# Trace element analysis of geological materials by ICP-MS I

DSP analytical geochemistry

C9067

### Markéta Holá, MU Brno



EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání



Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16\_018/0002593

# Outline

- 1. Mass spectrometry. General introduction and history.
- 2. Ion sources for mass spectrometry. Inductively coupled plasma.
- 3. Interface. Ion optics. Mass discrimination. Vacuum system.
- 4. Spectral interferences. Resolution, ion resolution calculations.
- 5. Mass analyzers. Elimination of spectral interferences.
- 6. Non-spectral interference.
- 7. Detectors, expression of results.
- 8. Introduction of samples into plasma.
- 9. Laser ablation for ICP-MS.

10. Excursion in the laboratory.



1000 mbar 10<sup>-5</sup> to 10<sup>-6</sup> mbar 10<sup>-6</sup> to 10<sup>-9</sup> mbar

© www.ms-textbook.com

### **Mass Spectrometry**

### inorganic





Helium Atom

### Mass number=(# protons)+(# neutrons)





### Mass number vs. Atomic mass unit

Mass number - also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus.

**AMU atomic mass unit** - It is a unit of mass used to express atomic or molecule masses. When the mass is expressed in AMU, it roughly reflects the sum of the number of protons and neutrons in the atomic nucleus (electrons have so much less mass that they are assumed to have a negligible effect).

 $m_{\rm u} = m(^{12}{\rm C})/12$  1 AMU = 1 m<sub>u</sub> = 1 Da = 1.66053904020 x 10<sup>-27</sup> kg



### **Mass Spectrometry**

natural isotopes

Isotopes are atoms of the same element, which have different masses – by having varying numbers of neutrons in their nuclei.

Isotopes of elements that occur in nature have a constant abundance relative to another – **RELATIVE NATURAL ABUNDANCE** 



### **Relative Isotopic Abundance Table**



© Agilent Technologies, Inc. 2016 Printed in Japan 68400-90001

**Agilent Technologies** 

# Interferences

### Spectral

mass overlap of the interfering particle and the measured isotope (same m/z - indistinguishable from each other)

### • Non-spectral

influencing the signal intensity of the analyte by the presence of various substances in the sample matrix



isobaric, polyatomic, multiply charged ions



isobaric, polyatomic, double charged species

Mass interferences on a given mass-to-charge-ratio (m/z) are possible due to the presence of **isobars** (e.g.  $^{204}$ Hg,  $^{204}$ Pb),

**polyatomic**/molecular species (e.g., <sup>40</sup>Ar<sup>16</sup>O vs <sup>56</sup>Fe, <sup>40</sup>Ar:<sup>40</sup>Ar vs. <sup>80</sup>Se) formed by various recombinations of sample, matrix and Ar ions in cooler parts of the plasma

multiply charged ions (e.g., <sup>138</sup>Ba<sup>2+</sup> vs. <sup>69</sup>Ga<sup>+</sup>), also formed in the plasma.

isobaric



- Are cause by isotopes of different elements forming atomic ions with the same nominal mass-to-charge ratio (m/z)
- <sup>58</sup>Fe on <sup>58</sup>Ni, <sup>64</sup>Ni on <sup>64</sup>Zn, <sup>48</sup>Ca on <sup>48</sup>Ti
- They are bet avoided by choosing alternative, noninterfered analyte isotopes, if available
- Given acknowledge of the natural abundances of the isotopes of all elements, isobaric interferences are easily corrected by measuring the intensity of another isotope of the interfering element and substracting the appropriate correction factor from the intensity of the interfered isotope.

Tabulka 1: Přehled atomárních izobarických interferencí a volba alternativních izotopů

| dominantní izotop          |                                          | interferující izotop                                  | alternativní izotop                                   |
|----------------------------|------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| <sup>40</sup> Ca (96,9 %)  | j.                                       | <sup>40</sup> Ar (99,6)                               | <sup>42</sup> Ca (0,65 %), <sup>43</sup> Ca (0,14 %), |
|                            |                                          | - st <sup>al</sup> to                                 | <sup>44</sup> Ca (2,09 %)                             |
| <sup>48</sup> Ti (73,7 %)  | Ş.                                       | <sup>48</sup> Ca (0,19 %)                             | <sup>46</sup> Ti (8,25 %)                             |
| <sup>58</sup> Ni (68,1 %)  | i,                                       | <sup>58</sup> Fe (0,28 %)                             | <sup>60</sup> Ni (26,2 %)                             |
| <sup>64</sup> Zn (48,6 %)  |                                          | <sup>64</sup> Zn (0,93 %)                             | <sup>66</sup> Zn (27, 9 %)                            |
| <sup>74</sup> Ge (35,9 %)  |                                          | <sup>74</sup> Se (0,89 %)                             | <sup>72</sup> Ge (27,7 %)                             |
| <sup>80</sup> Se (49,6 %)  |                                          | <sup>80</sup> Kr (2,28 %)                             | <sup>77</sup> Se (7,64 %)                             |
| <sup>96</sup> Mo (16,7 %)  |                                          | <sup>96</sup> Zr (2,80 %), <sup>96</sup> Ru (5,54 %)  | <sup>95</sup> Mo (15,9 %)                             |
| <sup>102</sup> Ru (31,6 %) |                                          | <sup>102</sup> Pd (1,02 %)                            | <sup>101</sup> Ru (17,1 %)                            |
| <sup>106</sup> Pd (27,3 %) |                                          | <sup>106</sup> Cd (1,25 %)                            | <sup>105</sup> Pd (22,3 %)                            |
| <sup>114</sup> Cd (28,7 %) |                                          | <sup>114</sup> Sn (0,66 %)                            | <sup>111</sup> Cd (12,8 %)                            |
| <sup>115</sup> In (95,7 %) | 1                                        | <sup>115</sup> Sn (0,34 %)                            |                                                       |
| <sup>113</sup> In (4,3 %)  | ł                                        | <sup>113</sup> Cd (12,2 %)                            |                                                       |
| <sup>120</sup> Sn (32,6 %) | n San San San San San San San San San Sa | <sup>120</sup> Te (0,10 %)                            | <sup>118</sup> Sn (24,2 %)                            |
| <sup>130</sup> Te (33,8 %) |                                          | <sup>130</sup> Xe (4,1 %), <sup>130</sup> Ba (0,1 %)  | <sup>125</sup> Te (7,14 %)                            |
| <sup>138</sup> Ba (71,7 %) | <i>x</i> <sup>2</sup>                    | <sup>138</sup> La (0,1 %), <sup>138</sup> Ce (0,25 %) | <sup>137</sup> Ba (11,2 %)                            |
| <sup>142</sup> Nd (27,2 %) |                                          | <sup>142</sup> Ce (11,1 %)                            | <sup>146</sup> Nd (17,2 %)                            |
| <sup>152</sup> Sm (26,7 %) |                                          | <sup>152</sup> Gd (0,2 %)                             | <sup>147</sup> Sm (15,0 %)                            |
| <sup>164</sup> Dy (28,2 %) |                                          | <sup>164</sup> Er (1,61 %)                            | <sup>163</sup> Dy (24,9 %)                            |
| <sup>174</sup> Yb (31,8 %) |                                          | <sup>174</sup> Hf (0,16 %)                            | <sup>172</sup> Yb (21,8 %)                            |
| <sup>180</sup> Hf (35,1 %) |                                          | <sup>180</sup> Ta (0,01 %), <sup>180</sup> W (0,12 %) | <sup>178</sup> Hf (27,3 %)                            |
| <sup>184</sup> W (30,6 %)  |                                          | <sup>184</sup> Os (0,02 %)                            | <sup>182</sup> W (26,5 %)                             |
| <sup>187</sup> Re (62,6 %) | ÷                                        | <sup>187</sup> Os (1,96 %)                            | <sup>185</sup> Re (37,4 %)                            |
| <sup>192</sup> Os (40,8 %) | 3                                        | <sup>192</sup> Pt (0,78 %)                            | <sup>189</sup> Os (16,1 %)                            |
|                            | 100                                      |                                                       |                                                       |

### Isobaric interferences

geochronology

U-(Th)-Pb system

$$\frac{\left(\frac{207 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{P}}{\left(\frac{206 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{I}} = \left(\frac{206 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{I} + \left(\frac{238 \,\mathrm{U}}{204 \,\mathrm{Pb}}\right)_{P} (e^{\lambda_{235}t} - 1)$$

$$= \left(\frac{\left(\frac{207 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{P}}{\left(\frac{206 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{I}} - \left(\frac{207 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{I}}{\left(\frac{206 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{P}} - \left(\frac{207 \,\mathrm{Pb}}{204 \,\mathrm{Pb}}\right)_{I}} \right) = \left(\frac{1}{137.88}\right) \left(\frac{e^{\lambda_{235}t} - 1}{e^{\lambda_{238}t} - 1}\right)$$



|    | 193  | 194   | 195   | 196   | 197 | 198                                   | 199   | 200        | 201   | 202   | 203   | 204  | 205   | 206    | 207  | 208  |    |
|----|------|-------|-------|-------|-----|---------------------------------------|-------|------------|-------|-------|-------|------|-------|--------|------|------|----|
| Ir | 62.7 |       |       |       | 12  |                                       |       |            |       |       |       |      |       |        |      |      | lr |
| Pt |      | 32.86 | 33.78 | 25.21 |     | 7.356                                 |       |            |       |       |       |      |       |        |      |      | Pt |
| Au |      |       |       |       | 100 |                                       |       | 1          |       |       |       |      |       |        |      |      | Au |
| Hg |      |       |       | 0.15  |     | 9.97                                  | 16.87 | 23.10      | 13.18 | 29.86 |       | 6.87 |       |        |      |      | Hg |
| TI |      |       |       |       |     | C C C C C C C C C C C C C C C C C C C |       | Lances and |       |       | 29.52 |      | 70.48 |        |      |      | TI |
| Pb |      |       |       |       |     |                                       |       |            |       |       |       | 1.4  |       | 24.1   | 22.1 | 52.4 | Pb |
|    | 209  | 210   | 211   | 212   | 213 | 214                                   | 215   | 216        | 217   | 218   | 219   | 220  | 221   | 222    | 223  | 224  |    |
| Bi | 100  |       |       |       |     |                                       |       |            |       |       |       |      |       |        |      |      | Bi |
|    | 225  | 226   | 227   | 228   | 229 | 230                                   | 231   | 232        | 233   | 234   | 235   | 236  | 237   | 238    | 239  | 240  |    |
| Th |      |       |       |       |     |                                       |       | 100        |       |       |       |      |       |        |      |      | Th |
| U  |      |       |       |       | 1   |                                       |       |            |       | 0.005 | 0.720 |      |       | 99.274 |      |      | U  |



