Interaction energies in noncovalent complexes, various decomposition schemes

Prepared by Radek Marek group

Interaction energy

 $\Delta E^{ABC} = \Delta E^{AB} + \Delta E^{AC} + \Delta E^{BC} + \Delta E^{3} = E^{AB} - [E^{A} + E^{B}] + E^{AC} - [E^{A} + E^{C}] + E^{BC} - [E^{B} + E^{C}] + \Delta E^{3}$

 $\Delta E^{3} = E^{ABC} - E^{AB} - E^{AC} - E^{BC} + E^{A} + E^{B} + E^{C}$

Deformation energy

$$\Delta E^{\text{DEF}} = (E^{\text{A}} - E^{\text{Ai}}) + (E^{\text{B}} - E^{\text{Bi}})$$

 $\Delta E^{T(AB)} = \Delta E^{AB} + \Delta E^{DEF}$ Binding (total) energy

Deformation (preparation) energy

Basis sets

- Set of functions representing atomic orbitals
- Molecular orbital = linear combination of atomic orbitals (MO-LCAO)
- Minimal basis set (one function per orbital)
- Gaussian-type and Slater-type functions
- 6-311++G(d,p)
- LANL2DZ
- aug-cc-pVTZ
- Diffuse and polarization functions

Basis Set	Bond Length (Å)
6-31G(d)	0.93497
6-31G(d,p)	0.92099
6-31+G(d,p)	0.94208
6-31++G(d,p)	0.92643
6-311G(d,p)	0.91312
6-311++G(d , p)	0.91720
6-311G(3df,3pd)	0.91369
6-311++G(3df,3pd)	0.91739

bond length of HF

- experimental: 0.917 A
- calculated at MP4 level

Formaldehyde in 3-21 basis set

$$\varphi_i = \sum_{\mu=1}^{36} g_{\mu} c_{\mu i} \quad ; i=1,36$$

Pople and Dunning basis sets

3-21G(d,p)

Anatomy of the Basis Set

C 0

	3047.52490	0.183470000E-02	
	457.369510	0.140373000E-01	
	103.948690	0.688426000E-01	
	29.2101550	0.232184400	
	9.28666300	0.467941300	
	3.16392700	0.362312000	
SP	3 1.00		
	7.86827240	-0.119332400	0.689991000E-01
	1.88128850	-0.160854200	0.316424000
	0.544249300	1.14345640	0.744308300
SP	1 1.00		
	0.168714400	1.00000000	1.0000000

https://www.basissetexchange.org/ - Basis set exchange library

Basis set vs. Accuracy

Basis set superposition error (BSSE)

Counterpoise (CP) method

Ghost orbitals for monomers

The uncorrected interaction energy is

$$E_{\text{interaction}}^{\text{AB}} = E_{\text{AB}}^{\text{Opt}} - E_{\text{A}}^{\text{Opt}} - E_{\text{B}}^{\text{Opt}}$$

The counterpoise interaction energy is

$$E_{\text{interaction}}^{\text{AB}} = E_{\text{AB}}^{\text{Opt}} - E_{\text{A}}^{\text{Opt}} - E_{\text{B}}^{\text{Opt}} + \delta_{\text{AB}}^{\text{BSSE}}.$$

The basis set for the subsystems contain the basis function of the whole molecule

Practice1: counterpoise correction in Gaussian

📝 /home/yevg_yur/Water_e	dimer_MP2/w2.com - y	evg_yur@fundy.ncbr.m	uni.cz - Editor - WinSe
🖬 🔓 🖻 🔺 💼 🗙	a 🎾 C 🏦 🖧	🟥 🔚 🛛 Encoding 🕶 🗌	Color 🕶 🔅 🕐
%Mem=16384MB			
%nprocshared = 7			
<pre># rmp2/aug-cc-pVDZ</pre>	counterpoise=2		
Water dimer CP			
0,1 0,1 0,1			
O(Fragment=1)	-1.62893	-0.04138	0.37137
H(Fragment=1)	-0.69803	-0.09168	0.09337
H(Fragment =1)	-2.06663	-0.73498	-0.13663
O(Fragment =2)	1.21457	0.03172	-0.27623
H(Fragment =2)	1.44927	0.91672	-0.58573
H(Fragment =2)	1.72977	-0.08038	0.53387

