

Central European Institute of Technology BRNO | CZECH REPUBLIC

Modern methods for genome analysis (PřF:Bi7420)

Lecture 6 : smallRNA-seq and IP methods

Vojta Bystry vojtech.bystry@ceitec.muni.cz

WENSIS

MANA

NGS data analysis

Small RNA-seq

- Next-generation sequencing of short RNAs allows for profiling of various short (non-coding) RNAs (microRNAs, piRNAs, tRNAs,...)
- Widely used method for identification of disease biomarkers => cancer research
- Special interest is in small RNAs that are part of circulatory system (biofluids) because these can serve as non-invasive biomarkers

Small RNAs pool - microRNAs

miRNA biogenesis

- ~22nt long, regulate expression of other RNAs
- Mature miRNA binds to the 3' UTR of coding RNA (mRNA) -> degradation
- ~2,000 mature miRNA known for human
- isomiRs = sequence variants of miRNA

Small RNAs pool – tRNA fragments

- ~14-45nt long
- Participate in various biological processes -> research ongoing!

Small RNAs pool – other small RNAs

- PIWI-interacting RNAs (piRNAs) -> ~30nt long, most expressed in germinal cells where we know what they do; found to be expressed in the somatic cells as well but functions mainly unknown
- Small nucleoler RNAs (snoRNAs) -> chemical modification of other RNAs
- Small nuclear RNAs (snRNAs) -> pre-processing of coding RNAs in the nucleus
- Y RNA-derived small RNAs -> DNA replication?
- mRNA fragments -> random or not?

Module 1: First QC

- Quality control of raw sequencing data
- Scans FASTQ files for presence of adapters

Results:

• List of detected adapters (exact sequences)

• Html/PDF report with plots and tables summarizing

the quality of raw data

10

20

30

70

60

50

40

Position (bp)

Module 2: Pre-processing

- Adapters trimming
- Trimming of low-quality bases, discarding of short reads
- Read collapsing based on UMIs (if present)

Results:

- Cleaned FASTQ files
- Html/PDF report with plots and table summarizing number of reads after each pre-processing step

Length distribution for sample METSEQ-T03

Module 3: RNA quantification

- Complicated due to complex nature of different short RNAs
- Requires individual approach for each class of short RNAs
 - miRNA identification VS isomiRs identifications (3'/5' additions, precursor ambiguity,...)

mature miRNA sequence

Module 3: RNA quantification

- Complicated due to complex nature of different short RNAs
- Requires individual approach for each class of short RNAs
 - piRNAs nested within other coding/non-coding RNAs

Module 3: RNA quantification

- Complicated due to complex nature of different short RNAs
- Requires individual approach for each class of short RNAs -> most problematic are

NGS data analysis

IP methods

RNA IP methods

RNA IP methods

	CLIP	CLASH
UV stabilization of protein-RNA interactions formed in the cells	Ì	Expression of tagged protein
Purification of RNP complexes	Immunoprecipitation	Tandem affinity purification IgG-resin (1)
In vitro RNA-RNA ligation		
Linker ligation and creating sequencing library		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sequencing and data analysis	Protein interacts with RNAs: A, B, C and D	Protein interacts with RNAs: A, B, C and D RNA A interacts with RNA B RNA C interacts with RNA D

- Alignment standard DNA (RNA for CLIP)
- RNA-seq like QC
 - Check sequencing quality
 - RSeQC Read Dstribution

- IP experiment quality control
 - Sample correlation
 - Replicates control treatment
 - Strand cross-correlation
 - Shift of strand mapping
 - Shift should correlate with expected fragment size

- IP experiment quality control
 - Sample correlation
 - Replicates control treatment
 - Strand cross-correlation
 - Shift of strand mapping
 - Shift should correlate with expected fragment size

• Fingerprint profile

- profile of cumulative read coverages
- how evenly are the reads distributed over the genome

Peak calling

• Read extension

Peak calling

- Statistical assessment of peaks against background
- Background
 - Control sample recommended
 - Model background from overall coverage of the sample

- Peak calling annotation
- Differential peak calling

Post peak calling QC

- FRIP score = fraction of reads in peaks
 - High number is good

- However can be low in specific experiments and still the experiment be OK
- Average peak profile

