BIOINFORMATIKA

DATABÁZE PROTEINOVÝCH SEKVENCÍ

UniProtKB

- SWISS-PROT: kvalitní ruční anotace
- TrEMBL: automatická anotace (TrEMBL \rightarrow SWISS-PROT)

DATABÁZE DNA SEKVENCÍ

- EMBL-Bank : Europe (EMBL-EBI), přístup z ENA (European Nucleotide Archive)
- GenBank: USA, vyhledávač ENTREZ
- DDBJ Japan, vyhledávač ARSA, DBGet

STRUKTURNÍ DATABÁZE

- PDB
- PDBsum: shrnutí a analýzy
- SCOP: fold-superfamily-family
- CATH: class-architecture-topology-homology

PÁROVÉ PŘILOŽENÍ (PAIRWISE ALIGNMENT)

D A G T K V S A E Q I L | | | | | score=5, gap=0 D A G T K E C H Q I L

DAGTKVSAEQIL | | | | | score=8, gap=1 DAGTKECH-QIL

D A G T K V S A E - - Q I L | | | | | | | | | | | score=9, gap=5 D A G T K - - - E C H Q I L

BLOSUM62

	С	S	Т	Α	G	Ρ	D	Ε	Q	Ν	H	R	K	Μ	Ι	L	V	W	Υ	F	
С	9																				С
S	-1	4																			S
T	-1	1	5																		Т
A	0	1	0	4																	Α
G	- 3	0	-2	Θ	6																G
Ρ	- 3	-1	-1	-1	-2	7															Ρ
D	-3	0	-1	-2	-1	-1	6														D
Е	-4	0	-1	-1	-2	-1	2	5													Е
0	-3	0	-1	-1	-2	-1	0	2	5												0
Ň	-3	1	0	-2	Θ	-2	1	Θ	Θ	6											Ň
Н	-3	-1	-2	-2	-2	-2	-1	0	0	1	8										Н
R	-3	-1	-1	-1	-2	-2	-2	0	Ū.	0	Θ	5									R
Κ	-3	0	-1	-1	-2	-1	-1	1	1	0	-1	2	5								К
М	-1	-1	-1	-1	-3	-2	-3	-2	0	-2	-2	-1	-1	5							М
Ι	-1	-2	-1	-1	-4	-3	-3	-3	- 3	-3	-3	-3	-3	i	4						Ι
L	-1	-2	-1	-1	-4	-3	-4	-3	-2	-3	-3	-2	-2	2	2	4					L
v	-1	-2	0	0	-3	-2	-3	-2	-2	-3	-3	-3	-2	1	3	1	4				v
W	-2	-3	-2	-3	-2	-4	-4	-3	-2	-4	-2	-3	- 3	-1	- 3	-2	-3	11			W
Y	-2	-2	-2	-2	-3	-3	-3	-2	-1	-2	2	-2	-2	-1	-1	-1	-1	2	7		Y
F	-2	-2	-2	-2	-3	-4	-3	-3	-3	-3	-1	-3	-3	0	0	Θ	-1	1	3	6	F
	С	S	T	A	G	Ρ	D	Ē	Ū	Ň	H	R	K	M	Ĩ	Ļ	V	W	Y	F	

PÁROVÉ PROHLEDÁVÁNÍ DATABÁZÍ

"Fast local similarity algorithms"

- FastA
- BLAST

VÍCENÁSOBNÉ PŘILOŽENÍ

(MSA = MULTIPLE SEQUENCE ALIGNMENT)

Postupné (progresivní) algoritmy

• CLUSTAL: párové přiložení + tvorba stromů příbuznosti

PŘEDPOVÍDÁNÍ STRUKTURY ZE SEKVENCE

- Sekundární struktura: PSI-PRED
- Fold: threading
- Terciární struktura z homologní struktury: homologní modelování
- Terciární struktura z MSA: AlphaFold.2

testovací sekvence:

PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASK

ALPHAFOLD2

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2John Jumper^{1,4}⊠, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4},
Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Žídek^{1,4},
Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4},
Andrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4},
Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹,
Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹,
Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹,
Pushmeet Kohli¹ & Demis Hassabis^{1,4}⊠

Nature | Vol 596 | 26 August 2021 | 583

kinasa SRC, kinasa SLK GXGXXG - smyčka

SRC VKLGQGCFGEV HCK KKLGAGQFGEV ABL HKLGGGQYGEV LCK ERLGAGQFGEV SLK GELGDGAFGKV SBK RELGKGTYGKV

+4

-4+4SRCVKLGQGCFGEVHCKKKLGAGQFGEVABLHKLGGGQYGEVLCKERLGAGQFGEVSLKGELGDGAFGKVSBKRELGKGTYGKV

kinasa SRC E \cdots K

K···E

		24	64	116
Homo sapiens	člověk	HGQEV	HGAT	QSKH
Sus scrofa	prase	HGQ <mark>E</mark> V	HGNT	QSKH
Equus caballus	kůň	HGQ <mark>E</mark> V	HGTV	HS <mark>K</mark> H
Dugong dugon	moroň indický	HGLEV	HGTT	QS <mark>K</mark> H
Balaena mysticetus	velryba grónská	HGQ <mark>D</mark> V	HGNT	HS <mark>R</mark> H
Physeter macrocephalus	vorvaň obrovský	HGQDI	HGVT	HS <mark>R</mark> H

G: malá

		24	64	116
Homo sapiens	člověk	HGQEV	HGAT	QS <mark>K</mark> H
Sus scrofa	prase	HGQEV	HGNT	QS <mark>K</mark> H
Equus caballus	kůň	HGQEV	HGTV	HS <mark>K</mark> H
Dugong dugon	moroň indický	HGLEV	HGTT	QS <mark>K</mark> H
Balaena mysticetus	velryba grónská	HGQDV	HGNT	HS <mark>R</mark> H
Physeter macrocephalus	vorvaň obrovský	HGQDI	HGVT	HS <mark>R</mark> H

E: d l o u h á $\ominus \cdots \oplus K$: krátká D: krátká $\ominus \cdots \oplus R$: d l o u h á

d l o u h á – E $\ominus \cdots \oplus$ K-krátká

