1
Tomáš Vaculovič
̶ Principle of laser ablation and ICP-MS
̶ Imaging
̶ corroded layers
̶ in geology
̶ bio-samples
̶ Summary and Outlook of imaging
2
̶ Inductively Coupled Plasma of Mass Spectrometry
̶ argon plasma – source of atoms and ions (16 eV, 10000 K)
4
̶ Inductively Coupled Plasma of Mass Spectrometry
̶ argon plasma – source of atoms and ions (16 eV, 10000 K)
3
5
̶ Inductively Coupled Plasma of Mass Spectrometry
̶ argon plasma – source of atoms and ions (16 eV, 10000 K)
̶ atomization and ionization of the most elements of P.T.
̶ elemental specific detector (no molecules)
6
̶ Inductively Coupled Plasma of Mass Spectrometry
̶ argon plasma – source of atoms and ions (16 eV, 10000 K)
̶ atomization and ionization of the most elements of P.T.
̶ elemental specific detector (no molecules)
X
X X
X
X X
X
X
4
7
̶ Inductively Coupled Plasma of Mass Spectrometry
̶ argon plasma – source of atoms and ions (16 eV, 10000 K)
̶ atomization and ionization of the most elements of P.T.
̶ elemental specific detector (no molecules)
̶ analysis of solution and solid samples (laser ablation)
̶ limit of detection – pg/l, ng/g
8
̶ Inductively Coupled Plasma of Mass Spectrometry
̶ argon plasma – source of atoms and ions (16 eV, 10000 K)
̶ atomization and ionization of the most elements of P.T.
̶ elemental specific detector (no molecules)
̶ analysis of solution and solid samples (laser ablation)
̶ limit of detection – pg/l, ng/g
5
9
̶ Laser ablation
̶ explosive interaction of the laser beam and material (> 109 W/cm2)
̶ produced dry aerosol (particles and vapours)
composition of dry aerosol and analyzed surface
are same – necessary for analytical purpose
10
̶ Advantages
̶ analysis of any type of materials
̶ direct analysis of solid samples
̶ laser beam diameter 4 – 200 μm (optional lateral resolution)
̶ possibility of local microanalysis
̶ possibility of lateral distribution of elements (imaging)
̶ Drawbacks
̶ different ablation rate for various materials (IS needed)
̶ additional equipment
6
11
̶ Different ablation rate
garnet
quartz
10 ug/g Sc
10 ug/g Sc
12
̶ Different ablation rate
garnet
quartz
10 ug/g Sc
10 ug/g Sc
same ablation parameters
7
13
̶ Different ablation rate
garnet
quartz
10 ug/g Sc
10 ug/g Sc
same ablation parameters
garnet quartz
14
̶ Different ablation rate
garnet
quartz
10 ug/g Sc
10 ug/g Sc
same ablation parameters
garnet quartz
8
15
̶ Different ablation rate
garnet
quartz
10 ug/g Sc
10 ug/g Sc
same ablation parameters
garnet quartz
16
sample preparation
9
17
sample preparation measurement
18
measurementsample preparation
10
19
measurementsample preparation
20
measurementsample preparation
11
21
measurementsample preparation
data processing
22
Task 1: Steel sample was
exposed to molten LiF-NaF salt
treatment. Strong corrosion on
sample surface occured. Our task
is to obtain content of main
constituent of steel and Li and Na
in corroded layer.
Task 2: My colleague geologist: „I
have granitoid sample which contains
quartz, mica, feldspar and the other
minerals. Would it be possible to
obtain elemental map of the granite?“
Task 3: Spontaneous regression
is the process by which
melanoma disappears. What
happens with the elements at
spontaneous regression?
Task 4: Nanoparticles are all around
us. Do nanoparticles accumulate in
the body or are they excreted out?
12
23
̶ Steel sample was exposed to molten LiF-NaF salt treatment. Strong
corrosion on sample surface occured. Our task is to obtain content of main
constituent of steel and Li and Na in corroded layer.
24
̶ Steel sample was exposed to molten LiF-NaF salt treatment. Strong
corrosion on sample surface occured. Our task is to obtain content of main
constituent of steel and Li and Na in corroded layer.
Why LiF-NaF mixture?