*Figure 9*. Standard mode scan of 1 ppb Hg and 1 ppb Pb. Pb isotope abundances shown as green bars.

https://resources.perkinelmer.com/

polyatomic

- are formed in the plasma by a combination of different ions
- the degree of interference can be influenced by the conditions in the plasma - ionization conditions (power input to the plasma, position of the plasma torch...) - tuning of the device
- Ions originate from:

working gas (argon, laser ablation He)

sample matrix

solvent

### example <sup>40</sup>Ar<sup>16</sup>O vs. <sup>56</sup>Fe

solutoin: use of alternative isotope <sup>57</sup>Fe analyser with high resolution (10 000) <sup>40</sup>Ar<sup>16</sup>O 55,957 vs. <sup>56</sup>Fe 55,935





figure 6.1 - Interference correction

### **Interference Correction Equations**

•Ar<sup>40</sup>Cl<sup>35</sup> interferes with the analyte of interest, As<sup>75</sup>, at mass 75.

Ar<sup>40</sup>Cl<sup>37</sup> only •Assuming that the other ArCl peak at mass 77 is not itself being interfered with, its peak intensity can be used to estimate the contribution of Ar<sup>40</sup>Cl<sup>35</sup> to the peak at mass 75.

> •Because Cl<sup>35</sup> and Cl<sup>37</sup> are in a fixed natural ratio, the ArCl contribution at mass 75 can be estimated by multiplying the signal at mass 77 by the natural isotope ratio Cl<sup>35</sup>/Cl<sup>37</sup>.

> •Once the contribution of ArCl at mass 75 is estimated, its intensity can be simply subtracted from the total signal intensity at mass 75, leaving the intensity due to the analyte of interest, As<sup>75</sup>.

As75=I75-(I77\*(75.77/24.23))

### A Table of Polyatomic Interferences in ICP-MS

Thomas W. May and Ray H. Wiedmeyer U.S. Geological Survey, Biological Resources Division **Columbia Environmental Research Center** 4200 New Haven Road, Columbia, MO 65201 USA

pheric gases.

Spectroscopic interferences are probably the largest class of interferences in ICP-MS and are caused by atomic or molecular ions that have the same mass-to-charge as analytes of interest. Current ICP-MS instrumental software corrects for all known atomic "isobaric" interferences, or those caused by overlapping isotopes of different elements, but does not correct for most polyatomic interferences. Such interferences are caused by polyatomic ions that are formed from precursors having numerous

sources, such as the sample matrix, number of interferences themselves, reagents used for preparation, and the number of literature referplasma gases, and entrained atmosences in which they are reported. In a review of the ICP-MS literature, reported polyatomic interferences A prior knowledge of polyatomic were consolidated to produce a interferences cited in the literature table that may serve as a useful tool for a particular analyte mass may be for the ICP-MS analyst. For quick helpful to the analyst for selecting reference, the masses are atranged reagents and conditions that would in alphabetical order by elemental preclude or at least reduce the possymbol. This list of interferences is sibility of their formation. A good not intended to be complete, but perspective of known polyatomic does cover those more frequently interferences is difficult because of reported. the number of affected masses, the

### A Table of Polyatomic Interferences in ICP-MS

| Isotope           | Abundance | Interference                                                                                                                                                                                                                                        | Reference                  |
|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <sup>107</sup> Ag | 51.8      | <sup>91</sup> Zr <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                       | (6)(9)                     |
| 109Ag             | 48.2      | <sup>92</sup> Zr <sup>16</sup> O <sup>1</sup> H <sup>+</sup>                                                                                                                                                                                        | (9)                        |
| <sup>27</sup> Al  | 100.      | <sup>12</sup> C <sup>15</sup> N <sup>+</sup> , <sup>13</sup> C <sup>14</sup> N <sup>+</sup> , <sup>14</sup> N <sup>2</sup> spread, <sup>1</sup> H <sup>12</sup> C <sup>14</sup> N <sup>+</sup>                                                      | (11)(18)(29)               |
| <sup>75</sup> As  | 100.      | <sup>40</sup> Ar <sup>35</sup> Cl <sup>+</sup> , <sup>59</sup> Co <sup>16</sup> O <sup>+</sup> , <sup>36</sup> Ar <sup>38</sup> Ar <sup>1</sup> H <sup>+</sup> , <sup>38</sup> Ar <sup>37</sup> Cl <sup>+</sup> , <sup>36</sup> Ar <sup>39</sup> K, | (2)(9)(15)(19)(22)(33)(34) |
|                   |           | <sup>43</sup> Ca <sup>16</sup> O <sub>2</sub> , <sup>23</sup> Na <sup>12</sup> C <sup>40</sup> Ar, <sup>12</sup> C <sup>31</sup> P <sup>16</sup> O <sub>2</sub> +                                                                                   | (35)                       |
| <sup>197</sup> Au | 100.      | <sup>181</sup> Ta <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                      | (9)                        |
| <sup>11</sup> B   | 80.09     | <sup>12</sup> C spread                                                                                                                                                                                                                              | (18)                       |
| <sup>130</sup> Ba | 0.106     | <sup>98</sup> Ru <sup>16</sup> O <sub>2</sub> <sup>+</sup>                                                                                                                                                                                          | (32)                       |
| <sup>132</sup> Ba | 0.101     | <sup>100</sup> Ru <sup>16</sup> O <sub>2</sub> +                                                                                                                                                                                                    | (32)                       |
| 134Ba             | 2.417     | $^{102}$ Ru <sup>16</sup> O <sub>2</sub> +                                                                                                                                                                                                          | (32)                       |
| 136Ba             | 7.854     | <sup>104</sup> Ru <sup>16</sup> O <sub>2</sub> <sup>+</sup>                                                                                                                                                                                         | (32)                       |
| <sup>209</sup> Bi | 100.      | <sup>193</sup> Ir <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                      | (32)                       |
| <sup>79</sup> Br  | 50.54     | 40Ar <sup>39</sup> K <sup>+</sup> , <sup>31</sup> P <sup>16</sup> O <sub>3</sub> <sup>+</sup> , <sup>38</sup> Ar <sup>40</sup> Ar <sup>1</sup> H <sup>+</sup>                                                                                       | (19)(22)                   |
| <sup>81</sup> Br  | 49.46     | ${}^{32}S^{16}O_{3}{}^{1}H^{+}$ , ${}^{40}Ar^{40}Ar^{1}H^{+}$ , ${}^{33}S^{16}O_{3}{}^{+}$                                                                                                                                                          | (19)(22)                   |
| <sup>40</sup> Ca  | 96.97     | <sup>40</sup> Ar <sup>+</sup>                                                                                                                                                                                                                       | (4)(22)                    |
| <sup>42</sup> Ca  | 0.64      | 40Ar1H2                                                                                                                                                                                                                                             | (12)(22)                   |
| <sup>43</sup> Ca  | 0.145     | <sup>27</sup> Al <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                       | (21)                       |
| 44Ca              | 2.06      | <sup>12</sup> C <sup>16</sup> O <sub>2</sub> , <sup>14</sup> N <sub>2</sub> <sup>16</sup> O <sup>+</sup> , <sup>28</sup> Si <sup>16</sup> O <sup>+</sup>                                                                                            | (12)(22)(29)               |
| <sup>46</sup> Ca  | 0.003     | <sup>14</sup> N <sup>16</sup> O <sub>2</sub> <sup>+</sup> , <sup>32</sup> S <sup>14</sup> N <sup>+</sup>                                                                                                                                            | (22)                       |
| <sup>48</sup> Ca  | 0.19      | 33S15N+, 34S14N+, 32S16O+                                                                                                                                                                                                                           | (22)                       |
| 110Cd             | 12.5      | <sup>39</sup> K <sub>2</sub> <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                           | (6)                        |
| 111Cd             | 12.8      | <sup>95</sup> Mo <sup>16</sup> O <sup>+</sup> , <sup>94</sup> Zr <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>39</sup> K <sub>2</sub> <sup>16</sup> O <sub>2</sub> <sup>1</sup> H <sup>+</sup>                                                | (1)(6)                     |
| 112Cd             | 24.1      | 40Ca216O2, 40Ar216O2, 96Ru16O+                                                                                                                                                                                                                      | (6)(32)                    |
| 113Cd             | 12.22     | ${}^{96}$ Zr ${}^{16}$ O ${}^{1}$ H <sup>+</sup> , ${}^{40}$ Ca ${}_{2}{}^{16}$ O ${}_{2}{}^{1}$ H <sup>+</sup> , ${}^{40}$ Ar ${}_{2}{}^{16}$ O ${}_{2}{}^{1}$ H <sup>+</sup> , ${}^{96}$ Ru ${}^{17}$ O <sup>+</sup>                              | (1)(6)(32)                 |
| 114Cd             | 28.7      | <sup>98</sup> Mo <sup>16</sup> O <sup>+</sup> , <sup>98</sup> Ru <sup>16</sup> O <sup>+</sup>                                                                                                                                                       | (6)(32)                    |
| 116Cd             | 7.49      | <sup>100</sup> Ru <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                      | (32)                       |
|                   |           |                                                                                                                                                                                                                                                     |                            |

