SCEITEC

Central European Institute of Technology BRNO | CZECH REPUBLIC

Modern methods for genome analysis (PřF:Bi7420)

Lecture 6 : RNA-seq differential expression

NGS data analysis

Why RNA-seq?

The goal of RNA-seq is often to perform differential expression testing to determine which genes are expressed at different levels between conditions. These genes can offer biological insight into the processes affected by the condition(s) of interest.

Great resource that has made the bulk of this talk: <u>https://github.com/hbctraining/DGE_workshop/blob/master/lessons/01_DGE_setup_and_overview.md</u> Lean tutorial for mostly wetlab humans:

https://git.embl.de/provazni/rna-seq-tutorial/-/tree/EMBLVM?ref type=heads

RNA-seq workflow

Read Alignment

https://training.galaxyproject.org/training-material/topics/sequence-analysis/tutorials/mapping/tutorial.html

Read Alignment

Many different aligners/pseudo-aligners:

- Eland, Maq, Bowtie, Bowtie2, BWA, SOAP, SSAHA, TopHat, SpliceMap, Novoalign, STAR, GSNAP ...
- Kallisto, Salmon

Main differences:

- Publication year, maturity, development after publication, popularity
- usage of base-call qualities, calculation of mapping qualities
- speed-vs-sensitivity trade-off
- suitability for RNA-Seq ("spliced alignment")
- suitability for special tasks

Expected alignment percentage:

- 70% to 90% on genome
- slightly lower on transcriptome

Genome or annotated transcriptome

https://en.wikipedia.org/wiki/RNA-Seq

Alignment

- Mapping to genome or transcriptome?
- Genome
 - Requires spliced alignment
 - Can find novel genes/isoforms/exons
 - Information about whole genome/transcriptome
- Transcriptome
 - No spliced alignments necessary
 - Many reads will map to multiple transcripts (shared exons)
 - Cannot find anything new
 - Difficult to determine origin of reads (multiple copies of transcripts)

Duplication removal - UMI

- PCR duplicates
- Optical duplicates
- How the tools recognize duplicates
 - Maps to the exact same place
- Problem is it could be identical fragment not PCR duplicate
- UMI helps
 - Maps to the exact same place
 - AND have identical UMI sequence

Post-alignment QC

- Number of mapped reads unique + multi mapped
- Mapped locations intron, exon, intergenic
- Duplication rates
- Library strand specificity
- Captured biotypes
- Contamination (rRNA, non-self)
- 5' to 3' end coverage bias

Post-alignment QC - Tools

• Aligner report

• STAR - most direct assessment

• General QC tools

- O RSeQC
- O Picard
- O Qualimap

• Feature counting tools

- O featureCounts
- O RSEM

• Non-aligment tools

- O FastQ screen
- O Biobloom

Note: Gene body coverage

- Often, libraries with high fragmentation (and low RIN numbers) combined with polyA selection might have strong 3' end bias
 - This is a result of polyA "pulled" fragments
- Some kits, however, target only the polyA tail or sequences close to it
 - An example is Lexogen QuantSeq which sequences only one read per mRNA molecule close to polyA tail

Source: Sigurgeirsson et al. PLoS ONE 2014

Feature counting

- Now, when we know our alignments are solid we need to get the number of reads mapped to a gene (or other feature)
 - From there, we can calculate the differential expression
- The question is, how do we summarize the counts
 - Do we want only uniquely mapped reads
 - Do we want also multi mapped? And how do we assign them? All? One random? Somehow else?
 - And what if we have multiple genes which overlap each other?

Strand specific library

- We can basically have three strand specificities
 - Non stranded/Unstranded not very common anymore
 - Direction of the read mapping is completely random (50/50)
 - Forward (sense) stranded common for target kits and "bacterial kits"
 - Direction of the read mapping is the **same** as the gene it originates from
 - Reverse (antisense) stranded "default" for Illumina and NEB kits
 - Direction of the read mapping is the **opposite** as the gene it originates from
- In case of paired-end sequencing it's measure by the first (R1) read orientation (FR, RF)

Gene Counts

Tools: HTSeq-count, featureCounts, salmon, kallisto, etc.