13
25
http://ojs.ujf.cas.cz/~wagner/popclan/transmutace/generaceIV.html
GEN IV
six concepts of reactors:
Very High-Temperature gas-cooled Reactor
Gas-cooled Fast Reactor
Sodium-cooled Fast Reactor
Lead-cooled Fast Reactor
Super-critical water-cooled reactor
Molten fluoride salt reactor
26
holder for manipulation
with the sample
wall of the ampoule
molten fluoride salt
sample movement
tested sample
̶ sample preparation (in Energovýzkum, Ltd.)
̶ tested materials: Ni-based alloys and pure nickel
̶ MFS: LiF-NaF, LiF-NaF-ZrF4
̶ exposure: 680°C, 100, 300, and 1000 hours
14
27
̶ determination of elements in corroded layer
̶ single line scan (crust-corroded layer-intact material; laser beam diameter – 25 μm)
̶ in 2006 measured in ETH (we did not have ICP-MS)
Sample 12 - line
Distance from edge / m
-400 -300 -200 -100 0 100 200 300 400
Intensity/cps
101
102
103
104
105
106
107
108
Na23
Si29
Li7
K39
Ti49
V51
Cr53
Mn55
Fe57
Co59
Ni60
Rb85
Mo98
Cs133
metalcrustembedding
28
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 12 μm)
̶ spot by spot
15
29
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – external calibration
̶ calibration standards – steel standards
̶ tested materials – Ni-based alloy
element reference
value [%]
intact
layer [%]
Ni 76.3 76.8
Cr 7.0 6.9
W 4.5 4.4
Ti 1.7 1.8
Ix
wx
30
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – external calibration
̶ calibration standards – steel standards
̶ tested materials – Ni-based alloy
element reference
value [%]
intact
layer [%]
corroded
layer [%]
Ni 76.3 76.8 375
Cr 7.0 6.9 35
W 4.5 4.4 21
Ti 1.7 1.8 10
16
31
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – external calibration
̶ calibration standards – steel standards
̶ tested materials – Ni-based alloy
element reference
value [%]
intact
layer [%]
corroded
layer [%]
Ni 76.3 76.8 375
Cr 7.0 6.9 35
W 4.5 4.4 21
Ti 1.7 1.8 10
What’s wrong?
32
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ Different ablation rate?
17
33
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ Different ablation rate?
̶ Particle size distribution measurements (Dr. Mikuška, UIACH CAS)
6x higher ablation rate
in corroded layer!
34
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – total sum ion normalization (TSIN)
̶ measuring of all elements from the sample
7Li, 23Na, 47Ti, 52Cr, 55Mn, 56Fe, 60Ni, 182W
18
35
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – total sum ion normalization (TSIN)
̶ measuring of all elements from the sample
̶ recalculation of measured intensities of isotopes on 100% abundance
𝐼 𝐿𝑖 =
𝐼 7 𝐿𝑖
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 7 𝐿𝑖
𝐼 𝑁𝑎 =
𝐼 23
𝑁𝑎
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 23 𝑁𝑎
𝐼 𝑁𝑖 =
𝐼 60
𝑁𝑖
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 60
𝑁𝑖
...
36
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – total sum ion normalization (TSIN)
̶ measuring of all elements from the sample
̶ recalculation of measured intensities of isotopes on 100% abundance
̶ calculation of content from the sum of intensities
𝑤 𝐿𝑖 =
𝐼(𝐿𝑖)
𝐼 𝐿𝑖 +𝐼 𝑁𝑎 +𝐼 𝑁𝑖 +⋯
∙ 100 𝑤 𝑁𝑎 =
𝐼(𝑁𝑎)
𝐼 𝐿𝑖 +𝐼 𝑁𝑎 +𝐼 𝑁𝑖 +⋯
∙ 100
𝑤 𝑁𝑖 =
𝐼(𝑁𝑖)
𝐼 𝐿𝑖 +𝐼 𝑁𝑎 +𝐼 𝑁𝑖 +⋯
∙ 100
19
37
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – total sum ion normalization (TSIN)
̶ measuring of all elements from the sample
̶ recalculation of measured intensities of isotopes on 100% abundance
̶ calculation of content from the sum of intensities
̶ verified by calibration standard
element reference
value [%]
intact
layer [%]
Ni 28.5 28
Cr 4.3 4.5
Fe 62.0 62.7
Mn 0.8 0.7
38
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – total sum ion normalization (TSIN)
̶ measuring of all elements from the sample
̶ recalculation of measured intensities of isotopes on 100% abundance
̶ calculation of content from the sum of intensities
̶ verified by calibration standard
̶ tested on Ni-based alloy
element EPMA
value [%]
corroded
layer [%]
Ni 74 73
Mo 21 22
Cr 5.0 4.4
Fe 1.3 1.5
20
39
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
̶ quantification – total sum ion normalization (TSIN)
̶ measuring of all elements from the sample
̶ recalculation of measured intensities of isotopes on 100% abundance
̶ calculation of content from the sum of intensities
̶ verified by calibration standard
̶ tested on Ni-based alloy
element EPMA
value [%]
corroded
layer [%]
Ni 74 73
Mo 21 22
Cr 5.0 4.4
Fe 1.3 1.5
TSIN works!