### Sep./Oct. 1998

### A Table of Polyatomic Interferences in ICP-MS (cont'd)

| Isotope           | Abundance | Interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference                             |
|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 35CI              | 75.77     | <sup>16</sup> O <sup>18</sup> O <sup>1</sup> H <sup>+</sup> , <sup>34</sup> S <sup>1</sup> H <sup>+</sup> , <sup>35</sup> Cl <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                         | (22)                                  |
| 37CI              | 24.23     | <sup>36</sup> Ar <sup>1</sup> H <sup>+</sup> , <sup>36</sup> S <sup>1</sup> H <sup>+</sup> , <sup>37</sup> Cl <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (22)                                  |
| <sup>59</sup> Co  | 100.      | ${}^{43}Ca^{16}O^+,{}^{42}Ca^{16}O^1H^+,{}^{24}Mg^{35}Cl^+,{}^{36}Ar^{23}Na^+,{}^{40}Ar^{18}O^1H^+,$ ${}^{40}Ar^{19}F^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5)(8)(9)(13)(19)(22)(29)(34)         |
| 50Cr              | 4.35      | $34S^{16}O^+$ , $36Ar^{14}N^+$ , $35Cl^{15}N^+$ , $36S^{14}N^+$ , $32S^{18}O^+$ , $33S^{17}O^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2)(15)(22)                           |
| <sup>52</sup> Cr  | 83.76     | <sup>35</sup> Cl <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>40</sup> Ar <sup>12</sup> C <sup>+</sup> , <sup>36</sup> Ar <sup>16</sup> O <sup>+</sup> , <sup>37</sup> Cl <sup>15</sup> N <sup>+</sup><br><sup>34</sup> Sl <sup>8</sup> O <sup>+</sup> , <sup>36</sup> Sl <sup>16</sup> O <sup>+</sup> , <sup>38</sup> Ar <sup>14</sup> N <sup>+</sup> , <sup>36</sup> Ar <sup>15</sup> N <sup>1</sup> H <sup>+</sup> , <sup>35</sup> Cl <sup>17</sup> O <sup>+</sup>                                                                                                       | (1)(2)(9)(15)(18)<br>(19)(22)(29)(35) |
| 53Cr              | 9.51      | <sup>37</sup> Cl <sup>16</sup> O <sup>+</sup> , <sup>38</sup> Ar <sup>15</sup> N <sup>+</sup> , <sup>38</sup> Ar <sup>14</sup> N <sup>1</sup> H <sup>+</sup> , <sup>36</sup> Ar <sup>17</sup> O <sup>+</sup> , <sup>36</sup> Ar <sup>16</sup> O <sup>1</sup> H <sup>+</sup> ,<br><sup>35</sup> Cl <sup>17</sup> O <sup>1</sup> H <sup>+</sup> , <sup>35</sup> Cl <sup>18</sup> O <sup>+</sup> , <sup>36</sup> Sl <sup>17</sup> O <sup>+</sup> , <sup>40</sup> Ar <sup>13</sup> C <sup>+</sup>                                                                                     | (1)(22)(29)(34)                       |
| <sup>54</sup> Cr  | 2.38      | ${}^{37}\text{Cl}{}^{16}\text{O}{}^{1}\text{H}{}^{+}, {}^{40}\text{Ar}{}^{14}\text{N}{}^{+}, {}^{38}\text{Ar}{}^{15}\text{N}{}^{1}\text{H}{}^{+}, {}^{36}\text{Ar}{}^{18}\text{O}{}^{+}, {}^{38}\text{Ar}{}^{16}\text{O}{}^{+}, \\ {}^{36}\text{Ar}{}^{17}\text{O}{}^{1}\text{H}{}^{+}, {}^{37}\text{Cl}{}^{17}\text{O}{}^{+}, {}^{19}\text{F}{}_{2}{}^{16}\text{O}{}^{+}$                                                                                                                                                                                                        | (2)(22)(29)(34)                       |
| 133Cs             | 100.      | <sup>101</sup> Ru <sup>16</sup> O <sub>2</sub> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (32)                                  |
| <sup>63</sup> Cu  | 69.1      | ${}^{31}P^{16}O_2{}^+, {}^{40}Ar^{23}Na^+, {}^{47}Ti^{16}O^+, {}^{23}Na^{40}Ca^+, {}^{46}Ca^{16}O^1H^+, \\ {}^{36}Ar^{12}C^{14}N^1H^+, {}^{14}N^{12}C^{37}Cl^+, {}^{16}O^{12}C^{35}Cl^+$                                                                                                                                                                                                                                                                                                                                                                                          | (2)(9)(19)(28)(29)                    |
| 65Cu              | 30.9      | $\label{eq:states} \begin{split} & \overset{49}{}T1^{16}O^+,  \overset{52}{}S1^{5}O_2^{-1}H^+,  \overset{60}{}Ar^{25}Mg^+,  \overset{60}{}Ca^{16}O^{1}H^+,  \overset{56}{}Ar^{14}N_2^{-1}H^+, \\ & \overset{52}{}S2^{53}S^+,  \overset{52}{}S1^{6}O^{17}O^+,  \overset{53}{}S1^{16}O_2^+,  \overset{12}{}C^{16}O^{57}Cl^+,  \overset{12}{}C^{18}O^{55}Cl^+, \\ & \overset{51}{}p1^{6}O^{18}O^+ \end{split}$                                                                                                                                                                       | (5)(15)(17)(21)(22)(29)(34)           |
| 163Dy             | 24.97     | <sup>147</sup> Sm <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (27)(38)                              |
| 166Er             | 33.6      | 160Nd16O, 150Sm16O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (38)                                  |
| 167Er             | 22.94     | <sup>151</sup> Eu <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (27)                                  |
| <sup>151</sup> Eu | 47.82     | 135Ba16O+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (23)(27)                              |
| 153Eu             | 52.2      | 137Ba16O+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (9)(38)                               |
| <sup>54</sup> Fe  | 5.82      | <sup>37</sup> Cl <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>40</sup> Ar <sup>14</sup> N, <sup>38</sup> Ar <sup>15</sup> N <sup>1</sup> H <sup>+</sup> , <sup>36</sup> Ar <sup>18</sup> O <sup>+</sup> , <sup>38</sup> Ar <sup>16</sup> O <sup>+</sup> , <sup>36</sup> Ar <sup>17</sup> O <sup>1</sup> H <sup>+</sup> , <sup>36</sup> Sl <sup>18</sup> O <sup>+</sup> , <sup>35</sup> Cl <sup>18</sup> O <sup>1</sup> H <sup>+</sup> , <sup>37</sup> Cl <sup>17</sup> O                                                                                                    | (15)(18)(22)(29)(36)                  |
| <sup>56</sup> Fe  | 91.66     | $^{40}Ar^{16}O^+,^{40}Ca^{16}O^+,^{40}Ar^{15}N^1H^+,^{38}Ar^{18}O^+,^{38}Ar^{17}O^1H^+$ $^{37}Cl^{18}O^1H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)(22)(29)                           |
| <sup>57</sup> Fe  | 2.19      | <sup>40</sup> Ar <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>40</sup> Ca <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>40</sup> Ar <sup>17</sup> O <sup>+</sup> , <sup>38</sup> Ar <sup>18</sup> O <sup>1</sup> H <sup>+</sup> , <sup>38</sup> Ar <sup>19</sup> F <sup>+</sup>                                                                                                                                                                                                                                                                                        | (8)(9)(21)(22)(29)(34)                |
| <sup>58</sup> Fe  | 0.33      | <sup>40</sup> Ar <sup>18</sup> O+, <sup>40</sup> Ar <sup>17</sup> O <sup>1</sup> H+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (22)                                  |
| <sup>69</sup> Ga  | 60.16     | $^{35}Cl^{16}O^{18}O^+, ^{35}Cl^{17}O_2^+, ^{37}Cl^{16}O_2^+, ^{36}At^{33}S^+, ^{33}S^{18}O_2^+, ^{34}S^{17}O^{18}O^+, ^{36}S^{16}O^{17}O^+, ^{33}S^{36}S^+$                                                                                                                                                                                                                                                                                                                                                                                                                      | (22)                                  |
| <sup>71</sup> Ga  | 39.84     | $^{35}\text{Cl}^{18}\text{O}_2^+,^{37}\text{Cl}^{16}\text{O}^{18}\text{O}^+,^{37}\text{Cl}^{17}\text{O}_2^+,^{36}\text{Ar}^{35}\text{Cl}^+,^{36}\text{S}^{17}\text{O}^{18}\text{O}^+,\\ ^{38}\text{Ar}^{33}\text{S}^+$                                                                                                                                                                                                                                                                                                                                                            | (22)                                  |
| 155Gd             | 14.8      | 139La16O+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3)                                   |
| 157Gd             | 15.68     | <sup>138</sup> B <sup>19</sup> F <sup>+</sup> , <sup>141</sup> Pr <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (26)(27)                              |
| <sup>70</sup> Ge  | 20.51     | <sup>40</sup> Ar <sup>14</sup> N <sup>16</sup> O <sup>+</sup> , <sup>35</sup> Cl <sup>17</sup> O <sup>18</sup> O <sup>+</sup> , <sup>37</sup> Cl <sup>16</sup> O <sup>17</sup> O <sup>+</sup> , <sup>34</sup> S <sup>18</sup> O <sub>2</sub> <sup>+</sup> , <sup>36</sup> S <sup>16</sup> O <sup>18</sup> O <sup>+</sup><br><sup>36</sup> S <sup>17</sup> O <sub>2</sub> <sup>+</sup> , <sup>34</sup> S <sup>36</sup> S <sup>+</sup> , <sup>36</sup> Ar <sup>34</sup> S <sup>+</sup> , <sup>38</sup> Ar <sup>32</sup> S <sup>+</sup> , <sup>35</sup> Cl <sub>2</sub> <sup>+</sup> | , (22)(30)                            |
| <sup>72</sup> Ge  | 27.4      | ${}^{36}Ar_{2^+}, {}^{37}C1^{17}O^{18}O^+, {}^{35}C1^{37}C1^+, {}^{36}S^{18}O_{2^+}, {}^{36}S_{2^+}, {}^{36}Ar^{36}S^+$<br>${}^{56}Fe^{16}O^+, {}^{40}Ar^{16}O_{2^+}, {}^{40}Ca^{16}O_{2^+}, {}^{40}Ar^{32}S^+$                                                                                                                                                                                                                                                                                                                                                                   | (22)(28)                              |
| <sup>73</sup> Ge  | 7.76      | ${}^{36}\mathrm{Ar_2}{}^{1}\mathrm{H^+}, {}^{37}\mathrm{Cl}{}^{18}\mathrm{O_2}{}^{+}, {}^{36}\mathrm{Ar}{}^{37}\mathrm{Cl}{}^{+}, {}^{38}\mathrm{Ar}{}^{35}\mathrm{Cl}{}^{+}, {}^{40}\mathrm{Ar}{}^{33}\mathrm{S}{}^{+}$                                                                                                                                                                                                                                                                                                                                                          | (22)                                  |
| <sup>74</sup> Ge  | 36.56     | <sup>40</sup> Ar <sup>34</sup> S <sup>+</sup> , <sup>36</sup> Ar <sup>38</sup> Ar <sup>+</sup> , <sup>37</sup> Cl <sup>37</sup> Cl <sup>+</sup> , <sup>38</sup> Ar <sup>36</sup> S <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                   | (22)                                  |
| <sup>76</sup> Ge  | 7.77      | ${}^{36}Ar^{40}Ar^+$ , ${}^{38}Ar^{38}Ar^+$ , ${}^{40}Ar^{36}S^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (22)                                  |
| 177Hf             | 18.5      | 161Dy16O+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (27)                                  |
| 165Ho             | 100.      | 149Sm16O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (27)                                  |

