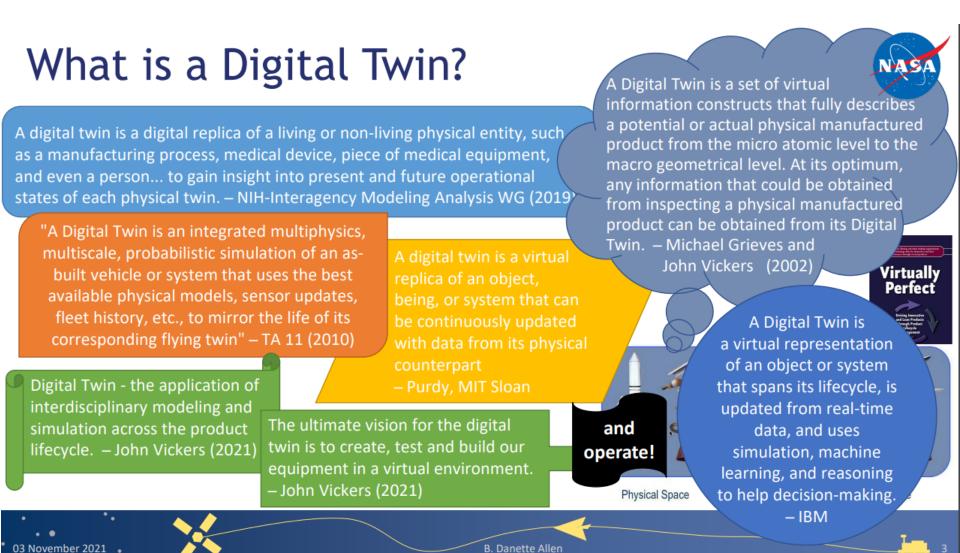


Digital Earth as a Digital Twin


Michael F. Goodchild
University of California
Santa Barbara


What is a digital twin?

- "A virtual representation of the real world, including physical objects, processes, relationships, and behaviors"
- "GIS is foundational for any digital twin"
 - Esri, https://www.esri.com/en-us/digital-twin/overview

Danette Allen, NASA https://ntrs.nasa.gov/api/citations/20210023699/downloads/ASME%20Digital%20 Twin%20Summit%20Keynote_final.pdf



Issues with definitions

- Esri: a representation
 - including processes
 - no representation can be perfect
 - what is the purpose of the representation?
 - more than visualization?
- Replica: "fully describes...from the micro atomic level to the macro geometrical level"
 - "The map is not the territory" (Korzybski, 1933)
- A digital twin can only be fraternal
 - fraternal twins share only part of the genome
 - even identical twins are not identical

The purpose of digital twins

- Accurate simulation of a system
 - in order to evaluate what-if scenarios
 - predicting the impact of proposals
 - replicate, simulate, evaluate

The Gore speech of 1998

- "I believe we need a 'Digital Earth'. A multiresolution, three-dimensional representation of the planet, into which we can embed vast quantities of geo-referenced data."
 - http://www.zhanpingliu.org/research/terrainvis/digitalearth.pdf
 - all of the data will be of limited resolution, hence imperfect
 - no reference to processes, simulation, what-if experiments
- But travel back to the first ISDE...

Implementing Digital Earth: A Research Agenda

Michael F. Goodchild
University of California
Santa Barbara

Perspectives on Digital Earth

- 1. An immersive environment
 - "I believe we need a 'Digital Earth'. A multiresolution, three-dimensional representation of the planet, into which we can embed vast quantities of geo-referenced data." U.S. Vice President Gore, 1/98
- Spin, zoom, pan
 - "fly-by" technology

Immersive environments

- Head-mounted devices
- Immersadesk
- The "cave"
- Standard computer displays
 - 2D window on manipulable 3D objects
 - Nick Faust, Georgia Tech
 - SRI Digital Earth, Terravision
 - powerful processors, 3D graphics

Digital Earth Earth

A very visual Earth explorer that lets Scientists – both young and old – examine information about the Earth to learn how the forces of biology and geology interact to shape our home planet.

Research challenges

- Smooth zoom
 - 10km to 1m resolution
 - consistent data structures
 - smooth transitions to more detailed data
 - color matches
 - projections
 - orthographic for the globe
 - projected for local detail
 - Georgia State: nested azimuthal projections

Research challenges (2)

- Visualization
 - renderable data
 - non-renderable data
 - **□** iconic representation indicating presence
 - symbolic representation
 - user-centered views
 - reduce resolution in periphery
 - avatar

A dynamic Digital Earth

- Simulations of past and future conditions
- A library of simulation models
 - applied to local conditions represented by data
- A tool with enormous educational value
- PCRaster demonstrations
 - University of Utrecht, Peter Burrough

Modelling uplift in Sabah, Malaysia.

Over a period of several million years movement along the faults has created long sediment-filled valleys

Relative vertical displacement

Faults

The demo illustrates:

- A simplified model of normal faults and landform before uplift
- Reaction of landform to gradual vertical displacement along the parallel normal faults
- Erosion and deposition as a result of vertical movements (red is erosion - blue is deposition)
- Emergent behaviour of rivers leading to development of braided streams

Research challenges

- Data structures and modeling
 - no finite difference models on the curved surface of the planet
 - finite element models based on triangles?
 - object-based models
- Describing models
 - metadata
 - libraries of models

Research challenges (2)

- Software environments
 - PCRaster
- Calibration, verification, accuracy
- Integration across domains
 - coupling models
 - distinct ontologies

Summary: four perspectives

- An immersive environment
- A metaphor for information organization
- A distributed database transparent to the user
- A representation of the planet's dynamics

Is a digital twin distinctive?

- Does it have distinct principles?
 - or is it just more of?
 - finer resolution
 - more accurate process models
 - more layers and variables
 - compare "big data"
 - bigger than small data?
 - too big to handle?
- Is there a threshold that merits the term "digital twin"?
 - of data resolution, functionality, accuracy…?

The uncertainty problem

- How to visualize uncertainty?
 - are spatial resolutions already finer than those of the human eye?
- How to incorporate uncertainty into predictions?
 - uncertainty will come from:
 - data
 - the process of integrating or fusing data
 - simulation models
 - the means of communicating or presenting the data

Dealing with uncertainty

- To ignore it is unethical
- Fitness for use
 - is the level of uncertainty acceptable for my particular use case?
 - must digital twins be tied to particular use cases
 - and never repurposed?
- Propagate uncertainty into predictions
 - using methods of sensitivity analysis
 - using simulation

Some ethical issues

- Uncertainty
- The potential for misinformation
 - deep fakes
 - false inferences
- Privacy
 - of individuals
- Lack of transparency
 - proprietary (black box) software
 - provenance of data

The missing pieces

- Data fusion and integration
- Interoperability of process models
- Search for data and process models
- Integration of digital twins
- Education
 - what are the principles?
 - lack of software for demonstration

Some takeaways

- There is abundant and rapidly growing interest across industry and academia
- To date there has been little interest in academic GIScience
- The imperfect nature of all digital twins raises issues
 - there are no standards for what can be claimed to be a digital twin
- There are strong links between digital twins and Digital Earth