40
̶ determination of elements in corroded layer
̶ imaging of corroded layer (laser beam diameter – 4 μm)
̶ spot by spot
Sample Ni
350 h
Ni
1000 h
A071EV
350 h
A071EV
1000 h
Ni-coating
350 h
Ni-coating
1000 h
Thickness
[m]
20 36 144 162 63 81
the most resistant: pure Ni
21
41
Sample 12 - line
Distance from edge / m
-400 -300 -200 -100 0 100 200 300 400
Intensity/cps
101
102
103
104
105
106
107
108
Na23
Si29
Li7
K39
Ti49
V51
Cr53
Mn55
Fe57
Co59
Ni60
Rb85
Mo98
Cs133
metalcrustembedding
42
̶ improved lateral distribution from single line scan to elemental maps
comparable to EPMA
̶ corrosion provoked by LiF-NaF mixture is very specific
̶ utilization for development of alloys for implants
̶ determination of elements released from implants into tissue (bones, teeth, muscle)
22
43
̶ My colleague geologist: „I have granitoid sample which contains quartz,
mica, feldspar and the other minerals. Would it be possible to obtain
elemental map of the granite?“
44
̶ My colleague geologist: „I have granitoid sample which contains quartz,
mica, feldspar and the other minerals. Would it be possible to obtain
elemental map of the granite?“
My answer: „Yes, no problem.“
23
45
̶ Li-muskovite (mica) from Argamela mine
(Portugal)
46
̶ Li-muskovite (mica) from Argamela mine
(Portugal)
̶ quantification – external calibration with
internal standardization
Ix
wx
𝑤(𝑋) 𝑛𝑜𝑟𝑚 =
𝑤(𝑋) 𝑚𝑒𝑎𝑠 × 𝑤 𝐼𝑆 𝐸𝑃𝑀𝐴
𝑤 𝐼𝑆 𝑚𝑒𝑎𝑠
24
47
̶ Li-muskovite (mica) from Argamela mine
(Portugal)
̶ quantification – external calibration with
internal standardization
Ix
wx
𝑤(𝑋) 𝑛𝑜𝑟𝑚 =
𝑤(𝑋) 𝑚𝑒𝑎𝑠 × 𝑤 𝐼𝑆 𝐸𝑃𝑀𝐴
𝑤 𝐼𝑆 𝑚𝑒𝑎𝑠
w(SiO2)EPMA = 48.1 %
48
Al2O3 Fe2O3
K2O P2O5 MnO
SiO2
48.1 %
25
49
SiO2
48.1 %
Al2O3 Fe2O3
K2O P2O5 MnO
Li2O: 1.1 %
Al2O3: 54.6 %
K2O: 11.8 %
Na2O: 0.7 %
P2O5: 0.5 %
Fe2O3: 4.3 %
SiO2 : 48.1 %
∑ 122.1 %
50
SiO2
48.1 %
Al2O3 Fe2O3
K2O P2O5 MnO
Li2O: 79.3 %
Al2O3: 64.6 %
K2O: 0.7 %
Na2O: 8.5 %
P2O5: 39.7 %
SiO2 48.1 %
∑ 240.9 %
26
51
SiO2
48.1 %
Li2O: 79.3 %
Al2O3: 64.6 %
K2O: 0.7 %
Na2O: 8.5 %
P2O5: 39.7 %
SiO2 48.1 %
∑ 240.9 %
What is wrong?
Al2O3 Fe2O3
K2O P2O5 MnO
52
̶ more detailed view on the sample:
mica core: 45.8 % SiO2
mica rim: 50.5 % SiO2
apatite: < 1 % SiO2
27
53
̶ more detailed view on the sample:
mica core: 45.8 % SiO2
mica rim: 50.5 % SiO2
apatite: < 1 % SiO2
internal standardization is not applicable!