tomic Spectroscopy Vol. 19(5), September/October 1998



|                   | A I       | able of Polyatomic Interferences in ICP-M8 (cont d)                                                                                                                                                                                                                                                                                                             |                        |
|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Isotope           | Abundance | Interference                                                                                                                                                                                                                                                                                                                                                    | Reference              |
| 113In             | 4.3       | <sup>96</sup> Ru <sup>17</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                   | (32)                   |
| <sup>39</sup> K   | 93.08     | <sup>38</sup> Ar <sup>1</sup> H <sup>+</sup>                                                                                                                                                                                                                                                                                                                    | (22)(29)               |
| 40K               | 0.01      | <sup>40</sup> Ar <sup>+</sup>                                                                                                                                                                                                                                                                                                                                   | (22)                   |
| 41K               | 6.91      | <sup>40</sup> Ar <sup>1</sup> H <sup>+</sup>                                                                                                                                                                                                                                                                                                                    | (22)                   |
| <sup>78</sup> Kr  | 0.35      | <sup>38</sup> Ar <sup>₄</sup> 0Ar+                                                                                                                                                                                                                                                                                                                              | (22)                   |
| <sup>80</sup> Kr  | 2.27      | 40Ar2+, 32S16O3+                                                                                                                                                                                                                                                                                                                                                | (22)                   |
| <sup>82</sup> Kf  | 11.56     | ${}^{40}\mathrm{Ar}{}^{40}\mathrm{Ar}{}^{11}\mathrm{H}{}_{2}{}^{+},{}^{34}\mathrm{S}{}^{16}\mathrm{O}{}_{3}{}^{+},{}^{33}\mathrm{S}{}^{16}\mathrm{O}{}_{3}{}^{1}\mathrm{H}{}^{+}$                                                                                                                                                                               | (22)                   |
| <sup>83</sup> Kr  | 11.55     | <sup>34</sup> S <sup>16</sup> O <sub>3</sub> <sup>1</sup> H <sup>+</sup>                                                                                                                                                                                                                                                                                        | (22)                   |
| <sup>84</sup> Kr  | 56.9      | <sup>36</sup> S <sup>16</sup> O <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                       | (22)                   |
| 175Lu             | 97.41     | <sup>159</sup> Tb <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | (27)(38)               |
| <sup>24</sup> Mg  | 78.7      | <sup>12</sup> C <sub>2</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                                       | (29)                   |
| <sup>25</sup> Mg  | 10.13     | ${}^{12}C_{2}{}^{1}H^{+}$                                                                                                                                                                                                                                                                                                                                       | (29)                   |
| <sup>26</sup> Mg  | 11.17     | <sup>12</sup> C <sup>14</sup> N <sup>+</sup> , <sup>12</sup> C <sub>2</sub> <sup>1</sup> H <sub>2</sub> <sup>+</sup> , <sup>12</sup> C <sup>13</sup> C <sup>1</sup> H <sup>+</sup>                                                                                                                                                                              | (29)                   |
| 55Mn              | 100.      | ${}^{40}Ar^{14}N^{1}H^{+}, {}^{39}K^{16}O^{+}, {}^{37}Cl^{18}O^{+}, {}^{40}Ar^{15}N^{+}, {}^{38}Ar^{17}O^{+}, {}^{36}Ar^{18}O^{1}H^{+}$ (2)                                                                                                                                                                                                                     | 9(9)(11)(19)(22)(29)(3 |
|                   |           | <sup>38</sup> Ar <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>37</sup> Cl <sup>17</sup> O <sup>1</sup> H <sup>+</sup> , <sup>23</sup> Na <sup>32</sup> S <sup>+</sup> , <sup>36</sup> Ar <sup>19</sup> F <sup>+</sup>                                                                                                                                     | (35)                   |
| <sup>94</sup> Mo  | 9.3       | <sup>39</sup> K <sub>2</sub> <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                       | (11)                   |
| <sup>95</sup> Mo  | 15.9      | 40Ar39K16O+, 79Br16O+                                                                                                                                                                                                                                                                                                                                           | (11)                   |
| <sup>96</sup> Mo  | 16.7      | <sup>39</sup> K <sup>41</sup> K <sup>16</sup> O <sup>+</sup> , <sup>79</sup> Bf <sup>17</sup> O <sup>+</sup>                                                                                                                                                                                                                                                    | (11)                   |
| <sup>97</sup> Mo  | 9.6       | <sup>40</sup> Ar <sub>2</sub> <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>40</sup> Ca <sub>2</sub> <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>40</sup> Ar <sup>41</sup> K <sup>16</sup> O <sup>+</sup> , <sup>81</sup> Br <sup>16</sup> O <sup>+</sup>                                                                                           | (6)(11)                |
| <sup>98</sup> Mo  | 24.1      | <sup>81</sup> Br <sup>17</sup> O <sup>+</sup> , <sup>41</sup> K <sub>2</sub> O <sup>+</sup>                                                                                                                                                                                                                                                                     | (6)(11)                |
| <sup>144</sup> Nd | 23.80     | <sup>96</sup> Ru <sup>16</sup> O <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                      | (32)                   |
| 146Nd             | 17.19     | <sup>98</sup> Ru <sup>16</sup> O <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                      | (32)                   |
| 148Nd             | 5.76      | <sup>100</sup> Ru <sup>16</sup> O <sup>3+</sup>                                                                                                                                                                                                                                                                                                                 | (32)                   |
| 150Nd             | 5.64      | <sup>102</sup> Ru <sup>16</sup> O <sub>3</sub> +                                                                                                                                                                                                                                                                                                                | (32)                   |
| <sup>58</sup> Ni  | 67.77     | $^{23}Na^{35}Cl^+$ , $^{40}Ar^{18}O^+$ , $^{40}Ca^{18}O^+$ , $^{40}Ca^{17}O^1H^+$ , $^{42}Ca^{16}O^+$ , $^{29}Si_2^+$ , (9)(<br>$^{40}Ar^{17}O^1H^+$ , $^{23}Na^{35}Cl^+$                                                                                                                                                                                       | 16)(18)(19)(20)(22)(2  |
| 60Ni              | 26.16     | 44Ca16O+, 23Na37Cl+, 43Ca16O1H+                                                                                                                                                                                                                                                                                                                                 | (3)(13)(26)(29)        |
| 61Ni              | 1.25      | 44Ca16O1H+, 45Sc16O+                                                                                                                                                                                                                                                                                                                                            | (1)(25)                |
| 62Ni              | 3.66      | 46Ti16O+, 23Na39K+, 46Ca16O+                                                                                                                                                                                                                                                                                                                                    | (1)(9)(25)             |
| 64Ni              | 1.16      | <sup>32</sup> S <sup>16</sup> O <sub>2</sub> <sup>+</sup> , <sup>32</sup> S <sub>2</sub> <sup>+</sup>                                                                                                                                                                                                                                                           | (22)(29)               |
| 31 <b>p</b>       | 100.      | $^{14}N^{16}O^{1}H^{+}, ^{15}N^{15}N^{1}H^{+}, ^{15}N^{16}O^{+}, ^{14}N^{17}O^{+}, ^{13}C^{18}O^{+}, ^{12}C^{18}O^{1}H^{+}$                                                                                                                                                                                                                                     | (3)(22)(29)            |
| <sup>206</sup> Pb | 24.1      | <sup>190</sup> Pt <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | (32)                   |
| <sup>207</sup> Pb | 22.1      | <sup>191</sup> Ir <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | (32)                   |
| <sup>208</sup> Pb | 52.4      | <sup>192</sup> Pt <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | (32)                   |
| 105Pd             | 22.3      | <sup>40</sup> Ar <sup>65</sup> Cu <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | (9)                    |
| <sup>103</sup> Rh | 100.      | <sup>40</sup> Ar <sup>63</sup> Cu <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | (9)(26)                |
| <sup>101</sup> Ru | 17.0      | 40Ar61Ni+, 64Ni37Cl+                                                                                                                                                                                                                                                                                                                                            | (9)                    |
| <sup>32</sup> S   | 95.02     | ${}^{16}O_2^*, {}^{16}N^{18}O^+, {}^{15}N^{17}O^+, {}^{16}N^{17}O^1H^+, {}^{15}N^{16}O^1H^+, {}^{32}S^+$<br>${}^{14}N^{16}O^1H_2^*$                                                                                                                                                                                                                             | (9)(22)(29)            |
| 33S               | 0.75      | <sup>15</sup> N <sup>18</sup> O <sup>+</sup> , <sup>14</sup> N <sup>18</sup> O <sup>1</sup> H <sup>+</sup> , <sup>15</sup> N <sup>17</sup> O <sup>1</sup> H <sup>+</sup> , <sup>16</sup> O <sup>17</sup> O <sup>+</sup> , <sup>16</sup> O <sub>2</sub> <sup>1</sup> H <sup>+</sup> , <sup>33</sup> S <sup>+</sup> , <sup>32</sup> S <sup>1</sup> H <sup>+</sup> | (22)(29)               |
| 34S               | 4.21      | <sup>15</sup> N <sup>18</sup> O <sup>1</sup> H <sup>+</sup> , <sup>16</sup> O <sup>18</sup> O <sup>+</sup> , <sup>17</sup> O <sub>2</sub> <sup>+</sup> , <sup>16</sup> O <sup>17</sup> O <sup>1</sup> H <sup>+</sup> , <sup>34</sup> S <sup>+</sup> , <sup>33</sup> S <sup>1</sup> H <sup>+</sup>                                                               | (22)(29)               |
| 121Sb             | 57.36     | 105pd16O+                                                                                                                                                                                                                                                                                                                                                       | (32)                   |

