@ F1 QSAR Principles and Methods

Quantitative Structure Activity Relationship (QSAR) is involved in building mathematical models for correlating
molecular structures with molecular properties. In this section we introduce the notion of molecular descriptors and
present the QSAR model and its validation.
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@ F1.1 Introduction to QSAR

The topic Introduction to QSAR contains the following 20 pages:

* Molecular Structure and Molecular Properties
* Structure-Property Relationships: Example 1
* Structure-Property Relationships: Example 2
* Structure-Property Relationships: Example 3

" What is QSAR?

* What is QSPR?

* Focus on a Single Property at a Time

" Molecular Descriptors

* Examples of Molecular Descriptors

* The QSAR Equations

* Types of Molecular Descriptors
* Molecular Descriptors: 1D

* Molecular Descriptors: 2D

For the entire list, see the navigation panel.




F1.1.1 Molecular Structure and Molecular Properties

One of the most pervasive postulates in the life sciences is that all molecular properties are coded by and
consequently result from molecular structure. Some examples of structure-property relationships are illustrated on the
following pages.
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F1.1.2 Structure-Property Relationships: Example 1

Paracetamol selectively inhibits the cyclooxygenase enzyme COX-3 found in the brain and spinal cord and
consequently relieves pain and reduces fever.

Structure Property

Relives Pain

Paracetamol



F1.1.3 Structure-Property Relationships: Example 2

Cyanide exerts its toxicity by inhibiting cytochrome-c oxidase, the terminal enzyme of the respiratory chain, leading
to insufficient utilization of oxygen and suffocation. Inhibition occurs through binding to the ferric ion of the

cytochrome.

Structure



F1.1.4 Structure-Property Relationships: Example 3

Saccharin (usually sold as sodium saccharin) binds to the sweet taste T1R3 receptor located in the plasma
membrane of the sweet-taste sensory cells located in the taste buds. Binding of saccharin to T1R3 initiates a
cascade of events in the taste-sensory cell that eventually releases a signaling molecule to an adjoining sensory
neuron, causing the neuron to send impulses to the brain. In the brain, these signals cause the actual sensation of

sweetness.

Structure Property

11 s cot Taste

Saccharin



F1.1.5 What is QSAR?

Molecules exert their biological effect by binding to their respective receptors, a phenomenon that in turn is governed
by their molecular structures (and the molecular structure of the receptor). QSAR (Quantitative Structure Activity

Relationship) attempts to formulate the relationship between structure and activity as a mathematical model.

Biological effect = ¥ (Molecular Structure)

Quantitative Structure Activity Relationships



F1.1.6 What is QSPR?

The biological effect is just one example of molecular properties. QSPR (Quantitative Structure Property

metabolic stability and cell permeability.
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F1.1.7 Focus on a Single Property at a Time

No single QSPR model can capture the direct connection between all the properties of a compound and its molecular

structure; only a single property is handled at a time.
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F1.1.8 Molecular Descriptors

Thus, the derivation of a direct relation with the molecular structure of one single property is extremely challenging.
However, structural factors known as molecular descriptors that influence the molecular property can be identified.
For this reason, the QSAR model correlates the property with molecular descriptors.
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F1.1.9 Examples of Molecular Descriptors

Examples of molecular properties with their associated descriptors are listed in the following table. Later on in this
chapter the nature and the meaning of some QSAR descriptors are presented.




F1.1.10 The QSAR Equations

All QSAR equations have a molecular property expressed as a function of specific descriptors. They differ in terms of

the property they are attempting to correlate, the descriptors they use and the mathematical expression of the model.

ﬁ (descriptors setl)

Oral bioavailability

Cell permeability ]g(descr'ip'ror's set2)

Toxicity ﬁ (descriptors set3)
Metabolic stability = ﬁ (descriptors set4)

Receptor binding = f_r:(descr'ip‘ror's setb)



F1.1.11 Types of Molecular Descriptors

Molecular descriptors can be classified according to the dimensionality of the molecular structure from which they
are derived. 1D descriptors are derived from the chemical formula, 2D descriptors are derived from a 2D (chemdraw-
like) structure and 3D descriptors are derived from the 3-dimensional structure.

Saccharin

1D 2D 3D

C.-H.NO,S ¥ e X



F1.1.12 Molecular Descriptors: 1D

The chemical formula constitutes a 1-Dimensional representation of the molecular structure from which 1D
descriptors can be derived. Such descriptors are based exclusively on the type of atoms which make up the

molecule.

C-HsNO3S

Nitrogen Atoms: 1 Oxygen Atoms: 3

Molecular Weight (gr/mol): 183.2



F1.1.13 Molecular Descriptors: 2D

A Chemdraw-like structure constitutes a 2-Dimensional representation of the molecular structure from which 2D
descriptors can be calculated. In addition to types of atoms, 2D descriptors also incorporate the bonding pattern of

the molecule.

O

H
S/N
78\

O O

Number of rings: 2
H-bond acceptors: 3

Rotatable bonds: O H-bond donors: 1



F1.1.14 Molecular Descriptors: 3D

3D descriptors derived from a 3D molecular structure take the spatial arrangement of the atoms in the molecule into
account.
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F1.1.15 A Multitude of Molecular Descriptors

The number of descriptors that can be derived from a molecular structure is virtually unlimited. Currently available
software packages can calculate thousands of descriptors. For example the DRAGON program calculates 1612

descriptors distributed into 20 categories.

WHIM descriptors topological charge indices

topological descriptors _
molecular properties

Randic molecular profiles
information indices
functional group counts

BCUT descriptors
eigenvalue-based indices

atom-centred fragments

walk and path counts
charge descriptors

3D-MoRSE descriptors

connectivity indices

2D autocorrelations



F1.1.16 Biologically Relevant Descriptors

When constructing a QSAR model, the key is to use descriptors that are relevant to the specific property of interest.

These "biologically relevant descriptors” help generate a model that differentiates between molecules that possess
the property of interest and those that do not.

® Non-Relevant Descriptor ® Relevant Descriptor

Descriptor 17

Descriptor 43

® TInactive molecules
. Active molecules



F1.1.17 Application of QSAR

QSAR models are built for three main reasons: to understand the relationship between structure and activity, design
compounds with improved activity, and predict the activities of compounds prior to their synthesis. These reasons in
fact adhere to the rational sequence of a QSAR analysis project where the first step is to understand the

phenomenon, and then use this understanding to design new compounds.

