imaginary eigenvalues ±iω and no other eigenval-
ues with zero real parts.

Then there is a smooth curve of equilibria (X(λ);λ) with X(λ0) = X
∗. The eigenvalues

µ(λ), µ̄(λ) vary smoothly with λ. If, moreover

(TH2)
d	(µ)
dλ
(λ0) = d �= 0

then the normal form is:
ż = γz + αz2z̄ +O(|z|5) (144)
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where z is a complex variable corresponding to the reduction on the central manifold and
γ = (λ− λ0) + iω. Note that, written in polar coordinates (r, θ) the equations (144) are:

ṙ =
[
d(λ− λ0) + ar2

]
r (145)

ω̇ = ω + c(λ− λ0) + br2 (146)

where a, b, c are coefficients depending on the vector field (note that a can be positive
or negative, corresponding to supercritical or subcritical bifurcation). We remark that the
amplitude of the limit cycle increases like the square root of the difference λ− λ0 and that
the frequency depends on the parameter and on the amplitude. Note also that, near the
bifurcation point, the frequency is non zero (see section 2.2.2). The discrete time case is
substantially more complicated, with specific cases corresponding to strong resonances. A
detailed analysis can be found in [13]. For a discussion in the context of neural networks see
also [37].

8.2.2 Codimension two bifurcations

We describe now one local codimension 2 bifurcations, the Bogdanov-Takens bifurcation. (We
only focus on the examples found in this paper). A complete description can be found in [84].
Basically, codimension two bifurcations may arise either if additional degeneracies in the non
linear terms of the previous bifurcations arise, or if the linear part of the vector field (the map)
is doubly degenerate. In this last case, the linear part for flows takes the form

(
0 1
0 0

)
;


 0 −ω 0ω 0 0
0 0 0


 ;



0 −ω1 0 0
ω1 0 0 0
0 0 0 −ω2
0 0 ω2 0


 ; (147)

– Bogdanov-Takens bifurcation. The Bogdanov-Takens corresponds to the first situation
in eq. (147). The normal form is:

ẋ = y (148)

ẏ = λ1 + λ2y + x
2 + σxy

where σ = ±1. In the sequel we shall consider the case σ = 1. The second case can easily be
obtained from the first one by the substitution t→ −t; y → −y. It is easy to show that Hopf
bifurcation occurs on the curve λ2 =

√
−λ1 (hence for λ1 < 0) while saddle-node bifurcations

occur on λ1 = 0;λ2 �= 0. The complete bifurcation diagram is represented in Fig. 50.

λ

λ

BT

2

1

Fig. 50. Bogdanov-Takens bifurcation dia-
gram.
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8.3 Chaotic motion

8.3.1 Attractor

In the previous sections we have seen several example of topological objects where the dynamics
converges asymptotically: asymptotically stable fixed points and stable limit cycle are examples
of attractor. But attractor can be quite a bit more complicated objects. Though there are
many different (and non equivalent) definitions of attractors [64,84,118,157,51], they basically
combine a notion of attractivity and indecomposability. Here is one definition [103]. An attractor
is a compact set A such that:

– (i) Attractivity. There exists an open set U ⊃ A and a time t0 such that Ft0(U) ⊂ U and
A = ∩∞t=0Ft(U)

– (ii) Indecomposability. ∀X,y ∈ A and ∀ε > 0 there is a chain X = X0,X1, . . .Xn = y and
a sequence of times t1, t2, . . . tn ≥ 1 such that the distance between Fti(Xi−1) and xi is ≤ ε.

Note that (i) implies the dynamical invariance of A.
Attractors can have a simple topological structure (fixed points, cycles, tori) or a complex

one (strange attractors). Though there are several definitions of the “strangeness” of an attrac-
tor, there is a general consensus about the necessity to have initial condition sensitivity. This
notion is in fact related to a more general notions called hyperbolicity.