| A Table of Polyatomic Interferences in ICP-MS (co |
|---------------------------------------------------|
|---------------------------------------------------|

| Isotope           | Abundance | Interference                                                                                                                                                                                                                                                                                                                   | Reference           |
|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 123Sb             | 47.6      | <sup>94</sup> Zr <sup>16</sup> O <sub>2</sub>                                                                                                                                                                                                                                                                                  | (1)                 |
| 45SC              | 100.      | <sup>12</sup> C <sup>16</sup> O <sub>2</sub> <sup>1</sup> H <sup>+</sup> , <sup>28</sup> Si <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>29</sup> Si <sup>16</sup> O <sup>+</sup> , <sup>14</sup> N <sub>2</sub> <sup>16</sup> O <sup>1</sup> H <sup>+</sup> , <sup>13</sup> C <sup>16</sup> O <sub>2</sub> <sup>+</sup> | (2)(9)(22)(29)      |
| <sup>74</sup> Se  | 0.87      | 37Cl37Cl+, 36Ar38Ar+, 38Ar36S+, 40Ar34S+                                                                                                                                                                                                                                                                                       | (9)(22)(35)         |
| <sup>76</sup> Se  | 9.02      | <sup>40</sup> Ar <sup>36</sup> Ar <sup>+</sup> , <sup>38</sup> Ar <sup>38</sup> Ar <sup>+</sup>                                                                                                                                                                                                                                | (2)(10)(22)(35)     |
| 77Se              | 7.58      | 40Ar57Cl+, 36Ar40Ar1H+, 38Ar21H+, 12C19F14N16O2+                                                                                                                                                                                                                                                                               | (2)(15)(19)(22)(34) |
| <sup>78</sup> Se  | 23.52     | 40Ar38Ar+, 38Ar40Ca+                                                                                                                                                                                                                                                                                                           | (2)(24)(35)         |
| <sup>80</sup> Se  | 49.82     | 40Ar2+, 32S16O3+                                                                                                                                                                                                                                                                                                               | (7)(19)(22)         |
| <sup>82</sup> Se  | 9.19      | <sup>12</sup> C <sup>35</sup> Cl <sub>2</sub> <sup>+</sup> , <sup>34</sup> S <sup>16</sup> O <sub>3</sub> <sup>+</sup> , <sup>40</sup> Ar <sub>2</sub> <sup>1</sup> H <sub>2</sub> <sup>+</sup>                                                                                                                                | (9)(11)(22)         |
| <sup>28</sup> Si  | 92.21     | <sup>14</sup> N <sub>2</sub> <sup>+</sup> , <sup>12</sup> C <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                       | (21)(22)(29)        |
| <sup>29</sup> Si  | 4.7       | <sup>14</sup> N <sup>15</sup> N <sup>+</sup> , <sup>14</sup> N <sub>2</sub> <sup>1</sup> H <sup>+</sup> , <sup>13</sup> C <sup>16</sup> O <sup>+</sup> , <sup>12</sup> C <sup>17</sup> O <sup>+</sup> , <sup>12</sup> C <sup>16</sup> O <sup>1</sup> H <sup>+</sup>                                                            | (22)(29)            |
| <sup>30</sup> Si  | 3.09      | ${}^{15}N_2^+, {}^{14}N^{15}N^{1}H^+, {}^{14}N^{16}O^+, {}^{12}C^{18}O^+, {}^{13}C^{17}O^+, {}^{13}C^{16}O^{1}H^+, \\ {}^{12}C^{17}O^{1}H^+, {}^{14}N_2^{1}H_2^+, {}^{12}C^{16}O^{1}H_2^+$                                                                                                                                     | (22)(29)(31)        |
| 144Sm             | 3.1       | <sup>96</sup> Ru <sup>16</sup> O <sub>3</sub> +                                                                                                                                                                                                                                                                                | (32)                |
| 147Sm             | 15.0      | <sup>99</sup> Ru <sup>16</sup> O <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                     | (32)                |
| 148Sm             | 11.3      | <sup>100</sup> Ru <sup>16</sup> O <sub>3</sub> +                                                                                                                                                                                                                                                                               | (32)                |
| 149Sm             | 13.8      | <sup>101</sup> Ru <sup>16</sup> O <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                    | (32)                |
| <sup>150</sup> Sm | 7.4       | <sup>102</sup> Ru <sup>16</sup> O <sub>3</sub> +                                                                                                                                                                                                                                                                               | (32)                |
| <sup>152</sup> Sm | 26.7      | <sup>104</sup> Ru <sup>16</sup> O <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                    | (32)                |
| 112Sn             | 0.97      | <sup>96</sup> Ru <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                  | (32)                |
| 115Sn             | 0.34      | <sup>99</sup> Ru <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                  | (32)                |
| 116Sn             | 14.53     | <sup>100</sup> Ru <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (32)                |
| 117Sn             | 7.68      | <sup>101</sup> Ru <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (32)                |
| 118Sn             | 24.23     | <sup>102</sup> Ru <sup>16</sup> O <sup>+</sup> , <sup>102</sup> Pd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                | (32)                |
| 119Sn             | 8.59      | <sup>103</sup> Rh <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (32)                |
| <sup>120</sup> Sn | 32.59     | <sup>104</sup> Ru <sup>16</sup> O <sup>+</sup> , <sup>104</sup> Pd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                | (32)                |
| <sup>122</sup> Sn | 4.63      | <sup>106</sup> Pd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (32)                |
| <sup>124</sup> Sn | 5.79      | <sup>108</sup> Pd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (32)                |
| <sup>84</sup> Sr  | 0.56      | <sup>36</sup> S <sup>16</sup> O <sub>3</sub> +                                                                                                                                                                                                                                                                                 | (22)                |
| <sup>86</sup> Sr  | 9.86      | <sup>85</sup> Rb <sup>1</sup> H <sup>+</sup>                                                                                                                                                                                                                                                                                   | (26)(27)            |
| <sup>181</sup> Ta | 99.988    | <sup>165</sup> Ho <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (27)                |
| <sup>159</sup> Tb | 100.      | 143Nd16O+                                                                                                                                                                                                                                                                                                                      | (27)(38)            |
| <sup>122</sup> Te | 2.603     | <sup>106</sup> Pd <sup>16</sup> O+                                                                                                                                                                                                                                                                                             | (32)                |
| <sup>124</sup> Te | 4.816     | <sup>108</sup> Pd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (32)                |
| <sup>126</sup> Te | 18.95     | <sup>110</sup> Pd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                                 | (32)                |
| <sup>128</sup> Te | 31.69     | <sup>96</sup> Ru <sup>16</sup> O <sub>2</sub> +                                                                                                                                                                                                                                                                                | (32)                |
| <sup>130</sup> Te | 33.80     | <sup>98</sup> Ru <sup>16</sup> O <sub>2</sub> <sup>+</sup>                                                                                                                                                                                                                                                                     | (32)                |
| 46Ti              | 7.99      | <sup>32</sup> S <sup>14</sup> N <sup>+</sup> , <sup>14</sup> N <sup>16</sup> O <sub>2</sub> <sup>+</sup> , <sup>15</sup> N <sub>2</sub> <sup>16</sup> O <sup>+</sup>                                                                                                                                                           | (3)(22)(29)         |
| 47Ti              | 7.32      | ${}^{32}S^{14}N^{1}H^+, {}^{30}S^{14}O^{1}H^+, {}^{32}S^{15}N^+, {}^{33}N^{14}N^+, {}^{33}S^{14}N^+, {}^{15}N^{16}O_2^+, {}^{14}N^{16}O_2^{-1}H^+, {}^{12}C^{35}Cl^+, {}^{31}P^{16}O^+$                                                                                                                                        | (3)(9)(22)(29)(37)  |
| <sup>48</sup> Ti  | 73.98     | $^{32}S^{16}O^+,^{34}S^{14}N^+,^{33}S^{15}N^+,^{14}N^{16}O^{18}O^+,^{14}N^{17}N_2^+,^{12}C_4^+,^{36}Ar^{12}C^+$                                                                                                                                                                                                                | (3)(18)(19)(22)(29) |
| 49Ti              | 5.46      | $\label{eq:s2S16O1} \begin{split} & {}^{32}S^{17}O^+,  {}^{32}S^{16}O^1H^+,  {}^{35}Cl^1\dot{n}N^+,  {}^{34}S^{15}N^+,  {}^{33}S^{16}O^+,  {}^{14}N^{17}O_2{}^1H^+, \\ & {}^{14}N^{35}Cl^+,  {}^{36}Ar^{13}C^+,  {}^{36}Ar^{12}C^1H^+,  {}^{12}C^{37}Cl^+,  {}^{31}P^{18}O^+ \end{split}$                                      | (3)(22)(29)(37)     |