Water dimer from http://www.begdb.org/ web page, section "Water clusters – updated", system name water-2-Cs

Practice 1: Counterpoise correction in Gaussian: output

4 0	-0.00000			•			
	ulliken charges condensed	to fragmants:					
1	0.000000	to magnetics.					
2	-0.000000						
		D**0_	93.4042				
	c spatial extent (au): <		95.4042				
Charge=	-0.0000 electr						
X=	ment (field-independent b 1.2156 Y=		Z=	1 6024	Tat		2 0112
		0.0009	-	-1.6024	TOL=		2.0113
	e moment (field-independe			6 8004			
XX=	-3.5624 YY=	-4.2713		-6.8094			
XY=	0.0014 XZ=	-2.9721		0.0010			
	Quadrupole moment (field			4			
XX=	1.3186 YY=	0.6098		-1.9283			
XY=	0.0014 XZ=	-2.9721		0.0010			
· ·	<pre>moment (field-independent</pre>						
XXX=	-22.8233 YYY=	0.0020		-1.2167			-5.3888
XXY=	0.0024 XXZ=	-5.7172	XZZ=	-9.6777	YZZ=		-0.0005
YYZ=	-1.2037 XYZ=	0.0018					
	ole moment (field-indepen	dent basis, Debye-A	\ng**3):				
XXXX=	-79.7064 YYYY=	-6.0810 Z	ZZZZ=	-7.3380	XXXY=		0.0038
XXXZ=	-10.8619 YYYX=	0.0033 Y	YYZ=	0.0001	ZZZX=		-1.6532
ZZZY=	0.0005 XXYY=	-8.8972 X	(XZZ=	-16.1078	YYZZ=		-2.1568
XXYZ=	0.0031 YYXZ=	-2.0208 Z	ZXY=	-0.0010			
N-N= 9.10	6981851130D+00 E-N=-1.987	109173839D+02 KE=	7.589137640258	D+01			
CPIOFr:	IOpCl= 0 IRwI=-1 IRwCP=	731 ICalc= 4 LCPTo	ot= 11458	Len1MO=	29304	IndFrg=	157978
CPIOFr:	IOpCl= 0 IRwI=-2 IRwCP=	731 ICalc= 0 LCPTo	ot= 11458	Len1MO=	29304	IndFrg=	40762
Counterpo	ise corrected energy =	-152.528876344028					
	BSSE energy =	0.001330539401					
	sum of fragments =	-152.521763258480					
	complexation energy =						
	complexation energy =	-4.46 kcal/mole	(corrected)				
Unable to	Open any file for archiv						
1\1\GINC-	IVAVIK\SP\RMP2-FC\Aug-CC-	pVDZ\H402\YEVG_YUR\	11-0ct-2023\0\	\#			
rmp2/aug-	cc-pVDZ counterpoise=2\\W	ater dimer CP\\0,1\	0,0,-1.62893,-0	0.0			
<							
Line: 1/787	Column: 1	Character: 32 (0x20)	Encoding: 1252 (AN	ISL - Li			
	column 1	2.1.1.40001.02 (0.20)	2.1204.191.1202 (/11				

Practice 1: Counterpoise (CP)-corrected interaction energy in Gaussian

- Build any small non-covalent complex of your choice in Avogadro , GaussView or ChemCraft
- Perform geometry optimization and frequency calculation at the RHF/6-311G(d,p) computational level
- Obtain counterpoise-corrected interaction energy and BSSE value for optimized geometry
- Repeat the same procedure using RHF/3-21G computational level. How the geometry, interaction energy and BSSE values are different?
- Visualize the output files in GaussView

Energy decomposition analysis (EDA)

Energy decomposition analysis (EDA) methods bridge the gap between electronic structure calculations and conceptual interpretations of molecular interaction energy (*i.e.* $\Delta E_{int}(\zeta)$). (NOTE: Theoretically, Morokuma-Kitaura model and ASM can be regarded as a kind of EDA. However, in this presentation, the term of EDA is used only for the decomposition of $\Delta E_{int}(\zeta)$.)