Peak calling results

cł	ir start	end	peak_ID	overall_score	strand fold_change	-log(pavalue)	-log(qvalue)	relative_peak_summit gene_name	gene_id
I.	31479	33115	ChiP_BY_WT_pooled.no_dups_peak_1	429	. 1.88871	44.3616	42.9998	1232 GDH3	YAL062W
I.	33537	34528	ChiP_BY_WT_pooled.no_dups_peak_2	610	. 2.08354	62.5989	61.0757	507 BDH2	YAL061W
I.	35137	36342	ChiP_BY_WT_pooled.no_dups_peak_3	556	. 2.04075	57.1526	55.6747	425 BDH1	YAL060W
I.	45839	46698	ChiP_BY_WT_pooled.no_dups_peak_4	126	. 1.43949	13.7207	Dec.75	433 FLC2	YAL053W
I.	57192	60004	ChiP_BY_WT_pooled.no_dups_peak_5	854	. 2.40168	87.1869	85.4642	1022 BOL3,NA,BOL1,GCV3,PTA1	YAL046C,YAL045C,YAL044W-A,YAL044C,YAL043C
I.	60315	63277	ChiP_BY_WT_pooled.no_dups_peak_6	704	. 2.15353	72.018	70.4181	1323 PTA1,YAL042C-A,ERV46,CDC24	YAL043C,YAL042C-A,YAL042W,YAL041W
L	66666	67791	ChiP_BY_WT_pooled.no_dups_peak_7	889	. 2.43399	90.6587	88.9061	755 CLN3	YAL040C
L	68347	69671	ChiP_BY_WT_pooled.no_dups_peak_8	820	. 2.25923	83.6998	82.0078	696 CYC3	YAL039C
T	71610	73588	ChiP_BY_WT_pooled.no_dups_peak_9	1183	. 2.44018	120.4	118.351	905 CDC19,NA	YAL038W,YAL037C-B,YAL037C-A
T	75651	76970	ChiP_BY_WT_pooled.no_dups_peak_10	860	. 2.41056	87.8185	86.0902	304 RBG1,FUN12	YAL036C,YAL035W
I.	77324	77856	ChiP_BY_WT_pooled.no_dups_peak_11	398	. 1.93424	41.1426	39.8111	250 FUN12	YAL035W
I.	79039	79494	ChiP_BY_WT_pooled.no_dups_peak_12	332	. 1.91858	34.5251	33.2593	247 FUN12,YAL034C-B	YAL035W,YAL034C-B
I.	82712	84482	ChiP_BY_WT_pooled.no_dups_peak_13	113	. 1.42908	Dec.21	Nov.74	1469 POP5,PRP45	YAL033W,YAL032C
I.	100120	100713	ChiP_BY_WT_pooled.no_dups_peak_14	807	. 2.47086	82.3941	80.7135	299 MAK16	YAL025C
L	106226	107428	ChiP_BY_WT_pooled.no_dups_peak_15	358	. 1.77564	37.1375	35.8455	501 PMT2	YAL023C
L	107973	109870	ChiP_BY_WT_pooled.no_dups_peak_16	771	. 2.26481	78.8375	77.1854	381 PMT2,FUN26	YAL023C,YAL022C
T	112214	114585	ChiP_BY_WT_pooled.no_dups_peak_17	520	. Jan.32	53.4499	52.0045	840 CCR4,ATS1,NA	YAL021C,YAL020C,YAL019W-A
T	114751	116392	ChiP_BY_WT_pooled.no_dups_peak_18	350	. 1.78626	36.2902	35.0066	329 NA,FUN30	YAL019W-A,YAL019W
T	128402	132575	ChiP_BY_WT_pooled.no_dups_peak_19	1155	. 2.44079	117.568	115.556	2887 SYN8, DEP1, CYS3, SWC3	YAL014C,YAL013W,YAL012W,YAL011W
T	139243	139805	ChiP_BY_WT_pooled.no_dups_peak_20	69	. 1.34572	7.85378	6.90849	332 TRN1,SSA1	tP(UGG)A,YAL005C