Be careful about:

- Correct annotation
- What you do with multimappers

	union	intersection _strict	intersection _nonempty
gene_A	gene_A	gene_A	gene_A
read gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
read read gene_A gene_A	gene_A	gene_A	gene_A
read gene_A gene_B	gene_A	gene_A	gene_A
gene_A gene_B	ambiguous (both genes with nonunique all)	gene_A	gene_A
gene_A gene_B	(both gene	ambiguous es withnonun	ique all)
read ? gene_A gene_B	align (both gene	ment_not_uniq es withnonun	ue ique all)

Feature count results

	● ● AutoSave ● OFF															
F	Home Insert Draw Page Layout Formulas Data Review View															
		ari (Radu)	v 12	Δ^	~ =	-	×2 ×	ab.	Conoral					🚈 Ins	ert 🗸	$\Sigma \sim A \Box$
		эп (воау)	* 1Z	• A	~ _	- =		c₽ ♥	General		<u> </u>	₩	⊿ ` ⊑∕/		ete v	_ ZV ĭ
	Paste B	I U v		» ~ A ~	Ξ	$\Xi \equiv $	← Ξ →Ξ	₩ .	(iii) v %	9 ←0	.00 Con	ditional For	mat Cell		ete •	Sort &
	 ✓ 				_				-8 70	.00	Form	natting as T	able Styles	For	mat 🗸	× × Filter
A	A1 \clubsuit X V f_x Geneid															
	A B	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q
1	Geneid Chr	Start	End	Strand	Length	KO1_rep1	KO1_rep2	KO1_rep3	KO2_rep1	KO2_rep2	KO2_rep3	NC_rep1	NC_rep2	NC_rep3		
2	ENSG000002 1;1;1;1;1;1;1;	1; 11869;12010	12227;12057	+;+;+;+;+;+;+;	1735	0	0	C	0 0	0	0	0	0	0		
3	ENSG000002 1;1;1;1;1;1;1;	1; 14404;1500	5 14501;15038	-;	1351	155	144	131	140	130	150	260	160	186		
4	ENSG00002	1 17369	17436	-	68	8	10	9	7	9	12	21	20	18		
5	ENSG000002 1;1;1;1;1;1	29554;30267	7 30039;30667	+;+;+;+;+	1021	0	0	C	0 0	0	0	0	0	0		
6	ENSG00002	1 30366	30503	+	138	0	0	C	0 0	0	0	0	0	0		
7	ENSG000002 1;1;1;1;1;1	34554;35245	5 35174;35481	-;-;-;-	1219	0	0	C	0 0	0	0	0	0	0		
8	ENSG00002	1 52473	53312	+	840	0	0	C	0 0	0	0	0	0	0		
9	ENSG000002 1;1;1;1	57598;58700	57653;58856	+;+;+;+	1414	0	0	C	0 0	0	0	0	0	0		
10	ENSG0000011;1;1;1;1	65419;65520	65433;65573	+;+;+;+	2618	0	0	C	0 0	0	0	0	0	0		
11	ENSG000002 1;1;1;1;1;1;1;	1; 89295;9209:	1 91629;92240	-;-;-;-;-;-;-;-;-;-;	3726	0	0	C	0 0	0	0	5	0	0		
12	ENSG000002 1;1	89551;90287	7 90050;91105	-;-	1319	0	0	C	0 0	0	0	0	0	0		
13	ENSG00002	1 131025	134836	+	3812	0	0	C	0 0	0	0	0	0	0		
14	ENSG00002	1 135141	135895	-	755	0	1	1	0	0	0	2	1	1		
15	ENSG00002	1 137682	137965	-	284	0	0	C) 1	0	0	2	0	1		
16	ENSG000002 1;1	139790;1400	139847;1403	-;-	323	0	0	C	0 0	0	0	0	0	0		