Understanding Design




F1.1.18 Understanding Structure-Activity Relationships

A good model can reveal information about the receptor's binding site. For example a correlation with electronic
descriptors may indicate that the biological activities could be due to the chemical reactivity of the compounds, or
alternatively, a correlation with hydrophobic descriptors may reveal the existence of a hydrophobic pocket in the

receptor.

Biological effect = J (hydrophobic descriptors)




F1.1.19 Designing Compounds with Improved Activities

Once a QSAR model is obtained and reproduces the known data satisfactorily, it can be exploited to predict the

biological activity of not yet synthesized analogs. This is of paramount importance in lead optimization and
represents one of the most popular uses of the QSAR approach.

QSAR model

Compounds not f Prediction of the
||* e

yet synthesized biological activities




F1.1.20 Reducing a Virtual Library to a Practical Size

The recent explosion in combinatorial chemistry has added a new dimension to the QSAR approach by reducing a

Virtual Library Generator Biological Activity Prediction

To Chemical Synthesis




@ F1.2 The Foundations of QSAR

The topic The Foundations of QSAR contains the following 28 pages:

* Birth of QSAR
* The Foundations of QSAR
* The Hammett Contribution
* Dissociation Constants of Substituted Benzoic Acids
* Dissociation of Substituted Phenylacetic Acids
* Linear Free Energy Relationship
* The Hammett Equation
* The Meaning of p
* The Meaning of o
* Examples of o Constants
* Predicting the pKa of Benzoic Acid Compounds
* Hansch Contribution

* The Importance of Lipophilicity

For the entire list, see the navigation panel.




F1.2.1 Birth of QSAR

QSAR dates back to the 19th century with the work of Cros (1863) who first observed an inverse correlation

between the toxicity of alcohols and their water solubility. Other important milestones include work by Crum-Brown
and Frazer who related physiological action to chemical constitution (1868). A few years later Horst, Overton and
Richet independently observed that the toxicity of organic compounds depended on their lipophilicity/solubility. This
discovery was followed by research by Meyer and Overton, who proved that anesthetic potency correlated well with
partition coefficients (1899).

* 1863 Cros inverse correlation between toxicity
and water solubility of alcohols

® 1868 Crum-Brown & Frazer "physiological action" is a function
of "chemical constitution"

® 1890's Horst & Overton  toxicity of organic compounds
depend on their lipophilicity.

* 1893 Richet "more they are soluble, less they
are toxic"
% 1899 Meyer-Overton partition coefficients correlate

with anesthetic potency



F1.2.2 The Foundations of QSAR

During the first half of the 20th century, Louis Hammett laid the foundation for modern QSAR by correlating electronic

properties of organic acids and bases with their equilibrium constants and reactivity. An important landmark in the
development of QSAR took place in 1964 with the introduction of the Free-Wilson method and Hansch analysis. This

« Louis Hammett

+ Free-Wilson

« Corwin Hansch



F1.2.3 The Hammett Contribution

The dissociation of HA organic acids is a process by which a proton (H") is removed from the neutral compound,

leaving behind a negatively charged species (A’). The extent of the reaction is measured by the dissociation

constant K. Louis Hammett observed that the dissociation constanis of aromatic acids are influenced by the
electronic properties of the substituents on the phenyl ring.

HA —= H" + A

[HT1[A]
[ HA ]

K =




F1.2.4 Dissociation Constants of Substituted Benzoic Acids

The dissociation constants of substituted benzoic acids indicate that electron withdrawing groups increase
dissociation while electron donating groups decrease it.

® p-Et ® Benzoic Acid ® p-NO2
H COOH — H COO + H+
electron donating electron withdrawing

Dissociation
Constant (107°)

Ko=6.2



F1.2.5 Dissociation of Substituted Phenylacetic Acids

A similar effect exists for other equilibria such as substituted phenylacetic acids.

® p-Et ® Phenylacetic Acid ® p-NO2

COOH COO-

Dissociation
Constant (107°)



F1.2.6 Linear Free Energy Relationship

When plotting the quantity log(K/Ko) for benzoic acids on the X axis, where K and Ko refer to the unsubstituted and
substituted compounds, respectively, and the corresponding values measured for the same set of substituents in
phenylacetic acids on the Y axis, Hammett obtained a straight line. Because of the association between dissociation
constants and free energies [AG=-RT Log(K)] this phenomenon is known as the linear free energy relationship.

Benzoic Acid
057
K log (K/Ko) L2
37.05 x 10° 0.776 e 0.4
4.4 x 107 -0.15 < 3
— = ¥ 037
6.2 x 105 (ko) 0 =
() S
. : S 802
Phenylacetic Acid =
R K log (K/Kg) a L
AW 141x10° | 043 H
Et 42 x10° -0.09 0.2 / 0.2 04 06 0.8
Tl 5.2 x 107 (ko) 0 -0.11
y Et Benzoic Acids log(K/Ko)




F1.2.7 The Hammett Equation

The straight line described on the previous page can be written as a linear equation, the Hammett equation. Note that
p is related to a given scaffold (e.g. phenylacetic acids), whereas a o is a descriptor of a substituent and describes

its influence on the dissociation constant. It is positive for electron withdrawing substituents and negative for
electron donating substituents.

benzoic acid k

P pertains to a given equilibrium as compared to the benzoic acid equilibrium.

G is adescriptor of a substituent



F1.2.8 The Meaning of p

p describes the magnitude of the effect a substituent can exert on the dissociation reaction of a given scaffold. As
the distance between the substituent and the dissociated proton increases, its influence on the dissociation reaction

decreases and so does the value of p.

® Benzoic Acid ® Phenylacetic Acid ® Phenylpropionic Acid

log —

R COOH

(reference)



F1.2.9 The Meaning of o

o describes the effect of substituents on the dissociation reaction. Substituents on the phenyl ring can increase or
decrease the equilibrium constant by stabilizing or destabilizing the anionic form via the formation of a positive or

negative partial charge at C1.

