

Predation by arachnids

Trophic categories

- True predators catch and kill several animals throughout their life (Araneae, Scorpiones, Solifuges, Thelyphonida, Amblypygi, Schizomida, Ricinulei, Pseudoscorpiones, Opiliones, Palpigradi, Gamasida)
- <u>Scavengers</u> feed on prey remnants or dead animals (Opiliones, Holothyrida, Opilioacaridae)
- <u>Parasites</u> live in close association with a host (Sarcoptiformes, Ixodida, Gamasida, Actinedida)
- <u>Herbivores</u> feed on plants (Sarcoptiformes, Actinedida, Opiliones)

Diet breadth

- o majority arachnids are euryphagous
- Araneae, Scorpiones, Solifuges, Thelyphonida, Amblypygi, Schizomida, Ricinulei, Pseudoscorpiones, Opiliones, Palpigradi, Gamasida

Prey availability

- prey availability vary with season and habitat
- polyphagous predators switch to more common prey or prefer certain prey

Diet of Pardosa during season

Prey size

- o prey size corresponds to spider's size
- \circ $\,$ polyphagous species take small prey smaller than prosoma

 web builders generally capture larger prey than equally sized hunting spiders

Intraguild predation

- $\circ~$ predation among guild members as a result of competition
- cannibalism (sexual, filial)
- Scorpions/spiders/solifuges in the desert (Polis & McCormick 1986) - removal experiment
- Scorpiones feed on spiders (8%) and solifuges (14%)
- Scorpions reduced density of spiders, not solifuges

Pauroctonus

Trophic Specialisation

- \circ evolved on dangerous, difficult, and abundant prey
- specialists are able to obtain all required nutrients from a single prey type
- specialisation improves the efficiency of the prey capture and may free the predator from the interspecific competition

- Araneophagous Mimetidae, Palpimanidae
- Lepidopterophagous some Araneidae
- Termitophagous Ammoxenidae
- Crustaceophagous Dysderidae
- Myrmecophagous Zodariidae, some Theridiidae

- Ecological (short-term/local) effect of time and habitat
- Evolutionary (long-term) evolution of adaptations (psychological, morphological, behavioural, physiological, venomic)

Ecological dimension

Eur	ryphagous eneralist	Stenophagous generalist	tionary
Eui	ryphagous	Stenophagous	Evolu
s	pecialist	specialist	dime

Pekár & Toft (2015

Psychological

- o innate olfactory preference in *Euryopis* spiders
- o naïve spiderlings preferred cues from *Messor* ants
- o older spiderlings on *Drosophila* diet switched their preference

Morphological

- Different chelicera shape in Dysdera
- used to catch woodlice
- Species with elongated chelicera used pincer strategy
- Species with flattened fangs used key strategy
- \circ Species with concave chelicera used fork strategy

Behavioural

- o bolaso swinging in *Mastophora* to catch flying moths
- *M. hutchinsoni* captures predominanty two noctuid moth species: *Trichoplusia mynesalis* and *Lacinipolia renigera*
- females produces allomone imitating the sexual pheromone of moths to attract moth males

Physiological

- o prey processing in *Palpimanus*
- o extracts all nutrients from spiders
- \circ high performance on spider prey but poor on insect prey

Palpimanus

Venomic

- potent venom of *Zodarion* is used to catch prey
- venom of euryphagous Cybaeodamus is similarly effective on various prey
- Venom of *Zodarion* is only potent for ants, not on the alternative prey

Michálek et al. (2019)

Predatory guilds

- group of species (often closely related) exploiting the same resources in a similar way
- Main classes: passive (sit-and-wait/ambush), intermediate (stop-and-move), active (pursue)
- Passive: Pseudoscorpiones, Ricinulei
- Intermediate: Amblypygi, Thelyphonida, Schizomida, Palpigradi, Scorpiones
- Active: Araneae, Opiliones, Solifuges, Gamasida

 using data on foraging strategy, prey range, vertical stratification, and circadian activity (Cardoso et al. 2011)
111 spider families classified into 8 guilds