54
̶ external calibration with sum oxide normalization (SON) to 100 %
̶ content of elements to recalculate to oxide form
̶ no complementary analysis (e.g. EPMA)
̶ all main elements of the sample have to be measured
Ix
wx
𝑤(𝑋𝑂) 𝑛𝑜𝑟𝑚 =
𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠 × 100
𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠
28
55
̶ external calibration with sum oxide normalization (SON)
̶ content of elements to recalculate to oxide form
̶ no complementary analysis (e.g. EPMA)
̶ all main elements of the sample have to be measured
Ix
wx
𝑤(𝑋𝑂) 𝑛𝑜𝑟𝑚 =
𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠 × 100
𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠
Does it work?
56
̶ analysis of homogenous sample with easy matrix (CRM)
̶ analysis of real sample (archaeological glass)
̶ analysis of heterogeneous real sample (mica from Argemela)
29
57
̶ glass standard NIST 612
58
̶ glass standard NIST 612
Youden graph:
if: slope = 1, intercept = 0
then: methods are same
30
59
̶ glass standard NIST 612
60
̶ ancient glass – blue beads; Late Bronz Age (1300 A.C.); Holubice (Czech Rep.);
SiO2 – 75.6 % (EPMA)
31
61
̶ ancient glass – blue beads; Late Bronz Age (1300 A.C.); Holubice (Czech Rep.);
SiO2 – 75.6 % (EPMA)
62
Li2O: 1.1 %
Al2O3: 33.9 %
K2O: 9.83 %
Na2O: 0.90 %
Fe2O3: 2.51 %
SiO2 : 45.3 %
F: 4.9 %
...: 1.56 %
∑ 100.0 %
Al2O3 Fe2O3
K2O P2O5 MnO
32
63
̶ mica sample froma Argamela
Youden graph:
if: slope = 1, intercept = 0
then: methods are same
64
Al2O3: 20 – 50 % Rb2O: 0 – 0.8 % K2O: 0 – 10 %
Li2O: 0 – 4% Fe2O3: 0 – 3% MnO: 0 – 0.5 % Na2O: 0 – 1 %
Al2O3 K2O
MnO
Na2O
Li2O
Rb2O
Fe2O3
33
65
̶ normalization on total sum oxide is
applicable for heterogeneous samples
̶ improving of explanations „what happen
with elements during minerals and rocks
forming“
66
̶ Spontaneous regression is the process by which melanoma disappears. What happens
with the elements at spontaneous regression?
34
67
̶ Spontaneous regression is the process by which melanoma disappears. What happens
with the elements at spontaneous regression?
̶ spontaneous regression – the process leading from melanoma (tumour tissue) to healthy
tissue; (GMT – growing melanoma tissue; ESR – early spontaneous regression (approx. 12 weeks); LSR – late
spontaneous regression (approx. 22 weeks); FT – fibrous tissue (30 weeks))
̶ melanoma tissues from Melanoma-bearing Liběchov Minipig (MeLiM)
69
̶ sample preparation (in Institute of Animal Physiology and Genetics, CAS)
̶ cryosections (thickness of 30 μm)
̶ different stages of spontaneous regression
̶ placed on glass slide
̶ laser ablation parameters
̶ laser spot diameter – 100 μm
̶ scan speed – 200 μm
35
70
̶ LA-ICP-MS parameters
̶ laser beam spot – 100 μm
̶ scan speed – 200 μm/s
̶ laser beam fluence – 2 J/cm2
̶ Suppression of different ablation rate
̶ recommended normalization on signal 12C
71
̶ LA-ICP-MS parameters
̶ laser beam spot – 100 μm
̶ scan speed – 200 μm/s
̶ laser beam fluence – 2 J/cm2
̶ Suppression of different ablation rate
̶ recommended normalization on signal 12C
36
72
̶ LA-ICP-MS parameters
̶ laser beam spot – 100 μm
̶ scan speed – 200 μm/s
̶ laser beam fluence – 2 J/cm2
̶ Suppression of different ablation rate
̶ recomended normalization on signal 12C
̶ C is not homogeneous in sample
How to compensate the different ablation rate?