H3C

//1 COOH




F1.2.10 Examples of o Constants

Electron donating substituents have negative o values, whereas positive os correspond to electron withdrawing
groups. Note that o values differ depending on whether the substituent is meta or para (sigma values are clickable).

substituent

CHs ——. \

NH>

CN




F1.2.11 Predicting the pKa of Benzoic Acid Compounds

The Hammett equation is an example of a QSPR equation. It correlates a molecular property, the dissociation

constant, with a set of molecular descriptors (o and p). It can be used to predict the pKa of benzoic acid analogs.
When a molecule has multiple substituents, the o values are summed to yield the total value for the compound, as

shown in the following example.

log £ = po
Ko

logK - logK, = po

Q20 sub. | O meta | G para -pK + pKo = po
CHs | -0.07 [ =043 pK = pK, - po
NO. | 071 | 0.78 il

. : pKGGid = pKG(ucid)" Pacid O substituent
Benzoic acid: Ny

pKo = -log(6.2x10°) =42  p

oKacid = 4.2 - 1.00 (0,71 - OM8 + 0.71) = 2.91



F1.2.27 Predictability of the Model

The experimental and calculated values of the antiadrenergic molecules of the training set are indicated below and
show that the Free-Wilson model reproduces the biological activities well. Moreover the equation can be used to
predict the biological activities of new not yet synthesized analogs.

< log 1/C log 1/C log 1/C log 1/C
CEINPOM observed | calculated Campound observed | calculated

7.46 ?82

VNG A W -

- s
= O

Prediction of the
Biological activity

-

Compounds not
yet synthesized "»




@ F1.3 Design of a QSAR Model

The topic Design of a QSAR Model contains the following 3 pages:

* Embarking on the Design of a QSAR Model
* The Four Steps

* An lterative Process




F1.3.1 Embarking on the Design of a QSAR Model

The planning of a QSAR model must be carefully managed. In this section we will explore the methodology for

that need to be followed and the errors that should be avoided.

descriptors ?
parabolic ?

equations ? linear ?

how many molecules ? ‘ r ’ training set ?

I
U
r

&

correlation coefficient ? What are the requirement ?

predictive ? trend ?

normalize decriptors ? @ |
molecule to synthesize ?



F1.3.2 The Four Steps

To construct a QSAR model the following steps should be followed: (1) assemble a sufficiently large and diverse set
of compounds along with their biological activities; (2) select a set of descriptors which is likely to be related to the
biological activity of interest; (3) formulate a mathematical equation that reflects the relationship between the

biological activity and the chosen descriptors, and finally (4) validate the QSAR model.

—

® 1 Compounds Selection

f"t

® 2. Descriptors Selection
® 3. Building the QSAR model

® 4 Methods for Validating the model.



F1.3.3 An Iterative Process

Constructing a QSAR model is an iterative process. First, the QSAR equation is derived from an initial set of

descriptors. Attempts are then made to improve this model by adding or removing descriptors and refining the
mathematical equation, in an iterative fashion.

Descriptors selection



@ F1.4 Compounds Selection: Step 1

The topic Compounds Selection: Step 1 contains the following 5 pages:

* Compounds Selection
* Predictions by Interpolation

* Example of Extrapolative Model

Identification of Outliers

Biological Activities in Terms of Log 1/C




F1.4.1 Compounds Selection

The selection of the compounds is the first step in building a QSAR model and consists of assembling a sufficiently

large and diverse set of compounds with known biological activities. The molecules should be selected with great
care in order to define a set of compounds that is homogenous and represents the system well.




F1.4.2 Predictions by Interpolation

The compounds selected for a QSAR analysis should cover a large range of values for those descriptors believed to
be relevant to biological activity. This increases the probability that future compounds will have descriptors within this
range and allow predictions to be interpolative rather than extrapolative. As a rule, interpolative predictions are more

accurate than extrapolative predictions.

Poor compound selection Better compound selection
™~ 5
i ==
O O
e e
[ i
- e
O o
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Q Y
O la
Descriptor n Descriptor s

* Selected compound @ Extrapolative




F1.4.3 Example of Extrapolative Model

Extrapolating a model for values that are outside the range of the training set may lead to incorrect predictions. In the
following example the experimental points lie in a straight line, however at higher values the model is more complex

and no longer linear.




F1.4.4 |dentification of Outliers

QSAR modeling is based on the assumption of homogeneity and an absence of influential outliers in the training set.
An outlier can be a molecule acting according to a different mechanism of action, an improper biological activity as
reported by another l|aboratory, or simply an incorrect value (experimental or typographic error). Repeat
measurements of biological activities and using the greatest number of molecules helps reduce the distortions

introduced by outliers.

& with outlier & without outlie

outlier




@ F1.5 Descriptors Selection: Step 2

The topic Descriptors Selection; Step 2 contains the following 14 pages:

* Descriptors Selection

* Methods for Selecting Relevant Descriptors
* Manual Selection of Descriptors
* Automated Selection of Descriptors
* Systematic Combination of Descriptors
* Methods for Selecting a Subset of Descriptor
* Forward Selection
" Backward Elimination
* Stepwise Regression

* Scaling Descriptors

* Correlation Between Descriptors
* Example of Correlated Descriptors

= Solution to the Problem of Correlated Descriptors

For the entire list, see the navigation panel.




F1.5.1 Descriptors Selection

As mentioned earlier in this chapter, the number of available descriptors for QSAR analyses is very large. A good

model is based on a small number of well-chosen descriptors. When many descriptors are screened, a fortuitous
correlation may occur. In the following pages important rules for the selection of relevant descriptors are presented.




F1.5.2 Methods for Selecting Relevant Descriptors

Relevant descriptors can be selected either manually or by using automated approaches. For each method,
computer programs are available that help in the selection of relevant descriptors.

Automated selection




F1.5.3 Manual Selection of Descriptors

The manual method is based on a thorough understanding of the SAR and exploiting intuitions generated by the

descriptors such as the molar refractivity (MR) and the hydrophobic substituent constant, Tr should be selected in the
first place.




F1.5.4 Automated Selection of Descriptors

The second method looks at the selection of descriptors in an automated manner, using programs that score and
rank them. Automated and manual methods can also be combined to select relevant descriptors and select those that
are easy to interpret. Modern methods use genetic algorithms based on natural evolution principles (Darwin).




F1.5.5 Systematic Combination of Descriptors

In principle the identification of the best descriptors can be accomplished by a systematic evaluation of all their
combinations. For each combination, a QSAR equation can be derived and then ranked. The highest-ranked equation

will reveal the best subset of descriptors. However this systematic approach is not always feasible: for n descriptors
(current software can process 2000), there are 2"-1 different combinations (subsets). In the following pages we
present automated methods that circumvent this difficulty.