Sensing web

- retreat with signal threads, not used for prey capture but to signal presence of a prey
- \circ on the ground, under stones, on walls, in crevices
- when prey (crawling invertebrates) touches a thread, spider darts forth to seize it
- Oecobiidae, Segestriidae, Filistatidae, Ctenizidae

Sheet web

- web with a tubular retreat at one end, and irregular threads above
- o built in vegetation
- spider runs on the upper surface of the web
- spider rests in the retreat, when prey stumbles over the threads and falls into the sheet spider rushes out
- o Linyphiidae, Agelenidae, Ammaurobiidae, Hahniidae, Dipuridae

- 3D web, hundreds of short zig-zag threads, some of them are with gluey drops or cribellate silk
- capture prey crawling on ground or vegetation prey gets stuck, spider may throw more silk on the prey
- o Dictynidae, Pholcidae, Nesticidae, Theridiidae

Orb web

- horizontal or vertical 2D web catching flying prey mainly in the night
- Uloboridae put cribellate silk, Araneidae & Tetragnathidae put glue on the catching spiral
- o entangled prey is quickly immobilised by wrapping or biting
- Araneidae, Tetragnathidae, Uloboridae

Ground hunters

- o actively hunt prey on the ground or water
- o agile hunters during the day or night
- \circ overpower prey with legs or strands of silk
- Gnaphosidae, Clubionidae, Liocranidae, Lycosidae, Oxyopidae

Conditional strategy

- Prey is immobilised by venom or silk (Beydizada & Pekár 2023)
- Dangerous (large) prey is immobilised by silk
- $_{\odot}$ Bolder individuals use more frequently venom than silk

Ambush hunters

- capture prey on vegetation or ground
- prey is sized by outstretched forelegs that are stout and elongated or small web that is held in forelegs
- Deiniopidae, Thomisidae, Sparassidae, Philodromidae

Other hunters

- \circ actively search for prey on a flat surface during day
- orient towards prey, approach within a striking distance and leap on it
- feed on flying or crawling insects
- Salticidae, Scytodidae

Predatory behaviour

Prey capture

Ethogram of prey capture

Effect on predator

- spiders adjust their food selection to regulate intake of nutrients (Mayntz et al. 2005)
- o consume their prey based on their previous diet
- they either eat more of prey that is rich in nutrients they require or extract specific nutrients from a single prey

Consumption of different types of diet

Lethal effect on prey

- \circ Most arachnids have limited biocontrol abilities:
- limited functional and numerical responses, present intraguild predation
- Mites (Phytoseiulus, Neoseiulus, Amblyseius) are used as efficient biocontrol agents
- Cheyletus is used to control mite pests on stored grain (Cebolla et al. 2009)
- \circ it feeds on variety of mite pest species

Non-lethal effect

- o arachnids can also have non-consumptive effect on their prey
- presence of *Tasmanicosa* (glued chelicera) affected behaviour of *Helicoverpa* - catterpilars spend less time on cotton leaves (Rendon et al. 2016)

Senses used

Seismic

- vibrations are perceived through slit sensillae that form lyriform organs (on legs)
- primary sense in all arachnids, mainly primitive hunters, tube builders, signal-web builders and weavers
- \circ $\,$ web-builders have more slits than hunters
- \circ $\,$ sensitivity of slits increase with its length $\,$

20-120 µm long

- slits detect the tiniest deformations of the skeleton, sensitive to substrate-born vibrations (10-100 Hz)
- \circ vibrations are not blocked by obstacles (visual or acoustic) or blown away by wind
- spiders discriminate among types of vibrations: noisy irregular signal are more effective than sinusoidal vibrations