73
tissue
glass
slide
2 J/cm2
37
74
tissue
glass
slide
2 J/cm2 8 J/cm2
75
̶ Higher laser beam fluence
̶ 2 J/cm2
̶ 8 J/cm2
38
76
5 w
7 w
12 w
16 w
22 w
30 w
spontaneousregression
Cu Zn
77
̶ the distribution and content of Cu
and Zn changes significantly
39
78
̶ the distribution and content of Cu
and Zn changes significantly
Can we determine specific protein?
79
̶ ICP-MS – elemental specific detector
̶ proteins – C, O, H, N, S, P, Fe, Cu, Zn, Co …
̶ O, H, N – non-determinable by ICP
̶ S, P, C – part of each protein
40
GAL4
amminopeptidase
80 more than 3000 Zn-binding metalloproteins exists
metallothionein – 7 atoms of Zn
alcoholdehydrogenase
carbonic anhydrase
ERAP1
ICP27_CTD
NCP7
ZIF268
Neprilysin
TOP
Leishmanolysin
Astacin
adamalysin
81
Is there some possibility how to determine specific proteins?
41
82
 immunochemistry
https://www.cellsignal.com/contents/resource
s-applications/flourescent-multiplex-
immunohistochemistry/fluoresence-mihc
83
 immunochemistry
https://www.cellsignal.com/contents/resource
s-applications/flourescent-multiplex-
immunohistochemistry/fluoresence-mihc
Waentig L., et al., JAAS, 2012, 27, 1311-1320
 REE and chelates
MeCAT – 1 REE on 1 chelate
SCN-DOTA – 4 REE on 1 chelate
42
84
 immunochemistry
https://www.cellsignal.com/contents/resource
s-applications/flourescent-multiplex-
immunohistochemistry/fluoresence-mihc
Waentig L., et al., JAAS, 2012, 27, 1311-1320
 REE and chelates
MeCAT – 1 REE on 1 chelate
SCN-DOTA – 4 REE on 1 chelate
Could we amplify the signal?
85
 immunochemistry
https://www.cellsignal.com/contents/resource
s-applications/flourescent-multiplex-
immunohistochemistry/fluoresence-mihc
Waentig L., et al., JAAS, 2012, 27, 1311-1320
 REE and chelates
MeCAT – 1 REE on 1 chelate
SCN-DOTA – 4 REE on 1 chelate
Tvrdoňová M., Využití zobrazování prvků v bioaplikacích, Brno, 2019, Ph.D.
Thesis, Masarykova univerzita, Faculty of Science
 nanoparticles
43
86
̶ scheme of the labelling of Ab
̶ Au NPs – 10 and 60 nm
̶ MeCAT – with Ho
̶ model analyte: protein IgG
87
MeCAT 10 nm Au NPs 60 nm Au NPs
sensitivity 2 × 103 6 × 105 4 × 107
LOD IgG [pg] 260 51 11
sensitivity of NPs is better
than MeCAT by factor 20000
LOD „only“ by 20
=> non-specific sorption of
Au NPs
̶ determination of IgG
̶ antiIgG-AuNPs vs. antiIgG-MeCAT(Ho)
44
88
blank
0.1 ng
1 ng
2.5 ng
0.25 ng
10 ng p53
5 ng
0.5 ng
AuNPsAuNPs-DO-1
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ standard of p53
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
5E5
0 cps
AuNPsAuNPs-DO-1
89
standard of p53 spiked protein ladder
sensitivity
[cps g μg-1]
2.2 × 106 1.2 × 106
LOD p53 [pg] 2 13
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ protein ladder
spiked with p53
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
45
5E5
0 cps
AuNPsAuNPs-DO-1
90
standard of p53 spiked protein ladder
sensitivity
[cps g μg-1]
2.2 × 106 1.2 × 106
LOD p53 [pg] 2 13
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ protein ladder
spiked with p53
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
high specificity of the labelled DO-1
91
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ MCF-7 cells (breast cancer)
̶ MCF-7 cells treated with cis Pt
(doc. Masařík, LF MU)
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
46
92
̶ determination of p53
̶ DO1-Au NPs, negative control Au NPs
̶ MCF-7 cells (breast cancer)
̶ MCF-7 cells treated with cis Pt
cis-Pt treatment
no treatment
Au
Cu
Au
Cu Au
negative control
(Au NPs)
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
93
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ 30 breast tumor samples
(doc. Hrstka, Masaryk Memorial
Cancer Institute)
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
47
94
̶ determination of p53 – supressor of tumors
(„sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ 30 breast cancer samples