8.3.2 Hyperbolic dynamical systems

A dynamical system is uniformly hyperbolic if there exists 0 < λ < 1 < µ and a constant C
such that:

– (i) There exists two subspaces Es(X), Eu(X) respectively called stable and unstable, forming
an invariant decomposition of the tangent space at X: TX = Es(X)⊕Eu(X) et Df tXEs(X) =
Es(f t(X)) (resp. Df tXEu(X) = Eu(f t(X))), ∀t > 0, and such that the angle between the two
subspaces is bounded away from 0.

– (ii) DfX is contracting on Es(X): If v is a vector in Es(X):

‖Df tXv‖ ≤ Cλt‖v‖, ∀t > 0

– (iii) DfX is expanding on Eu(X): If v is a vector in Eu(X):

‖Df−tX v‖ ≤ Cµ−t‖v‖, ∀t > 0

(Note that the constant C in the definition is independent ofX. More generally (non uniform
case) this constant depends on X.
(Uniformly) hyperbolic dynamical systems have several remarkable properties (see [103] for

a wide description): existence of smooth local stable and unstable manifolds locally tangent to
the spaces Es(X) (resp. Eu(X)); shadowing lemma; density of periodic unstable orbits leading
to trace formulas; local product structure allowing the construction of Markov partition used
in symboling coding; structural stability; etc . . ..
The existence of an unstable direction implies initial conditions sensitivity while the exis-

tence of contracting directions corresponds to asymptotic convergence onto an attractor. Ba-
sically, a strange attractor is composed by the closure of the union of the unstable manifolds.
A perturbation “parallel” to the attractor (locally tangent to the unstable space) is locally
expanded at exponential speed (initial condition sensitivity) while a perturbation transverse
to the attractor (locally tangent to the stable space) is asymptotically damped. Parallel and
transverse time dependent perturbations induce drastically different effects on the dynamics
(see section 6.6) having interesting interpretation in the context of Neural Networks.
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8.3.3 Statistical approach and ergodic theory

In chaotic systems, it is often useful to replace the study of individual trajectories by a statistical
analysis of the evolution in the phase space. The natural object is then a probability measure.
Actually, there is a close relationship between the (physically relevant) probability measures and
the notion of state in statistical physics. The initial probability µ(0) corresponds to randomly

selecting the initial conditions and the probability at time t, µ(t)
def
= F∗tµ(0) is the result of the

action of the dynamics F on µ(0). It is given by:

µ(t) [B] = µ(0)
[{
X | Ft(X) ∈ B

}]
= µ(0)

[
F−t(B)

]
where B is a (measurable) set in Ω.
The statistics of trajectories on the attractor is characterized by an invariant measure such

that:
µ(F−1(B)) = µ(B) (149)

(The corresponding notion in statistical physics is the notion of phase).
Among all invariant measures the ergodic measures play an important role (they correspond

to pure phases in statistical physics). There are several equivalent definitions but the most
known is certainly the identity between time average and ensemble average. A measure µ is
ergodic if for µ almost every initial condition X:

lim
T→∞

1

T

T∑
t=1

φ(X(t)) =

∫
φdµ (150)

where φ is a function in L1(dµ).
The definition (150) is unfortunately rather poor since one can show that a dynamical system

in a compact space has often infinitely many such measures [64,103]. A more useful notion is
the Sinai-Ruelle-Bowen (SRB) measure. A measure µ is a SRB measure (or natural, or physical
measure) if the property (150) holds for a set of positive Lebesgue measure [155,134] of initial
conditions. This means basically that the time average and the ensemble average are equal
for typical initial conditions. Sinai, Ruelle and Bowen have shown that the SRB measure is a
“Gibbs like” measure: it has an exponential form, although the term in the exponential is not
the Hamiltonian encountered in statistical mechanics but a dynamically relevant quantity. Usu-
ally, this the projection of the Jacobian along the unstable fibers, which has direct connection
with the regular part of the Perron-Frobenius operator Moreover the SRB measure maximizes
some version of a free energy (topological pressure) : it has therefore the characteristics of an
equilibrium state.
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