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Preface 

THE history of analytic geometry is by no means an uncharted 
sea. Every history of mathematics touches upon it to some 
extent; and numerous scholarly papers have been devoted to 

special aspects of the subject. What is chiefly wanting is an integrated 
survey of the historical development of analytic geometry as a whole. 
The closest approach to such a treatment is found in two articles by 
Gino Loria. One of these is in Italian and appeared in 1924 in a peri­
odical (the Memori,e of the Reale Accademia dei Linea for 1923} which 
is not easily accessible; the other is in French and was published, in 
several installments, from 1942 to 1945, in a Roumanian journal 
(Matliematica) which is still less readily available. These two articles 
together constitute perhaps the most extensive and dependable account 
of the history of analytic geometry. Somewhat less inclusive treat­
ments are found in German as parts of the works of Heinrich Wieleitner 
(Geschichte der Matliematik, part II, vol. 2, 1921} and Johannes Tropfke 
Geschichte der Elementaf'-Matliematik, 2nd ed., vol. VI, 1924}. Had 
convenient translations of any of the above works been at hand-or 
had J. L. Coolidge collated and amplified those portions of his ad­
mirable History of Geometf'ic Methods (1940} which pertain to analytic 
geometry-the present work might never have been written. As it 
was, there seemed to be room for an historical volume of modest size 
devoted solely to coordinate geometry. It soon became evident that, 
in view of the amount of material available, some limitations would 
have to be imposed if the work were to remain within reasonable pro­
portions. Not all relevant details could be included, for H. G. Zeuthen 
(in Di,e Lehf'e 11on den Kegelschnitte im Altef'tum, 1886} had devoted more 
than 500 pages to one specific aspect of a single chronological sub­
division. It was therefore decided that the present history should 
cover only such parts of analytic geometry as might reasonably be in­
cluded in an elementary general college course. Consequently de­
velopments of the last hundred years or so are largely omitted, for they 
are of a more advanced and highly specialized nature. Even within 
this self-imposed limitation, the account is not intended to be ex­
haustive with respect to detail. Factual information is presented 
largely to the extent to which it is suggestive of the general develop­
ment of ideas. Biographical details in the main have been overlooked, 
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not for want of attractiveness, but because often they have little 
bearing upon the growth of concepts. For similar reasons peculiari­
ties of terminology and notation have been accorded very limited 
space. Some attention has been given to the status of analytic geom­
etry vis-a-vis other branches of mathematics; but the impact of the 
wider intellectual milieu has been referred to only where it was re­
garded as of particular significance. It is of interest to note in this con­
nection that the development of coordinate geometry was not to any 
great extent bound up with general philosophical problems. The dis­
coveries of Descartes and Fermat in particular are relatively free of 
any metaphysical background. Indeed, La glomltrie was in many 
respects an isolated episode in the career of Descartes-one sug­
gested by a classical problem of Greek geometry. It was the natural 
outcome of historical tendencies; and had Descartes not lived, mathe­
matical history-in sharp contrast to philosophical-probably would 
have been much the same, by virtue of Fermat's simultaneous dis­
covery. The work of Fermat is practically devoid of philosophical 
interest, his discoveries being the result of a close study of the achieve­
ments of his predecessors. Perhaps nowhere does one find a better 
example of the value of historical knowledge for mathematicians 
than in the case of Fermat, for it is safe to say that, had he not been 
intimately acquainted with the geometry of Apollonius and ViMe, he 
would not have invented analytic geometry. 

It is frequently held that mathematics develops most effectively 
when it is closely associated with the world of practical affairs-when 
scholars and artisans work together. However, to this general rule 
there seem to be more exceptions than there are instances of it; and 
the discovery of analytic geometry certainly seems to be one of the 
exceptions. For this reason the sociological background has, in the 
present account, gone unemphasized. On the other hand, biblio­
graphical references to the source material have been granted a place 
of some prominence in order to enable the reader to pursue the sub­
ject further in directions which he may find especially attractive. 
Not all works cited in the footnotes are included in the "Analytical 
Bibliography," with which the volume closes. It is felt that the use­
fulness of the bibliography is enhanced by limiting it to items which 
are directly pertinent to the history of algebraic geometry and by in­
corporating in each case a very brief indication of the nature of the 
material. 