Au Na
CaCu
Fe
Zn
KP
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
95
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ 30 breast cancer samples
IHC staining
dark blue (3) – high intensities
lighter blue (2) – middle intensities
light blue (1) – low intensities
Au Na
CCu
FeZn
KP
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
48
96
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ 30 breast cancer samples
Au intensities *107 [cps]
dark blue > 1.5*107 cps
lighter blue 1.4 – 1.1*107 cps
light blue < 1.0*107 cps
IHC staining
dark blue (3) – high intensities
lighter blue (2) – middle intensities
light blue (1) – low intensities
Au Na
CCu
FeZn
KP
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
97
̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1
̶ DO1-Au NPs, negative control Au NPs
̶ 30 breast cancer samples
Au intensities *107 [cps]
dark blue > 1.5*107 cps
lighter blue 1.4 – 1.1*107 cps
light blue < 1.0*107 cps
IHC staining
dark blue (3) – high intensities
lighter blue (2) – middle intensities
light blue (1) – low intensities
Au Na
CCu
FeZn
KP
Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry
49
98
99
50
100
5 groups of mice
̶ inhalation of PbO NPs (20-30 nm) for 2 weeks
̶ inhalation of PbO NPs (20-30 nm) for 6 weeks
̶ inhalation of PbO NPs (20-30 nm) for 11 weeks
̶ clearance –inhalation of clean air for 5 weeks after inhalation PbO NPs (11 weeks)
̶ control group
3 different organs
̶ lung
̶ liver
̶ kidney
101
51
102
Pb in dissolved form or as NPs?
103
̶ LA-ICP-MS – applicable for any type of material
̶ supression of different ablation rate – crucial step for correct results
̶ elemental specific detector + imunochemistry = determination of specific proteins
̶ improving of distribution from single line scan of elements to imaging of specific proteins
Sample 12 - line
Distance from edge / m
-400 -300 -200 -100 0 100 200 300 400
Intensity/cps
101
102
103
104
105
106
107
108
Na23
Si29
Li7
K39
Ti49
V51
Cr53
Mn55
Fe57
Co59
Ni60
Rb85
Mo98
Cs133
metalcrustembedding
2006 2020
52
104
̶ elemental microscope - improving of lateral resolution and shortening time analysis
̶ 1 Mpx images of all elements with resolution 10 μm during 2 hours
̶ molecular microscope – utilization of biorecognition tools
̶ labelling of antibodies – multianalyte detection (a lot of labels – e.g. REE, Au, Ag, QDs,...)
̶ imaging of elements and proteins in one analysis
̶ utilization in clinical analysis
105
Viktor Kanický
Vítězslav Otruba
Markéta Holá
Karel Novotný
Aleš Hrdlička
Michaela Tvrdoňová
Veronika Dillingerová
Lucie Šimoníková
Tereza Warchilová
Kristýná Štůlová
Lenka Pospíchalová
Matej Medvecký
Michaela Tvrdoňová
Veronika Dillingerová
Barbora Svatošová
Aneta Štossová
Zuzana Husáková
Markéta Vejvodová
53
106
doc. Vaculovičová
Dr. Jakubowski
Dr. Horák Dr. Vysloužilová
doc. Buchtová
prof. Uher prof. Gunther
Dr. Breiter
Dr. Venclová
doc. Masařík
Dr. Mikuška
doc. Hrstka
107
GA17-12774S
Využití
vícenásobného
značení pomocí
kovových
nanočástic pro
bio-zobrazování
CEITEC 2020 LQ1601
GA20-02203S
Analýza tkáňové
odpovědi na
inhalaci
nanočástic kovů
a mechanismus
jejich čištění
GA14-13600S
Otevřené
procesy v
granitoidech z
pohledu zonality
minerálů a
horninových
textur
GA13-18154S
Elemental
mapping of plant
and animal
accumulators of
heavy metals;
where are they
accumulated?
GA101/08/1100
Studium interakcí
chladicích médií
za vysokých
teplot s
konstrukčními
materiály
tepelných
výměníků
metodami
plazmové
spektrometrie
GA101/08/1100
Studium interakcí
chladicích médií
za vysokých
teplot s
konstrukčními
materiály
tepelných
výměníků
metodami
plazmové
spektrometrie
ME10012
Laserová ablace
se spektrometrií
v indukčně
vázaném
plazmatu a
spektroskopie
laserem
buzeného
mikroplazmatu v
archeologii a
antropologii
54
THANK YOU FOR YOUR ATTENTION