| Atomic                     |
|----------------------------|
| Vol. 19(5), Sep./Oct. 1998 |

| Isotope           | Abundance | Interference                                                                                                                                                                                                                                                                                                     | Reference                          |
|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <sup>50</sup> Ti  | 5.25      | $^{32}S^{18}O^+,^{32}S^{17}O^1H^+,^{36}Ar^{14}N^+,^{35}Cl^{15}N^+,^{36}S^{14}N^+,^{33}S^{17}O^+$ $^{34}S^{16}O^+,^{1}H^{14}N^{35}Cl^+,^{34}S^{15}O^1H^+$                                                                                                                                                         | (3)(22)(29)                        |
| <sup>203</sup> Tl | 29.5      | <sup>187</sup> Re <sup>16</sup> O <sup>+</sup> , <sup>186</sup> W <sup>16</sup> O <sup>1</sup> H <sup>+</sup>                                                                                                                                                                                                    | (3)                                |
| 169Tm             | 100.      | <sup>153</sup> Eu <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                   | (27)                               |
| 50V               | 0.24      | 34S16O+, 36Ar14N+, 35Cl15N+, 36S14N+, 32S18O+, 33S17O+                                                                                                                                                                                                                                                           | (2)(22)(29)                        |
| <sup>51</sup> V   | 99.76     | ${}^{34}S^{16}O^{1}H^{+}, {}^{35}Cl^{16}O^{+}, {}^{38}Ar^{13}C^{+}, {}^{36}Ar^{15}N^{+}, {}^{36}Ar^{14}N^{1}H^{+}, \\ {}^{37}Cl^{14}N^{+}, {}^{36}S^{15}N^{+}, {}^{33}S^{18}O^{+}, {}^{34}S^{17}O^{+}$                                                                                                           | (2)(3)(14)(15)(19)(22)<br>(29)(35) |
| <sup>182</sup> W  | 26.41     | <sup>166</sup> Er <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                   | (27)                               |
| <sup>172</sup> Yb | 21.9      | <sup>156</sup> Gd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                   | (38)                               |
| 173Yb             | 16.13     | <sup>157</sup> Gd <sup>16</sup> O <sup>+</sup>                                                                                                                                                                                                                                                                   | (27)                               |
| <sup>64</sup> Zn  | 48.89     | ${}^{32}S^{16}O_2{}^+, {}^{48}Ti^{16}O^+, {}^{31}P^{16}O_2{}^1H^+, {}^{48}Ca^{16}O^+, {}^{32}S_2{}^+, {}^{31}P^{16}O^{17}O^+ \\ {}^{34}S^{16}O_2{}^+, {}^{36}Ar^{14}N_2{}^+$                                                                                                                                     | (2)(9)(11)(15)(19)(22)(34)<br>(35) |
| <sup>66</sup> Zn  | 27.81     | $ {}^{50}\text{Ti}^{16}\text{O}^+,  {}^{34}\text{S}^{16}\text{O}_2^+,  {}^{35}\text{S}^{16}\text{O}_2^-\text{1H}^+,  {}^{32}\text{S}^{16}\text{O}^{18}\text{O}^+,  {}^{32}\text{S}^{17}\text{O}_2^-, \\ \\ {}^{33}\text{S}^{16}\text{O}^{17}\text{O}^+,  {}^{32}\text{S}^{34}\text{S}^+,  {}^{33}\text{S}_2^+. $ | (9)(11)(15)(22)                    |
| <sup>67</sup> Zn  | 4.11      | ${}^{35}C1^{16}O_2^+, {}^{33}S^{34}S^+, {}^{34}S^{16}O_2^{-1}H^+, {}^{32}S^{16}O^{18}O^{-1}H^+, {}^{33}S^{34}S^+, {}^{34}S^{16}O^{17}O^+, {}^{33}S^{16}O^{18}O^+, {}^{32}S^{17}O^{-18}O^+, {}^{33}S^{17}O_2^+, {}^{35}C1^{16}O_2^+$                                                                              | (1)(9)(11)(15)(22)<br>(35)         |
| <sup>68</sup> Zn  | 18.57     | ${}^{36}S^{16}O_2^+, {}^{34}S^{16}O^{18}O^+, {}^{40}Ar^{14}N_2^+, {}^{35}Cl^{16}O^{17}O^+, {}^{34}S_2^+, {}^{36}Ar^{32}S^+, {}^{34}S^{17}O_1^+, {}^{33}S^{17}O^{18}O^+, {}^{32}S^{18}O_1^+, {}^{32}S^{36}S^+$                                                                                                    | (11)(15)(22)<br>(35)               |
| <sup>70</sup> Zn  | 0.62      | $ \begin{array}{c} {}_{35}Cl^{35}Cl^{+},  {}^{40}Ar^{14}N^{16}O^{+},  {}^{35}Cl^{17}O^{18}O^{+},  {}^{37}Cl^{16}O^{17}O^{+},  {}^{34}Sl^{18}O_{2}^{+}, \\ {}^{36}S^{16}O^{18}O^{+},  {}^{36}S^{17}O_{2}^{+},  {}^{34}S^{36}S^{+},  {}^{36}Ar^{34}S^{+},  {}^{38}Ar^{32}S^{+} \end{array} $                       | (9)(22)                            |

A Table of Polyatomic Interferences in ICP-MS (cont'd)

### REFERENCES

- J.W. McLaren, D. Beauchemin, and S.S. Berman, "Application of isotope dilution inductively coupled plasma masss spectrometry to the analysis of marine sediments." *Anal. Chem.* 59 (4), 610–613 (1987).
- J.E. Longbottom, T.D. Martin, K.W. Edgell, S.E. Long, M.R. Plantz, and B.E. Warden, "Determination of trace elements in water by inductively coupled-plasma spectrometry: collaborative study." *J. AOAC* 77 (4), 1004-1023 (1994).
- J.M. Corey and J.A. Caruso, "Electrothermal vaporization for sample introduction in plasma source spectrometry. Critical reviews in *Anal. Chem.* 23 (5), 397-439 (1992).
- D. Beauchemin, J.W. McLauren, S.N. Willie, and S.S. Berman, "Determination of trace metals in marine biological reference materials by inductively coupled plasma

mass spectrometry." Anal. Chem. 60 (7); 687-691 (1988).

- A. Stroh and U. Völlkopf, "Effects of Ca on instrument stability in the trace element determination of Carich soils using ICP-MS." At. Spectrosc. 14 (3); 76–79 (1993).
- E.S. Beary and P.J. Paulsen, "Selective application of chemical separations to isotope dilution inductively coupled plasma mass spectrometric analyses of standard reference materials." *Anal. Chem.* 65 (11); 1602–1608 (1993).
- V. Balaram, "Characterization of trace elements in environmental samples by ICP-MS." At. Spectrosc. 14 (6); 174-179 (1993).
- J.W. McLarean, J.W.H. Lam, S.S. Berman, K. Akatsuka, and M.A. Azeredo, "On-line method for the analysis of sea-water for trace elements by inductively coupled plasma mass spectrometry." *J. Anal. At.. Spectrom.* 8, pp 279-286 (1993).