A conscientious effort has been made to see that the information 
presented is substantially correct in detail, although perfect accuracy 
in this respect is rarely achiev�d. However, it is the broad general 
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picture which represents the principal object of the book. Here there 
undoubtedly are further points which the reader could wish to have 
seen included, but it is hoped that there are few portions of the work 
which he would prefer deleted. For both inspiration and information 
the author is heavily indebted to the works of Loria and Wieleitner, 
and a special measure of credit is due also to the books of Coolidge and 
Tropfke. To all the scholars whose studies have served as the basis 
for the present volume, the author would express his appreciation. 

The manuscript of this work was completed about half a dozen years 
ago, and major portions of it have appeared from time to time in 
Scripta Mathematica. The bibliography contains a few items pub­
lished since the completion of the manuscript, but in most cases it was 
not feasible to make use of these in the body of the work. There have, 
however, been few recent developments which would lead one to alter 
materially judgments on the history of analytic geometry expressed 
some six years ago. 

The appearance of this book is due to the suggestion and encourage­
ment of Professor Jekuthiel Ginsburg of Yeshiva University, and to 
him, for continued inspiration and assistance in the completion of the 
project, we extend our warmest gratitude. 

January S, 1966 CARL B. BOYER 





C H A P T E R  I 

'The Earliest Contributions 
Mighty are numbers, joined with art resistless. 

-EUJUPIDBS 

MATHEMATICS originally was the science of number and 
magnitude. At first it was limited to the natural numbers 
and rectilinear configurations; but even from the early primi­

tive stages mankind presumably was concerned with the problem from 
which analytic geometry arose-the oorrelation of number with 
geometrical magnitude. The beginnings of the association of numeri­
cal relationships with spatial configurations are prehistoric, as are also 
the first connections between number and time. The harpedonaptae {"rope-stretchers" or surveyors) of Egypt and the astronomers of 
Chaldea bear witness to the early concern of mathematics with such 
associations. The very oldest written documents from Mesopotamia, 
Egypt, China, and India give evidence of the concern with mensura­
tion. Pre-Hellenic papyri and cuneiform texts abound in elaborate 
problems involving the concepts of length, area, and volume.1 So 
highly developed was this aspect of the Egyptian and Babylonian 
civilizations that one finds there, among other things, the correct result 
for the volume of the frustum of a pyramid with a square base. 

It is indeed possible to have an analytic geometry of points and 
straight lines alone, a direction toward which ancient mensuration 
pointed; but historically the subject arose instead from the com­
parison of curvilinear with rectilinear magnitudes. Here also the Egyptians and Babylonians, in their geometry of the circle, took the 
first steps. The former made a remarkably accurate estimate of the 
ratio of the area of the circle to the area of the square on the diameter, 
taking this ratio to be {l-1/,)1, equivalent to taking a value of about 3.16 for..-. The Babylonians adopted the cruder approximation 3 for 

..- {although an instance is known in which the value is taken as 31/1), 
1 A full account of this work is found In Otto Neugebauer, Vorlesungen 11ber Guclsi&1* 

w tsfdiien matlaematiscl&m Wismuc/laflen, v.I, VorgrieclsiscM Madlemalii (Berlin, 1934). 
An excellent bibliography of Egyptian and Babylonian mathematics is found in A. B. 
Chace, L. S. Bull, H.P. Manning, and R. C. Archibald, TM Rhind MalMmatical Papynu 
(2 vols., Oberlin, 1927-1929). For other contributions, including reliable � exposi­
tions, see the "Literature List and Notes" in Archibald, Oulline of the Hu1or1 of Jrallle­malics (6th ed., Mathematical Association of America, 1949). 