EDA is the Kohn-Sham molecular orbital (KS-MO) theory-based approach, enabling to further analyze $\Delta E_{int}(\zeta)$ as follows:

 $\Delta E_{int}(\zeta) = \Delta E_{elstat}(\zeta) + \Delta E_{Pauli}(\zeta) + \Delta E_{oi}(\zeta)$

ΔE_{elstat}: electrostatic energy (the Classic Coulomb interaction between the unperturbed charge distributions of the deformed reactants, usually attractive)

 \rightarrow further analyzed by Hirshfeld surface analysis, molecular electrostatic potential (MEP) etc.

ΔE_{Pauli}: Pauli repulsion (destabilizing interaction between occupied orbitals; *i.e.* steric repulsion) $\Delta E_{\text{pauli}}: \text{Pauli repulsion (destabilizing interaction between every set of a comparison of the set of$

 \rightarrow further decomposed into contributions from each irreducible representations Γ of the point group to which the molecular system belongs.

Orbital interaction diagrams for the most commonly appearing interactions.

In EDA, not only equilibrium structures but transition states (TS) and nonstationary points along intrinsic rection coordinate (IRC) can be analyzed.

For representative reviews on EDA, see: (a) von Hopffgarten, M.; Frenking, G. WIREs Comput. Mol. Sci. 2012, 2, 43. (b) Su, P.; Tang, Z.; Wu, W. WIREs Comput. Mol. Sci. 2020, 10, e1460.

Differential (deformation) density charge depletion < 0charge accumulation $\Delta \rho(r) = \rho^{mol.}(r) - \sum_{i=1}^{mol.} \rho_i^{at.}(r)$ H-H charge transfer from 1s orbitals i=1Δρ

The positive values the point of density accumulation in the molecule (relative to isolated atoms). When the molecule is formed from atoms the density flows from the area of negative value towards the area with positive value

The Natural Orbitals for Chemical Valence (NOCV) **NOCV's** $(\Psi_i = \sum_i C_{ij} * \lambda_i)$ diagonalize the deformation density matrix: $\Delta PC_i = v_i C_i$; i = 1, M

where $\Delta P=P-P_0$, density matrix of the combined molecule, P₀- density matrix of the considered molecular fragments. NOCV's also decompose the deformation density $\Delta \rho$:

$$\Delta \rho(\mathbf{r}) = \sum_{k=1}^{M} v_k \psi_k^2(\mathbf{r})$$

NOCV's are in pairs:

useful qualitative data by inspection of the sign of $\Delta \rho$: negative (outflow), positive (inflow) of density

$$\Delta \rho(r) = \sum_{k=1}^{M/2} v_k [-\psi_{-k}^2(r) + \psi_k^2(r)] = \sum_{k=1}^{M/2} \Delta \rho_k(r)$$

Practice 2: NH3 → BH3 dative bond in the ammoniaborane

- Build NH3BH3 molecule (shown by instructor)
- Symmetrize the system by clicking on
- Select Task → Geometry Optimization
- Select XC functional → GGA:BP86
- Select Basis set → DZP
- Select Numerical quality → Good
- Run the calculation with **File** → **Run** (save with the name ammoniaborane)
- After the geometry optimization is completed, Select Yes \rightarrow New Job
- Set Task → Single Point
- Go in the panel bar to Model → Regions
- Select the atoms of NH3 (holding Shift), click the + button, rename region to NH3, the same procedure for BH3
- Go in the panel bar to **MultiLevel** → **Fragments**
- Check the 'Use fragments' check box
- Properties → ETS-NOCV
- Select an **Closed-Shell** ETS-NOCV analysis
- EDA results and NOCV channels visualization (shown by instructor)
- Homework: optimize NH3 and BH3 separately at the same computational level, find the total deformation energy