Oscillograms and frequency spectra of vibrations on water

Acoustic

- acoustic signals are perceived by trichobothria on the dorsal side of legs
- trichobothria are sensitive to air-born vibrations (50-150Hz)
- \circ used mainly by hunters, net-casters, funnel weavers
- hunters have more trichobothria than web-builders (< 10/leg)
- trichobothria are feathery increase the drag force and sensitivity
- o maximal distance eliciting predatory behaviour is 25 cm

Trichobothria on Ta

Anatomy of trichobothria

- interplay of trichobothria *Cupiennius* turned toward the leg stimulated earliest
- $\circ~$ removal of 50% trichobothria from all legs \rightarrow no behavioural change
- $\circ~$ removal of trichobothria on one side only \rightarrow spiders turned at correct angle but to other direction
- $\circ~$ removal of trichobothria on forelegs \rightarrow spider turned backwards

Attenuation of signals in the air

Visual

- visual signals are perceived by eyes (ocelli)
- ME recognise shape and colour, LE are movement detectors
- prey is first detected by wide-angle lenses of LE, then fixed with movable retina of ME
- $\circ~$ narrow field of view is compensated for mobile eye tube of ME
- used by Salticidae, Lycosidae, Deinopidae, Sparassidae, Thomisidae

- Cupiennius spiders has trichromatic colour vision (UV+green+blue)
- spatial resolution of *Portia* AME is 6x worse than in human and 10x better than in dragonfly
- light sensitivity in *Deinopis* is equal to F=0.58 better than any camera lens
- Cupiennius eyes are sensitive enough even under moonlight

Salticid field of view

Chemical

- chemical signals are perceived by chemoreceptors on distal tips of tarsi
- \circ chemoreceptors are inervated by 21 sensory cells
- \circ $\,$ little is known about chemoreception $\,$

chemoreceptor

- o zodariid Habronestes bradleyi feeds on Iridomyrmex ants
- o is able to identify alarm pheromone of the ants

alarmed ant

pheromone

inactive ant

control

 spiders locate patches where ant workers are engaged in agonistic interactions

number of ants

Aggressive mimicry

 predator imitates its prey (using intra- or interspecific signals) in order to approach the prey and thus increase efficiency of capture

Visual signals

- UV is produced by sun silk reflecting UV imitates open space
- primitive spiders (Mygalomorphs, Uloboridae) produce silk that reflects UV light
- derived spiders (Araneidae) produce silk that exhibits low UV reflectivity
- web decorations (stabilimentum) are highly reflective
- webs without stabilimentum captured 40% less prey than those with stabilimentum

Cyclosa

Seismic signals

- \circ imitation of prey ensnared in the web
- Portia invades webs of other spiders
- after entering a web *Portia* vibrates with forelegs to produce:
 - strong vibrations (imitation of ensnared insect)
 - faint manipulation (prey contacting periphery)
 - brief strong rocking (natural disturbance)
- after approaching the resident spider, *Portia* makes strong manipulation if resident spider is large, and faint manipulations if resident spider is small

Records of simulated and Portia-made vibrations on web

Chemical signals

- Cosmophasis spiders live close to and inside nests of Oecophylla ants but avoid direct contact with the workers
- feed on the ant larvae not workers and lay eggsacs inside the colony
- \circ $\,$ spiders steal larvae from an ant that is carrying them $\,$

Cosmophasis

- spiders imitate cuticular hydrocarbons (mono- and dimethylalkanes) of ants
- since spiders can penetrate other nests, the mimicking hydrocarbons are rather species than colony specific

Gas chromatogram of ants' and spiders' cuticular hydrocarbons

Number of aggressive behaviours of ants

Tactile signals

- o Zodarion hunts ants outside their nests
- $\circ~$ after capturing an ant, spider have to carry its prey away from ants
- in order to avoid ants *Zodarion* tries to deceive ants by "prey shielding"

Zodarion

38 hairs / 0.01 mm²

8 hairs but 35 thorns / 0.01 mm²