T	142057	143930	ChiP_BY_WT_pooled.no_dups_peak_21	1811	. 3.16946	184.166	181.135	753 EFB1,SNR18,VPS8	YAL003W,snR18,YAL002W
T	166101	166567	ChiP_BY_WT_pooled.no_dups_peak_22	282	. 2.06498	29.4684	28.2548	244 TGA1	tA(UGC)A
T	169591	170278	ChiP_BY_WT_pooled.no_dups_peak_23	629	. 2.12958	64.5023	62.9641	326 ADE1	YAR015W
L	192608	193905	ChiP_BY_WT_pooled.no_dups_peak_24	384	. 1.78426	39.7611	38.4434	499 SWH1	YAR042W
П	36867	38491	ChiP_BY_WT_pooled.no_dups_peak_25	784	. 2.23904	80.1294	78.4676	482 NA,ATP1	YBL100C,YBL099W
П	43225	43782	ChiP_BY_WT_pooled.no_dups_peak_26	384	. 1.966	39.7836	38.4657	250 NA,MRX3	YBL096C,YBL095W,YBL094C
П	44181	44769	ChiP_BY_WT_pooled.no_dups_peak_27	596	. 2.15493	61.1141	59.6037	280 ROX3	YBL093C
П	45344	46996	ChiP_BY_WT_pooled.no_dups_peak_28	1527	. 3.1313	155.299	152.752	1118 RPL32,SCS22	YBL092W,YBL091C-A
П	59655	60610	ChiP_BY_WT_pooled.no_dups_peak_29	2000	. 4.40847	203.402	200.072	398 RPL23A	YBL087C
П	69809	71227	ChiP_BY_WT_pooled.no_dups_peak_30	260	. 1.65314	27.2126	26.0225	1005 NA,ALG3	YBL083C,YBL082C
П	72314	73020	ChiP_BY_WT_pooled.no_dups_peak_31	673	. 2.15795	68.9081	67.3341	344 NA	YBL081W
П	75150	75665	ChiP_BY_WT_pooled.no_dups_peak_32	520	. 2.1439	53.5167	52.0704	285 NUP170	YBL079W
П	87930	90492	ChiP_BY_WT_pooled.no_dups_peak_33	780	. Feb.06	79.7143	78.0556	2285 NA,SNR56,RPS8A,KTI11	YBL073W,snR56,YBL072C,YBL071C-B,YBL071W-A,YBL071C
П	90761	91443	ChiP_BY_WT_pooled.no_dups_peak_34	314	. 1.84847	32.6653	31.4181	399 NA,AST1	YBL070C,YBL069W
П	111556	113226	ChiP_BY_WT_pooled.no_dups_peak_35	287	. 1.72466	30.0068	28.7874	851 SHP1,PTH2	YBL058W,YBL057C
П	113627	114157	ChiP_BY_WT_pooled.no_dups_peak_36	638	. 2.54546	65.4125	63.8668	279 PTC3	YBL056W
П	114710	115219	ChiP_BY_WT_pooled.no_dups_peak_37	388	. 2.13721	40.139	38.8175	233 PTC3	YBL056W
П	116347	117229	ChiP_BY_WT_pooled.no_dups_peak_38	231	. 1.81604	24.3357	23.1769	670 YBL055C	YBL055C
П	117472	118286	ChiP_BY_WT_pooled.no_dups_peak_39	1023	. 2.56761	104.225	102.348	446 TOD6	YBL054W
П	139205	140163	ChiP_BY_WT_pooled.no_dups_peak_40	327	. 1.91809	33.9732	32.7132	700 FUI1	YBL042C
П	141409	142016	ChiP_BY_WT_pooled.no_dups_peak_41	589	. 2.29474	60.4957	58.9904	258 PRE7	YBL041W
П	158759	159747	ChiP_BY_WT_pooled.no_dups_peak_42	692	. 2.11947	70.7935	69.2036	467 RIB1	YBL033C
П	160083	160915	ChiP_BY_WT_pooled.no_dups_peak_43	450	. 1.87536	46.4682	45.0864	409 HEK2	YBL032W