- NBO is a calculated bonding orbital with maximum electron density.
- Hierarchical Atomic/Molecular Orbitals in the NBO analysis:

 $AO \rightarrow NAO \rightarrow NHO \rightarrow NBO \rightarrow NLMO \rightarrow MO$

- NAO: Natural Atomic Orbitals
- NHO: Natural Hybrid Orbitals
- NBO: Natural Bond Orbitals
- NLMO: Natural (Semi-)Localized Molecular Orbitals

Natural Atomic Orbitals

- "Natural" atomic orbitals are the optimal (maximum occupancy), effective AOs in the molecular environment, derived by:
 - diagonalizing the *localized block* of the full density matrix of a given molecule,
 - which is associated with basis functions on that atom
- Thus they meet simultaneous requirements of orthonormality and maximum occupancy.
- For isolated atoms: NAOs coincide with NOs.
- For a polyatomic molecule: the NAOs mostly retain one-centre character (in contrast to NOs that become delocalized over all nuclear centers).

Natural population analysis (NPA)

/RESON / : Allow strongly delocalized NBO set /BNDIDX / : Print bond indices based on the NAO density matrix

Analyzing the SCF density

Job title: Calculation from 1.zmat

Storage needed: 210228 in NPA, 279750 in NBO (536870096 available)

NATURAL POPULATIONS: Natural atomic orbital occupancies

NAO	Atom	No	lang	Type(A0)) Occupancy	Energy
1	C	1	S	Cor(1S)) 1.99925	-10.03093
2	C	1	S	Val(25	0.97335	-0,19649
З	C	1	S	Ryd(3S	0.00107	1.79215
4	C	1	S	Ryd(4S) 0.00011	2,92070
5	C	1	рх	Val(2p)) 1.04920	-0.05131
6	C	1	рх	Ryd(3p)) 0.00316	1,26268
7	C	1	px	Ryd(4p	0.00029	3.21844
8	С	1	РУ	Val(2p)) 1.16301	-0.05401
9	C	1	ру	Ryd(3p)) 0.00583	1.30046
10	C	1	py.	Ryd(4p)	0.00005	3.05652
11	C	1	pz	Val(2p)	0.99764	-0.10850
12	C	1	pz	Ryd(3p)) 0.00110	0.62283
13	C	1	pz	Ryd(4p) 0.00010	2.06595
14	C	1	dxy	Ryd(3d) 0.00150	2,38711

NPA

ARNING:	Population	inversion	found	on	atom	C	1	
	Population	inversion	found	on	atom	C	2	
	Population	inversion	found	on	atom	С	З	
	Population	inversion	found	on	atom	С	4	
	Population	inversion	found	on	atom	С	5	
	Population	inversion	found	on	atom	C	6	
	Population	inversion	found	on	atom	Н	8	
	Population	inversion	found	on	atom	н	9	
	Population	inversion	found	on	atom	Н	11	
	Population	inversion	found	on	atom	н	12	

Summary of Natural Population Analysis:

		and southern and		Natural Pop	ulation	
Atom	No	Natural Charge	Core	Valence	Rydberg	Total
C	1	-0.20116	1,99925	4.18319	0.01872	6.20116
С	2	-0.20116	1,99925	4.18319	0.01872	6.20116
C	3	-0.20116	1,99925	4,18319	0.01872	6.20116
C	4	-0.20116	1,99925	4.18319	0,01872	6.20116
ć	5	-0.20116	1.99925	4.18319	0.01872	6.28116
Ċ	6	-0.20116	1.99925	4.18319	0.01872	6.20116
Ĥ	7	0.20116	0.00000	0.79679	0.00205	0.79884
н	8	0.20116	0.00000	0.79679	0.00205	0.79884
Ĥ	9	0.20116	0.00000	0.79679	0.00205	0.79884
н	10	0.20116	0.00000	0.79679	0.00205	0.79884
Н	11	0.20116	0.00000	0.79679	0.00205	0.79884
Н	12	0.20116	0.00000	0.79679	0.00205	0.79884
× Tota	1 *	0.00000	11.99551	29.87986	0.12463	42.00000