® Calculator ® Example

number of descriptors: calculate

number of subsets:




F1.5.6 Methods for Selecting a Subset of Descriptor

"Forward regression”, "backward elimination" and "stepwise regression” are methods for selecting a subset of
descriptors from a large descriptor pool. The process starts with an initial subset of descriptors, then successive
small alterations of this subset are made and assessed. |f this modification improves the model, the change is
accepted, otherwise it is rejected. The treatment is terminated when it is not possible to improve the model further.




F1.5.7 Forward Selection

The "forward selection” method starts with the single descriptor which best correlates with the dependent parameter.
At each subsequent step the method adds the next most contributing descriptor. The process stops when the
addition of a descriptor does not improve the model's performance as assessed by appropriate statistical indices.




F1.5.8 Backward Elimination

The "backward elimination” method starts with a model that includes all the descriptors. At each step the method
removes those descriptors that do not degrade the model's performance. The process is stopped when performance

starts to decline as assessed by relevant statistical indices.




F1.5.9 Stepwise Regression

The "stepwise regression” method starts (like in forward selection) with the single descriptor that best correlates with
the dependent parameter. At each subsequent step the method adds the next most contributing descriptor and can
potentially remove non-contributing descriptors. The process is stopped when additional descriptors do not improve
the model or when removing descriptors causes the model's performance to decline, as assessed by appropriate

statistical indices.




F1.5.10 Scaling Descriptors

Descriptors represent a broad range of physico-chemical properties. They need to be calibrated in order to provide a
good balance of their respective influence when they are combined. Scaling treatment consists of a mathematical
operation called "normalization” which sets boundaries for the variation of each descriptor.

@)

Descriptor 1

Descriptor 2




F1.5.11 Correlation Between Descriptors

When two descriptors essentially convey the same information about a series of molecules they are said to be
correlated. The use of correlated descriptors in the same equation must be avoided, because the information they
characterize is over-represented when both are present. A "correlation matrix" provides useful information on the

degree of correlation of different pairs of descriptors.

Highly correlated
Not correlated

Partially correlated




F1.5.12 Example of Correlated Descriptors

Consider for example the molecular weight and the number of carbon atoms as two descriptors characterizing a
series of alkanes. These two descriptors are highly correlated, which can be shown graphically.

Structure | MW |# Carbons
g 441 3
e 581 4
e |72.2| B
et ™ (862 6

3 4 5 6
# Carbons



F1.5.13 Solution to the Problem of Correlated Descriptors

When two descriptors are highly correlated, the solution is to remove one of them. The descriptor that carries strong
structural information is preferred and the less intuitive one is removed. An alternative solution consists of removing
the descriptor that has the highest correlation with the other descriptors.

Structure | MW |# Carbons Structure | MW
e 441 3 - 441

-{3\{3. 58.1 4 1§ Pt *g’%’aﬁ 58.1

.#":'\ f3\‘ xa'\. 5
e |72.2| 5 e |72.2

w862 6 e | 86.2




F1.5.14 The Holy Grail in QSAR

There is a general consensus that in a meaningful QSAR equation, the number of molecules in the training set should

exceed the number of descriptors by a factor of 3 to 5.

n descriptors

molecules| activity [ di | d2 | ds | da

1 -0.23 -12| 02| 1.2]-072
w 2 0.50 35| 05| 35| 54
L 3 210 | 51| 21| 21| 53
= | -
O 4 -0.70 g 3
o 5 7 3
= 7_

7 5
| © ‘ e

8 - 1,2

9 0.46 e -3.2| 30

p 0.12 4| 01| 12| -30




(G Fr16 Deriving the Equation: Step 3

The topic Deriving the Equation: Step 3 contains the following 24 pages:

* Deriving The QSAR Equation
* The Starting Point: The Study Table
* Graphical Analysis of the Data
* Choice of the Mathematical Equation
* Complexity Levels and Data Overfitting
* Mathematics are Very (too) Powerful
* lllustration with an Example
* A Simple Model
* A Complex Model
* Comparing the Two Models
* Predictive Power of the Simple Model
* Predictive Power of the Complex Model

* Complexity Dictated by Predictability of the Model

For the entire list, see the navigation panel.




F1.6.1 Deriving The QSAR Equation

Step 3 consists of deriving the QSAR equation corresponding to the set of descriptors that were selected in the
previous step.

Compounds selection

Descriptors selection

Building the QSAR model

Validating the model



F1.6.2 The Starting Point: The Study Table

The starting point for deriving a QSAR equation is the study table. It consists of a spreadsheet with molecules
across the rows and molecular characteristics (biological activity, descriptors) down the columns. Typically, the first
column indicates the molecular identification (e.g. compound number or name, 2D structure), the second column its

activity, and subsequent columns the values of the corresponding descriptors.

Property of inferest

)

Compound | Activity| LogP MR MW | HOMO | Density
-403 | 8710 | 3322 | -120 | 147
-3.68 | 7653 | 3244 | -115 | 143
-4.34 | 9123 | 290.3 -11.2 | 1.37
-5.19 | 100.2 | 310.1 -9.2 | 1.36
-5.99" 191.32" (12919 -10.2 | 141
-483 | 72.12 | 340.3 -11.3 | 1.36




F1.6.3 Graphical Analysis of the Data

The study table should lead to graphical analyses. This step is of paramount importance and leaves room for
"hunches" and preliminary interpretations. This is where the key questions are asked: is there an order? Are the
points distributed according to known patterns? Can the recognized trends be translated into physico-chemical
expressions? efc...

property
property

property
properTy

descriptor z S eercriorork



F1.6.4 Choice of the Mathematical Equation

After having identified trends in the system, the correlation process can begin. The initial analyses help guide the
choice of the right mathematical equation. This equation should not be treated as a black-box; rather it should contain
information that reflects the behavior and allows for interpretation of the system in a structural manner. Sound
structural informational content in a QSAR equation is of utmost importance for formulating step 3.




F1.6.5 Complexity Levels and Data Overfitting

The next hurdle is the mathematical equation. At this stage the complexity of the model depends on both the form of
the mathematical equation and the number of descriptors considered.

single linear regression parabolic model

Activity
AcTivity

Descriptor _
P Descriptor

Activity = a (descriptor:) + b Activity = a (descriptori)? + b

multiple linear regression:

Activity = a(descriptor:)+b(descriptorz)+c(descriptors)+d...

other models: parabolic, bilinear, probability, equilibrium etc...