- H. Evans and J. Giglio, "Interferences in inductively coupled plasma mass spectrometry - A Review." J. Anal. At. Spectrom. 8, 1–18 (1993).
- L. Ebdon, A. Fisher, and P. Worsfold, "Determination of arsenic, chromium, selenium, and vanadium in biological samples by inductively coupled plasma mass spectrometry using on-line elimination of interference and preconcentration by flow injection." J. Anal. At.. Spectrom. 9, 611-614 (1994).
  - C. Vandecasteele, H. Vanhoe, and R. Dams, "Inductively coupled plasma mass spectrometry of biological samples." *J. Anal. At. Spectrom.*, 8, 781–786 (1993).
- L. Ebdon, A. Fisher, H. Handley, and P. Jones, "Determination of trace metals in concentrated brines using inductively coupled plasma mass spectrometry on-line preconcentration and matrix elimi-

nation with flow injection." J. Anal. At. Spectrom. 8, 979-981 (1993).

- H. Vanhoe and R. Dams, "Use of inductively coupled plasma mass spectrometry for the determination of ultra-trace elements in human serum." J. Anal. At. Spectrom. 9, 23-31 (1994).
- G. Xiao and D. Beauchemin, "Reduction of matrix effects and mass discrimination in inductively coupled plasma mass spectrometry with optimized argon-nitrogen plasmas." J. Anal. At. Spectrom. 9, 509-518 (1994).
- J. Gossens and R. Dams, "Anion exchange for the elimination of spectral interference caused by chlorine and sulfur in inductively coupled plasma mass spectrometry." *J. Anal. At. Spectrom.* 7, 1167–1171 (1992).
- 16. J.W. McLaren, A.P. Mykytiuk, S.N. Willie, and S.S. Berman, S.S. "Determination of trace metals in seawater by inductively coupled plasma mass spectrometry with preconcentration on silica-immobilized 8-hydroxyquinoline." *Anal. Chem*, 57, 2007-2911 (1985).
- Kuang-Shie Huang and Shiuh-Jen Jiang.. "Determination of trace levels of metal ions in water samples by inductively coupled plasma mass spectrometry after on-line preconcentration on SO3-oxine cellulose." *Fres. J. Anal. Chem.* 347, 288-242 (1993).
- M.A. Vaughan, A.D. Baines, and D.M. Templeton, "Multiclement analysis of biological samples by ICPMS II. Rapid survey method for profiling trace elements in body fluids." *Clin. Chem.* 37, 210-215 (1991).
- H. Vanhoe, "A review of the capabilities of ICP-MS for trace element analysis in body fluids and tissues." *J. Trace Elem. Electrolytes Healtb Dis.* 7, 131-139 (1993).
- M.R. Plantz, J.S. Fritz, F.F. Smith, and R.S. Honk, "Separation of trace metal complexes for analysis of samples of high salt content by inductively coupled plasma mass spectrometry." *Anal. Chem.* 61, 149–153 (1980).

- J.K. Friel, C.S. Skinner, S.E. Jackson, and H.P. Longerich, "Analysis of biological reference materials, prepared by microwave dissolution, using inductively coupled plasma mass spectrometry." *Analysis* 115, 269-273 (1990).
- S.H. Tan and G. Horlick, "Background spectral features in inductively coupled plasma/mass spectrometry." *Appl. Spectrosc.* 40, 445-460 (1986).
- A. Stroh, F. Bea, and P.G. Montero, "Ultratrace-level determination of rare earth elements, thorium, and uranium in ultramafic rocks by ICP-MS." At. Spectrosc.1, 7–11 (1995).
- U. Völlkopf and K. Barnes, "Rapid multielement analysis of urine." At. Spectrosc. 16 (1), 19–21 (1995).
- D.M. Templeton, S.X. Xu, and L. Stuhne-Sekalee, "Isotope-specific analysis of Ni by ICP-MS: applications of stable isotope tracers to biokinetic studies." *Science of Total Envir.* 148, 253–262 (1994).
- H.P. Longerich, G.A. Jenner, B.J. Fryer, and S.E. Jackson, "Inductively coupled plasma-mass spectrometric analysis of geological samples: a critical evaluation based on case studies." *Chem. Geol.* 83, 105–118 (1990).
- G.A. Jenner, H.P. Longerich, S.E. Jackson, and B.J. Fryer, "ICP-MS - a powerful tool for high-precision trace-element analysis in earth sciences: evidence from analysis of selected U.S.G.S. reference samples." *Chem. Geol.* 83, 133–148 (1990).
- E.S. Beary, P.J. Paulsen, and J.D. Fassett, "Sample preparation approaches for isotope dilution inductively coupled plasma mass spectrometric certification of reference materials." *J. Anal. At. Spec*trom. 9, 1363–1369 (1994).
- N.M. Reed, R.O. Cairns, and R.C. Hutton, "Characterization of polyatomic ion interferences in inductively coupled plasma mass spectrometry using a high resolution mass spectrometer." J Anal. At. Specrom. 9, 88–896 (1994).

- W. Tittes, N. Jakubowski, D. Stuwer, and G. Tolg," Reduction of some selected spectral interferences in inductively coupled plasma mass spectrometry." J. Anal. At. Spectrom. 9, 1015-1020 (1994).
- H. Kuss, D. Bossmann, and M. Muller, M. "Silicon determination in steel by ICP-MS." At. Spectrosc. July/Aug, 148–150 (1994).
- S.M. Graham and R.V.O. Robert, "The analysis of high-purity noble metals and their salts by ICP-MS." *Talanta* 41 (8), 1369-1375 (1994).
- M.J. Campbell, C. Demesmay, and M. Olle, "Determination of total arsenic concentrations in biological matrices by inductively coupled plasma mass spectrometry." *J. Anal. At. Spectrom.* 9, 1379–1384 (1994).
- 34. I. Platzner, J.V. Sala, F. Mousty, P.R. Trincherini, and A.L. Polettini, "Signal enhancement and reduction of interferences in inductively coupled plasma mass spectrometry with an argon-trifluoromethane mixed aerosol carrier gas." J. Anal. At. Spectrom. 9, 719–726 (1994).
- 35. F. Laborda, M.J. Baxter, H.M. Crews, and J. Dennis, "Reduction of polyatomic interferences in inductively coupled plasma mass spectrometry by selection of instrumental parameters and using an argon-nitrogen plasma: Effect on multi-element analyses." J. Anal. At. Spectrom. 9, 727-736 (1994).
- ELAN 6000 Training Manual, The Perkin-Elmer Corporation, Norwalk, CT USA, pp 1–11 (1995).
- L. Yu, R. Koirtyohann, M. Rueppel, A. Skipor, and J. Jacobs, "Simultaneous determination of aluminum, titanium, vanadium in serum by electrothermal vaporization-inductively coupled plasma mass spectrometry," J. Anal. At. Spectrom. 1, 69–74 (1997).
- Zhang Shuzhan and Shan Xiaoquan. "The determination of rare earth elements in soil by inductively coupled plasma mass spectrometry." *At. Spectrosc.* 18 (5),140–144 (1997).

polyatomic

### REE in geological samples

| Element   | Isotope | Natural Abundance % | Isobaric Interference<br>(Natural Abundance %) | Polyatomic<br>Interferences                                          |
|-----------|---------|---------------------|------------------------------------------------|----------------------------------------------------------------------|
|           | 146     | Nd (17.19)          |                                                | 130Ba16O, 98Ru16O3                                                   |
| Nd        | 148 *   | Nd (5.76)           |                                                | 132Ba16O, 100Ru16O3                                                  |
| 6         | 150 *   | Sm (7.38)           | Nd (5.64)                                      | 134Ba16O, 102Ru16O3                                                  |
| Sm        | 152     | Sm (26.75)          | Gd (0.2)                                       | 136Ba16O, 136Ce16O                                                   |
|           | 151 *   | Eu (47.81)          |                                                | <sup>135</sup> Ba <sup>16</sup> O                                    |
| Eu        | 153     | Eu (52.19)          |                                                | <sup>137</sup> Ba <sup>16</sup> O                                    |
| <b>C1</b> | 152 *   | Gd (0.2)            | Sm (26.75)                                     | 136Ba16O, 136Ce16O                                                   |
| Gđ        | 154     | Gd (2.18)           | Sm (22.75)                                     | <sup>138</sup> Ba <sup>16</sup> O, <sup>138</sup> La <sup>16</sup> O |
| De        | 160 *   | Dy (2.33)           |                                                | 144Nd16O, 144Sm16O                                                   |
| Dy        | 161     | Dy (18.90)          |                                                | 145Nd16O                                                             |
|           | 164 *   | Er (1.60)           | Dy (28.26)                                     | 148Nd16O                                                             |
| Er        | 166     | Er (33.50)          |                                                | 150Sm16O, 150Nd16O                                                   |
|           | 173 *   | Yb (16.10)          |                                                | <sup>157</sup> Gd <sup>16</sup> O                                    |
| Yb        | 174     | Yb (32.03)          |                                                | <sup>158</sup> Gd <sup>16</sup> O                                    |
|           | 175     | Lu (97.40)          |                                                | 159Gd16O, 159Tb16O                                                   |
| Lu        | 176 *   | Lu (2.60)           | Yb (13.00)                                     | <sup>160</sup> Dy <sup>16</sup> O                                    |