17	ENSG000002 1;1;1;1;1;1;1;	1; 141474;1428	8 143011;1430	-;-;-;-;-;-;-;-;-;-;-;	6195	1	5	2	2 4	13	3	7	1	5		
18	ENSG00002	1 157784	157887	-	104	0	0	C	0 0	0	0	0	0	0		
19	ENSG000002 1;1	160446;1613	3 160690;1615	+;+	457	0	0	C	0 0	0	0	0	0	0		
20	ENSG000002 1;1;1;1;1	182696;1833	1 182746;1832	+;+;+;+;+	570	0	0	C	0 0	0	0	0	0	0		
21	ENSG000002 1;1;1;1;1;1;1;	1; 185217;1854	4 185350;1855	-;	1397	91	112	81	113	89	90	177	117	127		
22	ENSG000002	1 187891	187958	-	68	0	0	C	0 0	0	0	0	0	0		
23	ENSG000002 1;1;1;1;1;1;	1; 257864;2579	9 259025;2590	-;	8224	6	6	7	6	7	8	29	18	18		
24	ENSG00002	1 347982	348366	-	385	0	0	C	0 0	0	0	0	0	1		
25	ENSG000002 1;1;1;1;1;1	358857;3588	8 358929;3589	+;+;+;+;+;+	1095	0	0	0	0 0	0	0	0	0	0		
26	ENSG000002 1;1;1;1;1;1;1;	1, 365389;3653	3 365692;3656		6204	4	1	4	1	1	5	8	1	5		
27	ENSG00002	1 439870	440232	+	363	0	0	C	0 0	0	0	0	0	0		
28	ENSG00002	1 450703	451697	-	995	0	0	0	0 0	0	0	0	0	0		
29	ENSG000002 1;1	487101;4897	7 489387;4899	+;+	2477	0	0	C	0 0	0	0	0	0	0		
30	ENSG000002 1;1	491225;492	7 491989;4932	-;-	1239	0	0	C	0 0	0	0	0	0	0		
31	ENSG00002	1 516376	516479	-	104	0	0	0	0 0	0	0	0	0	0		
32	ENSG000002 1;1;1;1;1;1;	1; 586071;5862	2 586358;5863	-;	5495	0	1	1	1	3	2	6	2	1		
33	ENSG000002 1;1;1:1	587629;5876	587701;5877	+;+;+;+	635	0	0	C	0 0	0	0	0	0	0		
34	ENSG00002	1 629062	629433	+	372	4	6	5	5 5	3	9	5	1	6		
35	ENSG00002	1 629640	630683	+	1044	2024	1897	2056	3331	2541	2414	2904	1545	1820		
36	ENSG00002	1 631074	632616	+	1543	538	427	447	579	418	453	860	494	644		
37	ENSG00002	1 632325	632413	-	89	3	2	1	0	0	0	3	0	0		
38	ENSG00002	1 632757	633438	+	682	18	15	19	21	20	17	31	17	15		
20	ENICODODO	1	C22741		207	2	2			2		2		-		
	complete.fe	eatureCounts	s +													

Post-alignment QC - example

DE analysis tools

• DESeq2

(https://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html)

• edgeR (<u>https://bioconductor.org/packages/release/bioc/html/edgeR.html</u>)

Normalization

Main factors we need to consider:

- Sequencing depth
- Gene length
- Difference in RNA composition

Normalization - sequencing depth

Sample A Reads

Sample B Reads

Images on this and following slides: https://github.com/hbctraining/DGE workshop

Normalization - gene length Sample A Reads

Normalization - RNA composition

Gene X Gene X

88 865 1 88 88 89 8 59 8 8 86 9 98 99 89 80 80 80 80 86 86 6 1 88 86 86 86 1 88 8	
Gene Y —	I