F1.6.6 Mathematics are Very (too) Powerful

QSAR models can be skewed unintentionally by overly powerful mathematical choices. An equation that fits the data

of a training set precisely can yield an equation that is perfect mathematically but meaningless for molecules other
than those in the training set. For example if the training set consists of 20 molecules, it is always possible to select
a set of 20 randomly chosen descriptors and solve the mathematical system for 20 equations and 20 unknowns. This
error is known as data-overfitting.

&)
20 equations and 20 unknowns

activity of 1 = a3 dl+ a;2d2+a;3d3 +...... + aj 20 d20
activity of 2=az1dl + a22d2 +az3d3 +...... + az 20 d20
activityof 3=a31dl+ az2d2 +az3d3 + ..., + a3z 20 d20
activity of 4 =a41dl + as2d2 +a43d3 +...... + as20 d20

activity of 20 = az01 d1 + az02d2 + azo3d3 + ...... + az0 20 d20

/T\

biological activities

descriptors
unknowns



F1.6.7 lllustration with an Example

To illustrate the data-overfitting problem, let's take a series of compounds for which the permeability through the
blood brain barrier (BBB) has been found to be correlated with their logP and polar surface area. In the following
graph we have plotted a hypothetical series of compounds in this space and color-coded them according to their
BBB permeability. Compounds colored green are permeable whereas compounds colored red are not.

® permeable

non-permeable

Polar surface area



F1.6.8 A Simple Model

A linear model for differentiating between BBB permeable and BBB impermeable compounds can be formulated by
drawing a straight line through the logP / Polar surface area space. Most of the compounds on the left side of the line
are BBB permeable whereas most of the compounds on its right are BBB impermeable. As the model correctly

classifies 45 out of the 50 compounds it has a success rate of S0%.

Polar surface area



F1.6.9 A Complex Model

A model with an improved success rate can be generated by drawing a curved line across the logP / Polar surface
area space. This model completely separates the BBB permeable compounds from the BBB impermeable

compounds and thus has a success rate of 100%.

Polar surface area



F1.6.10 Comparing the Two Models

Which of the two models better distinguishes BBB permeable from BBB impermeable compounds? Clearly the
complex model has a higher success rate. However, by doing so it distorts its shape to correctly classify the outliers
thereby completely reflecting the scatter of the training data - it is therefore an overfitted model. On the other hand,

the simple model mislabels the outliers on the assumption that they are indeed outliers.

outliers

Polar surface area Polar surface area



F1.6.11 Predictive Power of the Simple Model

The simple model predicts that all test compounds lying to the left of the line are BBB permeable and all those lying to
the right of the line are BBB impermeable. Assuming that the test compounds are similar to the training compound,

the prediction power of this model is expected to be high.

Predicted to be impermeable
and is probably so

Predicted to be
permeable and is
probably so

Polar surface area



F1.6.12 Predictive Power of the Complex Model

The complex model also predicts that all test compounds lying to the left of the line are BBB permeable and all those
lying to the right of the line are BBB impermeable. However, under the same assumption of similarity between test
compound and training compound, many of its predictions are expected to be erroneous.

Predicted to be permeable
but is probably impermeable

Log P

Predicted to be
impermeable but is

Polar surface area

probably permeable



F1.6.13 Complexity Dictated by Predictability of the Model

In the QSAR approach tailoring an equation to the peculiarities of a training set is not a problem. However, forcing

the mathematics to fit too closely to the data may lead to meaningless models in terms of predictability (tools for
assessing the predictability of a QSAR model will be presented in Step 4). The real issue is to stop the refinements

early enough so that the predictive capabilities of the model are not lost.

Predictibility o

Quality of the model

Complexity level



F1.6.14 Single Linear Equation: Mathematical Outline

The simplest form of a QSAR equation is a linear model with one descriptor. This simply yields the equation of a

straight line of the form y = b, +b,X where b indicates the intercept of the line with the y axis and b, the slope of the
line. b, and b, are calculated as described on the next page.

0 descriptor X



F1.6.15 Calculating b0 and b1

b, and b, are calculated using the two equations indicated below. The details of such calculations are presented for
the Capsaicin example under the heading "Example of simple linear regression".

Y (xi-X)(yi-Y)
bl = il

b0=?-b1>_<

> (xi%)




F1.6.16 Multiple Linear Regression: Mathematical Outline

It is not always possible to correlate biological activities with a single descriptor (linear model with one descriptor).
Given that biological action results from the combined influence of many factors, one can extend the QSAR model to

multiple descriptors. Indeed, the observation that several parameters used simultaneously can lead to good models
prompted the development of a method referred to as "multiple linear regression” (MLR). In this model linearity is

maintained for each of the individual descriptors.

coefficients

Y

ACTiViTy = bo + b1X1 + bzXz + b3X3 + ...+ ann



F1.6.17 Example: MLR vs. Single Linear Models

The example of anticonvulsant compounds shown below demonstrates that each descriptor Es, o and logP alone
was not able to give a good correlation (r less than 0.40) with the biological activities. However, by using
simultaneously logP and o, a significant improvement was made (r=0.80). The addition of Es improves the model
even more (r=0.95). This indicates that the biological properties result from the combined action of lipophilicity, steric

and electronic effects.

NV
X S bad model .

. good model .

model r




F1.6.18 The Mathematics of MLR: a Single Sample

In MLR we try to express activity as a linear combination of descriptors. We recognize the fact that in most cases,
our fit to the experimental data will not be perfect and error is usually unavoidable. In the equations listed below, y
(the activity) is a scalar; X, is the value of the descriptor | and bj its associated coefficient; e is the error. In the matrix

notation, x' is a row vector of the descriptors and b, a column vector of their associated coefficients.

Y =bix1t + baoxo + baxs + ... + bpyXm + €

m
Y=2bjxj+e

J=1

Matrix notation: Y=xb + e



F1.6.19 The Mathematics of MLR: Many Molecules

For the case of multiple compounds, the activity values are assembled into a vector y of length n, where n is the
number of compounds. The descriptors are collected into an n by m matrix where n again is the number of
compounds and m is the number of descriptors. The coefficients are collected into a vector of length m and the

errors are collected into another vector of length n.

y=Xb+e

1 m 1 1
Y - X R + e
m
n n n




F1.6.20 The Solution of MLR

In the MLR formalism we search for the (unknown) set of coefficients b, which, when multiplied by the (known)
descriptors, best approximates the (known) activity data (equation 1). A solution to this problem can be obtained

through a matrix inversion procedure (equation 2).