### **Relative Isotopic Abundance Table**



© Agilent Technologies, Inc. 2016 Printed in Japan 68400-90001

**Agilent Technologies** 

multiply charged ions

- Are due to relatively rare doubly-charged matrix or sample ions with twice the mass of the analyte and hence the same m/z. exaple <sup>90</sup>Zr<sup>++</sup> on <sup>45</sup>Sc<sup>+</sup>
- The formation of doubly-charged species can be minimized by optimizing instrument operating conditions.
- For most elements is second ionisation potential higher than first ionization potential of Ar



doubly charged ions

The formation of a doubly charged ion is significant in the case of **Sr**, **Ba**, (Pb).

| Atomic<br>number | Element<br>(symbol) | 1 <sup>st</sup> Ionization<br>energy<br>J (× 10 <sup>-19</sup> ) | 2 <sup>nd</sup> lonization<br>energy |
|------------------|---------------------|------------------------------------------------------------------|--------------------------------------|
| 1                | Н                   | 21.8                                                             |                                      |
| 2                | He                  | 39.4                                                             | 87.2                                 |
| 3                | Li                  | 8.6                                                              | 121.2                                |
| 4                | Be                  | 14.9                                                             | 29.2                                 |
| 5                | В                   | 13.3                                                             | 40.3                                 |
| 6                | С                   | 18.0                                                             | 39.1                                 |
| 7                | N                   | 23.3                                                             | 47.4                                 |
| 8                | 0                   | 21.8                                                             | 56.3                                 |
| 9                | F                   | 27.9                                                             | 56.0                                 |
| 10               | Ne                  | 34.6                                                             | 65.6                                 |
| П                | Na                  | 8.2                                                              | 75.8                                 |
| 12               | Mg                  | 12.3                                                             | 24.1                                 |
| 13               | AI                  | 9.6                                                              | 30.2                                 |
| 14               | Si                  | 13.1                                                             | 26.2                                 |
| 15               | Р                   | 16.8                                                             | 31.7                                 |
| 16               | S                   | 16.6                                                             | 37.4                                 |
| 17               | CI                  | 20.8                                                             | 38.2                                 |
| 18               | Ar                  | 25.2                                                             | 44.3                                 |

| Atomic<br>number | Element<br>(symbol) | 1 <sup>st</sup> Ionization<br>energy<br>J (×10 <sup>-19</sup> ) | 2 <sup>nd</sup> ionization<br>energy<br>J (×10 <sup>-19</sup> ) |
|------------------|---------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| 19               | К                   | 7.0                                                             | 50.7                                                            |
| 20               | Ca                  | 9.8                                                             | 19.0                                                            |
| 21               | Sc                  | 10.5                                                            | 20.5                                                            |
| 22               | Ti                  | 10.9                                                            | 21.8                                                            |
| 23               | ٧                   | 10.8                                                            | 23.5                                                            |
| 24               | Cr                  | 10.8                                                            | 26.4                                                            |
| 25               | Mn                  | 11.9                                                            | 25.1                                                            |
| 26               | Fe                  | 12.7                                                            | 25.9                                                            |
| 27               | Co                  | 12.6                                                            | 27.3                                                            |
| 28               | Ni                  | 12.2                                                            | 29.1                                                            |
| 29               | Cu                  | 12.4                                                            | 32.5                                                            |
| 30               | Zn                  | 15.1                                                            | 28.8                                                            |
| 31               | Ga                  | 9.6                                                             | 32.9                                                            |
| 32               | Ge                  | 12.7                                                            | 25.5                                                            |
| 33               | As                  | 15.7                                                            | 29.9                                                            |
| 34               | Se                  | 15.6                                                            | 34.0                                                            |
| 35               | Br                  | 18.9                                                            | 34.9                                                            |
| 36               | Kr                  | 22.4                                                            | 39.0                                                            |

of mass spectrometer

Resolving power is the ability of a mass spectrometer to distinguish between ions of different mass mass-to-charge ratios. Therefore, greater resolving power corresponds directly to the increased ability to differentiate ions.



of mass spectrometer

- Width of one peak  $RP = m / \Delta m$
- Overlay of two peaks  $RP = m_1 / (m_2 - m_1)$



of mass spectrometer



### Resolution vs resolving power

of mass spectrometer

Sometimes used for low resolution analyzers (quadrupoles, ion traps) "Resolution" instead of "Resolving Power"

The resolution is expressed e.g. as a unit resolution (typical for quadrupoles).

RP must be related to a certain m/z value or m/z range, manufacturers often define a resolution valid for the whole mass range of the analyzer, (e.g. 2000 – 4000).

of ICP mass spectrometer

- Low: 300-400 (quadrupole)
- Medium: 2000-4000 (TOF)
- High: 8 000 10 000 (SF)



of ICP mass spectrometer

Note By using the 10%-valley definition (as usual for sector field mass spectrometers), the peak width depends on the Mass and the Resolution:

$$Peak width = \frac{Mass}{Resolution}$$

|            | Peak width    |            |  |  |
|------------|---------------|------------|--|--|
| Resolution | @ mass 11     | @ Mass 110 |  |  |
| 300        | 0.0367<br>amu | 0.367 amu  |  |  |
| 4,000      | 0.0027<br>amu | 0.027 amu  |  |  |
| 10,000     | 0.0011<br>amu | 0.011 amu  |  |  |

of ICP mass spectrometer



calculations

Calculate the resolution power necessary to distinguish ions with amu:

| <sup>28</sup> Si <sup>+</sup> | 27.9769284 | VS. | $^{14}N_{2}^{+}$                              | 28.006148 |
|-------------------------------|------------|-----|-----------------------------------------------|-----------|
| <sup>40</sup> Ca <sup>+</sup> | 39.9625907 | VS. | <sup>40</sup> Ar <sup>+</sup>                 | 39.962383 |
| <sup>56</sup> Fe <sup>+</sup> | 55.9349393 | VS. | <sup>40</sup> Ar <sup>16</sup> O <sup>+</sup> | 59.957298 |

| Isotope          | Mass*      | Interference                      | Mass <sup>a,b</sup> | Resolution<br>Required <sup>b</sup> |
|------------------|------------|-----------------------------------|---------------------|-------------------------------------|
| <sup>28</sup> Si | 27.9769284 | <sup>14</sup> N <sub>2</sub>      | 28.006148           | 960                                 |
|                  |            | 12C16O                            | 27.994915           | 1600                                |
| 31P              | 30.9737634 | 14N16O1H                          | 31.005814           | 970                                 |
| <sup>32</sup> S  | 31.9720718 | <sup>16</sup> O <sub>2</sub>      | 31.989829           | 1800                                |
| 39K              | 38,9637079 | <sup>38</sup> Ar <sup>1</sup> H   | 38,970557           | 5700                                |
| <sup>40</sup> Ca | 39.9625907 | <sup>40</sup> Ar                  | 39.962383           | 193000                              |
|                  |            | 40K                               | 39.963999           | 29000                               |
| <sup>48</sup> Ti | 47.9479467 | 32S16O                            | 47.966986           | 2600                                |
|                  |            | 34S14N                            | 47.970942           | 2100                                |
| <sup>51</sup> V  | 50.9439625 | 35C116O                           | 50.963767           | 2600                                |
|                  |            | 37Cl14N                           | 50.968977           | 2100                                |
| <sup>52</sup> Cr | 51.9405097 | 40Ar12C                           | 51.962383           | 2400                                |
|                  |            | 35Cl16O1H                         | 51.971592           | 1700                                |
| 53Cr             | 52.9406510 | 37Cl16O                           | 52.960817           | 2700                                |
| <sup>ss</sup> Mn | 54.9380463 | 40Ar15N                           | 54.962492           | 2300                                |
|                  |            | 37C118O                           | 54.965062           | 2100                                |
|                  |            | 40Ar14N'H                         | 54,973282           | 1600                                |
| <sup>56</sup> Fe | 55.9349393 | 40 Ar <sup>16</sup> O             | 55.957298           | 2500                                |
| 58Ni             | 57.9353471 | 40 Ar <sup>18</sup> O             | 57.961542           | 2250                                |
| <sup>59</sup> Co | 58.9331978 | 40Ar18O1H                         | 58.969368           | 1650                                |
| 63Cu             | 62.9295992 | 40Ar <sup>23</sup> Na             | 62.952153           | 2800                                |
| <sup>64</sup> Zn | 63.9291454 | 32S16O2                           | 63.961901           | 2000                                |
|                  |            | ${}^{32}S_2$                      | 63.944144           | 4300                                |
| 69Ga             | 68.9255809 | 37Cl <sup>16</sup> O <sub>2</sub> | 68.955732           | 2300                                |
| 74Ge             | 73.9211788 | 40Ar34S                           | 73.930251           | 8200                                |
| <sup>75</sup> As | 74.9215955 | 40Ar35Cl                          | 74.931236           | 7800                                |
| <sup>80</sup> Se | 79.9165205 | 40Ar <sub>2</sub>                 | 79.924766           | 9700                                |

TABLE 6.2 Resolution Required to Separate Analyte Ions from Interfering Ions

<sup>a</sup>Isotopic masses from A.H. Wapstra and K. Bos, At. Data Nuclear Data Tables, 19, 175 (1977). <sup>b</sup>Values are rounded.