Natural bond orbitals

. (1.98219)	BD (1) 0	1 - C	2						
1	50.00%)	0.7071* 0		36.00	6)p 1.77	(63.89%	nd 0.000	0.	89%)
					f 0.00(
			0	.0000		-0.0089	0.0023	Θ.	7868
						-0.3731			0823
			Θ	.0000	0.0000	8.8888	-0.0189	-0.1	0128
			Θ	.0000	0.0000	0.0000	0.0000	Θ.	0009
			0	0076	-0.0148	-0.0077	0.0000	-0,1	0082
			Θ	.0043	0.0000	0.0000	0.0025	-0.1	0089
6	50.00%)	0.7871* 0	2 s()	36.00	6)p 1.77	(63.89%)00.00(0	89%)
					f 0.00(0.02%)			
			0	.0000	0.6000	-0.0089	0.0023	-0.1	6762
			Θ	.0003	0.0035	8,4249	-0.0349	-0.0	0016
			Θ	.0000	0.0000	0.0000	-0.0102	-0.1	0130
			Θ	.0000	0.0000	0.0000	0.0000	0.1	0159
			8	.0073	-0.0148	-8.0077	0.0000	Θ.	0079
			- 8	.0050	0.0000	0.0000	0.0025	0.1	0089
. (1.66388)	BD (2) 0	1 - C	2						
(50.00%)	0.7071* 0	1 s(0.00	6)p 1.00	(99.95%)00.0 b(0.	02%)
					f 0.00(0.03%)			
			0	.0000	0,000	0.0000	0.0000	0.1	0000
			Θ	.0000	0.0000	0.0000	0.0000	0.	0000
				.9997			0.0000		0000
			Θ	.0021	0.0069		-0.0091	0.	0000
			0	.0000	0.0000	8.0000	-0.0159	Θ.	0000
					-0.0001	0,0006	8,0000		0000
6	50,00%)	0.7071* 0	2 s(0.003	6)p 1.00	(99,95%)d 0,00(0.1	82%)
					f 0.00(
				.0000	0.0000	0.0000	0.0000		0000
				.0000	0.0000		0.0000		0000
			0	9997	0.0102	0.0088	0.0000	0.	0000

30050,1 94%

Natural Bond Orbitals

(Occupancy) Bond orbital/ Coefficients/ Hybrids 1. (1.98219) BD (1) C 1 - C 2 (50.00%) 0.7071* C 1 s(36.00%)p 1.77(63.89%)d 0.00(0.09%) f 0.08(0.02%) 0.0000 0.6000 -0.0089 0.0023 0.7060 -0.0304 -0.0031 -0.3731 -0.0172 0.0023 0.0000 0.0000 -0.0189 -0.0128 0.0098 0.0000 0.0000 0.0000 0.0000 0.0009 0.0076 -0.0148 -0.0077 0.0000 -0.0082 0.0043 0.0000 0.0000 0.0025 -0.0089 (50.00%) 0.7071* C 2 s(36.00%)p 1.77(63.89%)d 0.00(0.09%) f 0.00(0.02%) 0.0000 0.6000 -0.0089 0.0023 -0.6762 0.0003 0.0035 0.4249 -0.0349 -0.0016 0.0000 0.0000 -0.0102 -0.0130 0.0000 0.0000 0.0000 0.0000 0.0159 0.0000 0.0073 -0.0148 -0.0077 0.0000 0.0079 0.0025 0.0089 -0.0050 0.0000 0.0000 2. (1.66388) BD (2) C 1 - C 2 0.7071* C 1 s(0.00%)p 1.00(99.95%)d 0.00(0.02%) (50.00%) f 0.00(0.03%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8.0000 8.0000 0.0000 0.0000 0.9997 0.0102 8.0088 0.0000 0.0000 0.0021 0.0069 -0.0096 -0.0091 0.0000 0.0800 0.0000 8.0008 -0.0159 0.0000 0.0000 -0.0001 0.0006 8.0000 0.0000 (50,00%) 0.7071*C 2 s(0.00%)p 1.00(99.95%)d 0.00(0.02%) f 0.00(0.03%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 0.0088 0.9997 0.0000 0.0000