Gene Z

Gene D

Gene DE

Gene Z

Normalization methods

Accounted factors Recommendations for use

CPM (counts per million)	counts scaled by total number of reads	sequencing depth	gene count comparisons between replicates of the same sample group; NOT for within sample comparisons or DE analysis
TPM (transcripts per kilobase million)	counts per length of transcript (kb) per million reads mapped	sequencing depth and gene length	gene count comparisons within a sample or between samples of the same sample group; NOT for DE analysis
RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	similar to TPM	sequencing depth and gene length	gene count comparisons between genes within a sample; NOT for between sample comparisons or DE analysis
DESeq2's median of ratios [<u>1</u>]	counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depth and RNA composition	gene count comparisons between samples and for DE analysis ; NOT for within sample comparisons
EdgeR's trimmed mean of M values (TMM) [2]	uses a weighted trimmed mean of the log expression ratios between samples	sequencing depth, RNA composition	gene count comparisons between samples and for DE analysis ; NOT for within sample comparisons

Sample 1Sample 2Gene A45Gene B14Gene C88Gene D57

Sample 1

https://hbctraining.github.io/DGE_workshop/lessons/principal_component_analysis.html

Sample 1

https://hbctraining.github.io/DGE workshop/lessons/principal component analysis.html

PCA

Sample1 PC1 score = (read count * influence) + ... for all genes

	Sample 1	Sample 2	Influence on PC1	Influence on PC2
Gene A	4	5	-2	0.5
Gene B	1	4	-10	1
Gene C	8	8	8	-5
Gene D	5	7	1	6

https://hbctraining.github.io/DGE_workshop/lessons/principal_component_analysis.html

	PC1	PC2
Sample1	51	-7
Sample2	21	8.5

https://hbctraining.github.io/DGE workshop/lessons/principal component analysis.html

PC2

PCA real life examples

PCA real life examples

PCA real life examples

Pairing of the samples/batch effect

- There is a bad experimental design and a good experimental design
- Very simply more randomization gives you better results

 $\top \Box \Box$

The Problem of Confounding Biological Variation and Batch Effects

Pairing of the samples/batch effect

And example pairing of the patients AND different sequencing years - double batch

TEC

Pairing of the samples/batch effect

• Paired samples are not the same as paired-end sequencing!

DE analysis - proper Expression level

Deviations from global mean

Significant difference

No significant difference

DE analysis - proper

We need for DEseq2:

- Table describing all the samples
- Table with raw counts

sample 🌻	strain 🌐	date 🌐 🗘	cage 🌐	treatment 🔅	replicate 🗘	sex 🌻
B1	BALB/cJ	20180515	1	yes	1	М
B2	C57BL/6J	20180515	2	yes	1	M
B3	BALB/cJ	20180515	3	no	1	М
B4	C57BL/6J	20180515	1	no	1	F
B5	BALB/cJ	20180515	2	yes	2	F
B6	C57BL/6J	20180515	3	yes	2	М
B7	BALB/cJ	20180515	1	no	2	м
B8	C57BL/6J	20180515	2	no	2	М
B9	BALB/cJ	20180515	3	yes	3	F
B10	C57BL/6J	20180307	1	yes	3	F
B11	BALB/cJ	20180307	2	no	3	М
B12	C57BL/6J	20180307	3	no	3	M

Experimental design

- Biological replicates represent multiple samples from the same sample group
- **Technical replicates** represent the same sample (i.e. RNA from the same mouse) but with technical steps replicated, or the same sample sequenced multiple times
- Usually biological variance is much greater than technical variance, so we do not need to account for technical variance to identify biological differences in expression
- Don't spend money on technical replicates biological replicates are much more useful

Experimental design

	Replicates pe	Replicates per group						
	3	5	10					
Effect size (fol	Effect size (fold change)							
1.25	17 %	25 %	44 %					
1.5	43 %	64 %	91 %					
2	87 %	98 %	100 %					
Sequencing d	Sequencing depth (millions of reads)							
3	19 %	29 %	52 %					
10	33 %	51 %	80 %					
15	38 %	57 %	85 %					

Experimental design - confounding variables

A confounded RNA-Seq experiment is one where you cannot distinguish the separate effects of two different sources of variation in the data.