® coefficients ® example

y=xb+e (1)

The transposed of the original

descriptors matrix. A fransposed The “-1" indicates
matrix replaces columns with atriv inverEion
rows and vice versa. - =

|
R

The unknown vector The original The known vector
of coefficients descriptors matrix of activities



F1.6.21 Analysis of the MLR Equation

One of the purposes of QSAR analyses is to understand the forces governing the activity of a particular class of

importance of the descriptors vary in the following order: logP > o > Es > MR; therefore the biological activities are
governed in the first place by hydrophobicity (logP) and polarity (o) and to a lesser extent by steric effects (Es and
MR).

Descriptors

contribution (%)




F1.6.22 Non-Linear Equations

A non-linear equation is an extension of a multiple linear regression. In some systems the linearity may not be
sufficient to achieve a good correlation. Hansch was the first to introduce a parabolic term, and a complex biological

process can be satisfactorily modeled by non-linear equations.

Planar cubic spherical ellipsoidal



F1.6.23 Example of Non-Linear Model

In the example below, the anticonvulsant activities of a set of molecules was initially found to be linearly correlated
with logP. However, it is implausible to assume that the biological activity can increase indefinitely by increasing the
lipophilicity of the molecules. It is known that highly lipophilic compounds cannot reach their site of action, because
they are trapped in lipophilic environments. It is therefore more realistic to improve the initial model using a non-linear
equation. The modified equation proved to be correct and revealed the existence of an optimum logP value,
information that could not be derived from molecules with a small range of logP values.

@, linear model| & non-linear model|

Ry Rl

O X

O

Log (1/C)

log (1/C) =0.73 logP + 2.5

Log P



F1.6.24 Typical Non-Linear Equations

There are many reasons why the use of non-linear models is justified, including the kinetics of the drug transport, the
equilibrium control of its distribution, allosteric effects, different pharmacokinetics, metabolism, solubility etc... The

following are examples of non-linear models that have proved to be valid at least for special and complex biological
systems.

Parabolic Model (Hansch)
log 1/C = a(logP)*+ b logP + ¢
Probability Model (McFarland)
log1/C = alogP - 2alog (P+1) + ¢
Equilibrium Model (Hyde)
log 1/C = alogP - log (aP+1) + ¢
Bilinear Model (Kubinyi)

log 1/C = alogP - b log (BP+1) + ¢



@G r1.7 validating the Model: Step 4

The topic Validating the Model: Step 4 contains the following 19 pages:

* Tools for Assessing the Quality of a Model

* Predictive and non-Predictive Models

* The Standard Deviation

* Correlation Index r?
" The Mathematics of r?
* TSS, the Total Variance
* RSS, the Explained Variance

" t-test for Single Descriptors and Significance of r?
* Shape of t-distribution and Number of Molecules
* Student's t-test Procedure

* F-test for Assessing the Significance of r?
* Performing the F-test

* F-test Procedure

For the entire list, see the navigation panel.




F1.7.1 Tools for Assessing the Quality of a Model

we present some of these tools and explain how to use them.

Compounds selection

Descriptors selection

Building the QSAR model

log1/C=a(log P)>+blogP+c o +d

Validating the model




F1.7.2 Predictive and non-Predictive Models

"reproduce” the experimental data and (2) those that can tell how far the model can be extrapolated to new
molecules.

(1) (2)

Training New
set compounds

Reproduce Predict

IS
)

=]
=
o
<
)
&4

QSAR Model




F1.7.3 The Standard Deviation

The easiest way to "validate” a QSAR model is to calculate the standard error or standard deviation (SD or s), which

is calculated as the average squared deviation of each number (the "residuals") from the mean. This index reflects

how much the deviation between the data and the model is. The smaller the SD, the more the model is considered of
good quality.

@ s calculation & example

The Eguation



F1.7.4 Correlation Index r?

The most frequently used index for evaluating the performance of a QSAR model is r? (squared correlation

coefficient). r* measures the degree of correlation between the activity values calculated by the model and those
measured experimentally. The value of r? can range between 0 (no correlation) to 1 (perfect correlation).

& 2=1 & r2=05 ® r2=0

re=1

perfect correlation

Measured Activity

Calculated Activity



F1.7.5 The Mathematics of r?

Mathematically, r* is calculated by dividing the fraction of variance explained by the model (the "explained sum of
squares”, ESS) by the original variance (the "total sum of squares”, TSS). ESS, the fraction of variance explained by
the model is equal to the total variance (TSS) minus that portion of the variance which was not explained by the

model (residual, RSS).




F1.7.6 TSS, the Total Variance

TSS, the total variation in the dependent variable (y) is simply the spread of the data around the average.

Compound number



F1.7.7 RSS, the Explained Variance

In order to obtain RSS, the variance explained by the QSAR model, we start from the fact that the total variance is

the sum of the explained and unexplained variances. Thus, the explained variance is the difference between the total
variance and the unexplained variance. That portion of the variance which is left unexplained by the QSAR model

(unexplained variance) can be obtained by finding the difference between the measured activity and the predicted
activity (as given by the regression line).

log€ECso = 0.794 - 0.817TT

logECs0




F1.7.8 t-test for Single Descriptors and Significance of r?

r? alone is not sufficient to determine whether the relationship has occurred by chance; its significance can be
calculated using the t-statistic for single descriptors as follows. We repeat the process of deriving of a QSAR
equation and calculate the resulting r? values many times, each one using a different descriptor. If the number of
molecules is large (> 30), the sampling distribution of the resulting r* values will have a normal (i.e., Gaussian) shape.

If the number of molecules is small, it will have a shape known as a t-distribution.

Normal (gaussian) distribution t-distribution
0.3 - g8 =
0.2 0.2 -
01 - I | 01 -
il . ol (.
’ T T T | | | | ' | T | T | T |
-30 -20 -10 0.0 10 2.0 30 -30 -20 -10 00 10 2.0 30

Values on the x-axis represent standard deviations from the mean located at X = O.