2nd Order Perturbation Analysis of the Fock Matrix

Second Ord	er Pert	urbation	Theory	y Analysis of Fo	ck Matr	ix in	NBO Basis			
Thresh	old for	printin	g: 0	.50 kcal/mol						
) F(i,j)
	nor NBO				tor NBO			kcal/mol		a.u.

within uni	t 1									
1. BD (1) C	1 - C	2	/ 72. RY*(1) C	з		0.99	2,29	0.043
1, BD (1) C	1 - C	2	/ 73. RY*(2) C	з		1,28	3,52	0.068
1. BD (1) C	1 - C	2	/147. RY*(1) C	6		0.99	2,29	0.043
1. BD (1) C	1 - C	2	/148. RY*(2) C	6		1.28	3.52	0.060
1. BD (1) C	1 - C	2	/252. BD*(1) C	1 -	C 6	1.87	1.25	0.043
1. BD (1) C	1 - C	2	/253. BD*(1) C	1 -	H 7	0.81	1.12	0.027
1. BD (1) C	1 - C	2	/254. BD*(1) C	2 -	С З	1.87	1.25	0.043
1. BD (1) C	1 - C	2	/255. BD*(1) C	2 -	H 8	0.81	1.12	0.027
1. BD (1) C	1 - C	2	/258. BD*(1) C	3 -	Н 9	2.71	1.12	0.049
1. BD (1) C	1 - C	2	/264. BD*(1) C	6 - 9	H 12	2.71	1.12	0.049
2. BD (2) C	1 - C	2	/ 75. RY*(4) C	3		1.26	0.79	0.031
2. BD (2) C	1 - C	2	/150. RY*(4) C	6		1.26	8,79	0.031
2. BD (2) C	1 - C	2	/257. BD*(2) C	3 -	C 4	20.61	0.28	0.068
2. BD (2) C	1 - C	2	/262. BD*(2) C	5 -	C 6	20.61	8.28	0.068
3. BD (1) C	1 - C	6	/ 47. RY*(1) C	2		0.99	2.29	0.043
3. BD (1) C	1 - C	6	/ 48. RY*(2) C	2		1.28	3.52	0.060
3. BD (1) C	1 - C	6	/122. RY*(1) C	5		8.99	2.29	0.043
3. BD (1) C	1 - C	6	/123. RY*(2) C	5		1.28	3,52	0.060
3, BD (1) C	1 - C	6	/250. BD*(1) C	1 -	C 2	1.87	1,25	0.043
3. BD (1) C	1 - C	6	/253. BD*(1) C	1 -	H 7	0.81	1.12	0.027
3. BD (1) C	1 - C	6	/255. BD*(1) C	2 -	H 8	2.71	1.12	0.049
3. BD (1) C	1 - C	6	/261. BD*(1) C	5 -	C 6	1.87	1.25	0.043
3. BD (1) C	1 - C	6	/263. 8D*(1) C	5 -	H 11	2.71	1.12	0.049
3. BD (1) C	1 - C	6	/264. BD*(1) C	6 -	H 12	0.81	1.12	0.027
4. BD (1) C	1 - H	7	/ 28. RY*(7) C	1		0.53	2,22	0.031

Practice 3: NBO analysis

- Go to http://www.begdb.org/
- Download geometry of a non-covalent complex, e.g. A-T base pair in S22 - benchmark non-covalent complexes
- Perform NBO analysis, B3LYP/6-311++G(d,p) computational level, add Pop=NBO output=wfn external="/software/ncbr/softrepo/ncbr/nbo" to Gaussian root section
- Analyze natural charges of atoms invoved in non-covalent interactions, NBOs and characteristic donor-acceptor interactions
- Homework: try natural energy decomposition analysis for this complex