- Do not try to save money by "pooling" variables together!
- Avoid introducing variables
- Keep metadata

DE analysis - proper

DE analysis - result table

log2 fold change (MLE): condition treated vs control
Wald test p-value: condition treated vs control
DataFrame with 26596 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSMUSG0000000001	1316.691048	0.345714	0.166648	2.074518	0.0380312	0.205846
ENSMUSG000000028	811.387199	0.154380	0.131436	1.174561	0.2401705	0.584747
ENSMUSG0000000031	1.327391	-3.197179	2.640511	-1.210818	0.2259651	NA
ENSMUSG0000000037	26.520229	-0.154937	0.802141	-0.193154	0.8468384	0.953352
ENSMUSG0000000049	0.975305	-0.372812	2.563517	-0.145430	0.8843715	NA
ENSMUSG00002076966	0.866043	1.14651	1.76946	0.647947	0.517019	NA
ENSMUSG00002076975	0.407060	2.59607	3.05970	0.848473	0.396175	NA
ENSMUSG00002076981	0.163449	1.53905	3.10112	0.496289	0.619691	NA
ENSMUSG00002076983	0.373390	-1.97875	3.06686	-0.645203	0.518795	NA
ENSMUSG00002076989	0.369877	-1.96782	3.06721	-0.641566	0.521155	NA

log2(fold-change)

- Fold-change is usually calculated by average expression of all samples of condition 1 vs average expression of all samples of condition 2
- Example:
 - a) geneA expression in **pre is 5**, in **post is 10**; fold-change of post/pre is **2** = gene is **up-regulated 2x**
 - b) geneB expression in pre is 10, in post is 5; fold-change of post/pre is 0.5 = gene is down-regulated 1/2x ... (O_o)
- Solution: Adding log2 gives us log2(2) = 1, log2(0.5) = -1
- Nice and even distribution around 0 and clear interpretations

P-value and adjusted p-value

- P-value tries to give you "a number" saying if the differences you are observing are robust and the differences are not "random" between the compared conditions/samples
- Adjusted p-value adds a correction for the multiple testing we are doing tries to add correction of getting a p-value just by accident
- But is adjusted p-value 0.049 really better than 0.051?
- Number of replicates highly influences the estimates
 - The observations might be the same but the statistical significance might be lower

How many differentially expressed genes I have?

It depends how many you want...:)

Selection of the differentially expressed (DE) gene is completely up to you

Some people use **p-value**, **some adjusted p-value and some people log2fc and their combinations**, some just take top *n* genes

Statistical significance ≠ biological relevance!!!

Scientists rise up against statistical significance, Nature 567, 305-307 (2019), doi: <u>10.1038/d41586-019-00857-9</u>

P-value significance

BEWARE FALSE CONCLUSIONS

Studies currently dubbed 'statistically significant' and 'statistically non-significant' need not be contradictory, and such designations might cause genuine effects to be dismissed.

Visualisation - MA plot

mean of normalized counts

Visualisation - volcano plots

Mov10 overexpression

Amazing interactive tool: Glimma https://bioconductor.org/p ackages/release/bioc/htm I/Glimma.html

Visualisation - heatmaps

Main takeaway points

- Have a question that can be answered with RNA-seq.
- Avoid confounding variables.
- Have as many biological replicates as you can.
- Don't bother with technical replicates.
- Rather do more replicates than deeper sequencing. *
- Consult your design with a sequencing facility / bioinformatician *before* you start.
- Keep metadata, even if it feels crazy.
- Try to make a pilot study before you commit more resources. (Student's mental health *is a resource too!*)