F1.7.9 Shape of t-distribution and Number of Molecules

A value r* = 1 will always be obtained for a set of two molecules irrespective of the descriptor used for the QSAR
analysis however, as the number of molecules increases, the probability of obtaining large r? values with irrelevant
descriptors decreases. This probability corresponds to the area under the t-distribution curve (see below), away from

the center (where r?2 = 0). The shape of the t-distribution therefore depends on the number of molecules used in the
analysis.

{-distribution for 3 molecules f-distribution for 30 molecules
0.3 - 0.3
0.2 0.2 =
0.1 - 0.1
. M”mH”H| H“MHm“ DU_.”mlmu HMHm“.
—3?0 —EEU —1.IC' OI.U 1.IU EI.U 3I,D —3!0 —210 —1.IU DI,D 1.I0 EICI SID



F1.7.10 Student's t-test Procedure

The Student t-test employs the t-distribution to test whether the correlation coefficient obtained from the QSAR
analysis is significantly different from 0. The larger the t-value, the larger the probability that r? significantly differs
from O; that is, the larger the probability that the descriptor used for the analysis is relevant to the activity.

Technically, the steps involved in the Student t-test are as follows.

® Overview ® Step 1 ® Step 2 ® Step 3 ® Step 4

N-2
1-r7

1. Calculate t according to the above equation. t = r

2. Select a significance level (e.g., 0.05). (see step 2)

3. Look up the t value from a t-distribution derived for the correct
number of data points (N) at the selected significance level.

4. If the calculated t-value is larger than the listed t-value, then the
regression equation is significant at this significance level.



F1.7.11 F-test for Assessing the Significance of r?

The F-test is an extension of the t-test for the case of many descriptors. Like the t-test it tests (and hopefully rejects)
the assumption that the model did not explain any of the original variance in the data set (i.e., ESS = 0). Like the t-
test, the F-test uses an F-distribution which, similar to the t-distribution depends on the number of compounds and

descriptors.

Molecules = 10 Molecules = 100
Descriptors = 4 Descriptors = 10

06 - 0.9 -

04 - 0.6 =

0.2 - 0.3 -

5o ""““IIllnm-........ ............. A ‘ ‘Illlln

] | J J J J J J J J J J
co 17 33 50 67 83 100 0.0 L¥ 33 50 67 83 100



F1.7.12 Performing the F-test

The F-test employs the F-distribution to test whether the correlation coefficient obtained from the MLR analysis
significantly differs from 0. The larger the F-value, the larger the probability that r* significantly differs from 0O; i.e. the
greater the probability that the descriptor used for the analysis is relevant to the activity. Technically, the steps
involved in the F-test are as follows.

ESS N-k-1
Kk RSS

Calculate F according to this equation: F -

N - number of molecules, k - number of descriptors | A




F1.7.13 F-test Procedure

The application of the steps involved in evaluating the significance of r? for the Capsaicin analogs using the F-test
proceeds as follows:

® Procedure & F-table
2(N-k-1
® Calculate F: F = i ( ) . r'2 B 0.92; N=8: k=3
k(1-r?)
0.92(8-3-1)
= = 19.33
3(1-0.92)
® Select a significance level (p): p = 0.01
® Look up the F value from an F-distribution
with N=7, k = 1, p = 0.01: F =7.59

tab

® The calculated F value (15.33) is larger than the tabulated F value
(7.59). Thus, the correlation is significant at this level. The
probability that the correlation is fortuitous is less than 1%.



F1.7.14 Assessing the Predictive Power of a Model

r?, t and F are indices that can be generated to evaluate QSAR results. However, these parameters basically only tell

the activities of new compounds. Two methods are presented in the following pages to estimate the predictive power
of a QSAR model.

Training New
set compounds

Reproduce Predict

© o
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F1.7.15 The Test Set Method

The first method is known as the "test set method" and consists of partitioning the initial data into two sets, a
preferred strategy when a large set of compounds is available. The initial data set is randomly divided into two parts;

the first one is used to build a QSAR model and the second one to validate this model.

Training set Test set



F1.7.16 The Cross Validation Method

The second method is known as 'the cross validation method" - it is preferred when the size of the data set is too
small. In this method the data are randomly divided into N equal parts; N-1 parts are used to build the model which is

then used for the remaining NI" part to predict the activities of the corresponding molecules. The procedure is
repeated until the activities of all compounds have been predicted independently.

Stage 1 Stage?2 Stage3 Stage4  Stage 5

compounds
1-10

compounds
11-20
compounds

21-30
compotunds

31-40
compounds

41-50

Training
set
Training
set
Training
seT
Training
seT
Test

set

Training
set
Training
set
Training
set
Test
set
Training
seT

Training
set
Training
set
Test
set
Training
sef
Training
sef

Training
set
Test
set
Training
ser
Training
sev
Training
sev

Test
set
Training
sef
Training
sef
Training
sef
Training
sef




F1.7.17 Limits of the Cross Validation Method

With the cross validation method, the QSAR model that is ultimately used to predict the activities of new compounds

equation but rather with an estimate of our ability to make predictions for compounds similar to those used in our
QSAR analysis.

PS Compounds used in original
QSAR analysis

S Prediction estimates made by
cross validation apply

Descriptor 2

Prediction estimates made by

cross validation do not apply

Descriptor 1



F1.7.18 The Predictive Index Q2

The predictive power of the model, termed Q?, is computed by analogy with r?, the difference being the use of the
PRESS (predicted sum of squares) rather than the RSS (residual sum of squares) in the numerator. PRESS is
calculated as the difference between the measured activity and the predicted activity for the test set compounds.

RSS

2 -V

N
r=1 - RSS = Z (chlc,i = yi)2
=1

N
PRESS
PRESS =Z (Ypred,i = Yi)2

Z:l(yi - Y)Y i=1




F1.7.19 Summary

When discussing mathematical tools available for assessing the quality of a QSAR model we saw that (1) the

standard deviation is an isolated "absolute" index of local meaning; (2) with r? it is possible to compare different
models, but this index is only mathematical - not statistical; (3) t and F have a statistical content that can be used for
single and multiple linear regression respectively; however they only measure the ability of the QSAR model to

reproduce the data from which it was constructed.

log% = 114 log P + 0.16

F-value for assessing
the statistical significance

correlation coefficient for
assessing the quality of the model

n=25: r?=091; s=0.155;: F=66.4; Q% =0.875

number of molecules regression coefficient for
measuring the predictibility
standard deviation



@ F1.8 Example of Simple Linear Regression

The topic Example of Simple Linear Regression contains the following 11 pages:

* Example of Capsaicin Analogs

* Relevant Descriptors of Capsaicin Analogs

* The Capsaicin Study Table

* Graphical Analysis of Capsaicin Analogs

" Deriving a QSAR Linear Equation

* Experimental vs. Calculated Values

* Calculating r? for the Capsaicin analogs

" t-test for the Capsaicin Analogs

* F-test for a Series of the Capsaicin Analogs

* The QSAR Equation for the Capsaicin Analogs

* Predicting the Activities of Unknown Compounds




F1.8.1 Example of Capsaicin Analogs

Capsaicin analogs were studied for their analgesic properties and we will use this study to illustrate the derivation of

activities of new compounds.

HD\/HWQ/

| Compound R ECso (mM)

H
Cl 1.24
NO:
CN
CeHs

N(CHs)




F1.8.2 Relevant Descriptors of Capsaicin Analogs

The selection of descriptors that correlate with the target biological activity is mandatory for the derivation of a
meaningful QSAR model. For Capsaicin analogs, biological activity appears to be influenced by the lipophilicity of the
substituent R. Following this assumption the descriptors deemed most suitable are the molar refractivity (MR) and

the hydrophobic substituent constant Tr.

R

Lipophilicity Descriptors

JL : encodes the lipophilic behavior

MR: contains information on the volume



F1.8.3 The Capsaicin Study Table

The following table summarizes the MR and 1 values which were calculated for the seven Capsaicin analogs. As
discussed above, activities (EC;) are expressed as their log values.

Compound log ECs0 TU MR

O 1.03

0.71 6.03

-0.28 7.36

-0.57 £.33

1.96 29.36

0.18 15.99

112 13.94




F1.8.4 Graphical Analysis of Capsaicin Analogs

For Capsaicin analogs, if we plot the values from the study table for MR and T, respectively, there seems to be a
weak correlation between the biological activity and the molar refractivity (MR). However, the hydrophobic

substituent constant 1T shows a possible linear correlation.

15 & ® 15T
11® 19
2 | 3 g
O . o @) I
1) 05 T 05
(@) (@)
O @ I | | | O | o |
5 10 15 20 30 -05 05 1 15 2
05 * P! 05+ o >
1 44



F1.8.5 Deriving a QSAR Linear Equation

The correlation between 1 and the biological activities is represented by the equation y = by+b,X, where b is the
intercept of the line with the y axis and b, the slope of the line. We show below how to calculate their numerical
values.

- @

] g(xi-i)(ya-?)

b1

bo =Yy - bix

| | |descriptor X



F1.8.6 Experimental vs. Calculated Values

There is a difference between the experimental and the calculated values as shown below. continue

log ECso | log ECs0
# | obs. calc.
1| 1.07 0.79
2| 0.09 0.21
3| 0.66 1.02
4 | 1.42 1.26
5| -0.62 | -0.81
6| 0.64 0.65
71-0.46 | -0.12

® Experimental

® Calculated

logECso

<g:»



F1.8.7 Calculating r? for the Capsaicin analogs

For Capsaicin analogs, r? is calculated as follows.

log ECso | log ECso

#H obs. calc. Residual
1| 107 | 079 | 0.28
2| 009 | 021 | -0.12
3| 066 | 1.02 | -0.36
4| 142 | 126 | 016
5| -0.62 -081 | 019
6| 064 | 065 | -0.01
7| -0.46 | -0.12 | -0.34

N N
TSS=0 (Y - V7 RSS5=) (Vi - Yeur iV
i=1 i=1

TSS - RSS
755

phi=

Y 107 + 009 + 0.66 +1.42 + (-0.62) + 0.64 + (-0.46)
— 7 =

0.4

TSS = (1.07-0.4) + (0.09-0.4)° + (0.66-0.4)° + (1.42-0.4) + (-0.62-0 4)
+ (0.64-0.4) + (-0.46-0.4)% = 3.49

RSS = (0.28) + (-0.12)% + (-0.36)2 + (0.16)% + (0.19)% + (-0.01)? + (-0.342 = 0.40

2 _ 3.49 - 0.40_
- 3.49

3.09
S0~ 0.89




F1.8.8 t-test for the Capsaicin Analogs

The steps involved in evaluating the significance of r?2 are as follows:

® t calculation ® t-table

o2
. Calculate #: = r\/N : =089, N=7
1-r7

w22

1089

' Select a significance level (p). m

o Look up the t value from a
t-distribution with A=7, p=0.01:

. The calculated t value (6.3604) is larger than the
tabulated 7 value (2.998). Thus, the correlation is
significant at this level. The probability that the
correlation is fortuitous is less than 1%.



F1.8.9 F-test for a Series of the Capsaicin Analogs

The steps involved for evaluating the significance of r? using the F-test proceed as indicated below. The F-test
analyses finally indicate that a significant correlation is obtained and the probability of a chance correlation is less

than 1%.

® F calculation ® F-table

r’(N-k-1)

® Calculate F: F = : r2 =0.89: N=7: k=1
k(1-r?)
0.89(7-1-1)
- = 40.45
1(1-0.89)
® Select a significance level (p): p=0.01

® Look up the F value from an F-distribution
with N=7, k = 1, p = 0.01: F=12.25

® The calculated F value (40.45) is larger than the tabulated F value
(12.25). Thus, the correlation is significant at this level. The
probability that the correlation is fortuitous is less than 1%.



F1.8.10 The QSAR Equation for the Capsaicin Analogs

QSAR studies reveal the importance of lipophilicity in the analgesic properties of a series of Capsaicin analogs as

indicated by the good correlation found with the 1 descriptor. The correlation coefficient r2 is 0.89 and analyses of
the significance of the equation (t-test and F-test) show that there is less than a 5% chance that the relationship is

due to chance. This validates the use of r as a descriptor for the structure-activity relationships.

Z

logECso = 0.794 - 0.817x 7 L
OH T

r°=0.89; s=0.28; t=6.36; F=40.45



F1.8.11 Predicting the Activities of Unknown Compounds

The derived QSAR model can be used to predict the biological activities of novel capsaicin analogs by introducing

20

| \ TC - -0.98

NHCHO

logECso = 0.794 - 0.817x L

logECso = 0.794 - (0.817x-0.98)

logEcso = 1.59

predicted ECso = 38.90 uM
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