1 



2 HISTORY OF ANALYTIC GEOMETRY 

but their geometry of the circle nevertheless surpassed that of the 
contemporary Egyptians. They recognized that the angle inscribed 
in a semicircle is right, anticipating Thales by well over a thousand 
years. Moreover, they were familiar at about the same time with the 
Pythagorean theorem. Combining these two famous propositions, 
they found-for a given circle of radius r-the relationship between the 
length of a chord c and its sagitta s. This property, when symbolically 
expressed in such a form as 4r1 = c1 + 4{r -s) 1, may in a sense be 
regarded as an equation of the circle in terms of the rectangular co­
ordinates c and s. The Babylonians never reached this point of view, 
for such essential elements of analytic geometry as coordinates and 
equations of curves arose considerably later; but it is well to bear in 
mind how closely certain aspects of ancient mathematics approach 
their modern counterparts. Primitive systems of coordinates were 
used by Nilotic surveyors as early as 1400 B.C., and probably also by 
Mesopotamian star-gazers ;1 but there is no evidence that Egyptian or 
Babylonian geometers ever explicitly developed a formal geometric co­
ordinate system. • 

The nascent state of the idea of coordinates was not the only diffi­
culty in the way of the development of analytic geometry. De­
ficiencies in arithmetic were possibly just as serious. The systems of 
numeration used in the Nile and Mesopotamian valleys were not so 
well adapted to calculation as is ours. The hieratic script of the 
Egyptians made use of the principle of cipherization in connection with 
the ten-scale, but did not apply the idea of local value or position; the 
Babylonian sexagesimal notation, on the other hand, employed the 
positional principle, but cipherization was impracticable in conjunction 
with a base or radix of that size. Granted that these systems of 
numeration were imperfect, it is nevertheless open to doubt that diffi­
culties in methods of computation operated as seriously to obstruct the 
growth of algebra as did other factors. After all, the Babylonians 
calculated the diagonal of a square to the equivalent of half a dozen 
decimal figures! The shortcomings were probably more in number 
concepts than in number symbols. Algebra calls for a higher degree of 
abstraction than does geometry, and this element seems to have been 
lacking in pre-Hellenic mathematics. Number referred essentially to 
concrete whole numbers, and the idea of general fractions was missing 
in Egyptian writings. Much time was spent in finding ways of avoid­
ing all but unit fractions, so that the ratio of 2 to 43 would be written as 
1/u+1/m+ 1/1on or as 1/u+1/u+1/i11+1/ao1· Whether the Babylon-

• See E. W. Woolard, "The Historical Development of Celestial Co-ordinate Systems," 
Publit:aMn of Ilse Aslronomical Sorid1 of Ilse Pacifte, v. LIV ( 1942), p. 77-00. 
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ians achieved the concept of general rational number is open to question 
because of ambiguities in the interpretation of tables, the use of which 
was greatly emphasized. Elaborate tables give pairs of numbers the 
product of which is unity (or a power of sixty?). Presumably these 
tables of reciprocals served then as decimal fractions do today-as a 
means of avoiding general common fractions. 

There are striking examples of high levels of attainment in Babylon­
ian algebra of several thousand years ago. Numerous cases are given 
of quadratic equations which evidently were solved by the equivalent 
of the now customary "completion of the square" or its formula 
analogue (using the positive sign before the radical) ; and cubic equa­
tions are solved by the use of tables of cubes. Some work indicates a 
rough equivalent of logarithms, and there are instances of the use of 
negative numbers. Recent disclosures• indicate that the Babylonians 
possessed some rudiments of an abstract theory of numbers, including 
a rule for determining Pythagorean triads. They may also have been 
familiar with the ideas of arithmetic, geometric, and harmonic mean. 
Such a level of algebraic technique is in itself truly wonderful ; but it is 
difficult to determine the extent to which such work definitively deter­
mined the developments in Greece, where the next steps toward 
analytic geometry were taken in a difierent manner and spirit. 

The pre-Hellenic civilizations bequeathed to their successors a large 
body of knowledge in both arithmetic and geometry ; but the associa­
tion of these two fields which later characterized algebraic geometry 
was the outgrowth of an abstract generalization which the Egyptians 
and Babylonians failed to achieve. The earliest discoveries of numeri­
cal and spatial relationships followed from the empirical investigation 
of concrete cases, and were extended by a rough process of induction to 
include other simUar cases. The results arrived at by this method may 
have been conceived of in general terms, but they invariably are stated 
in specific numerical terms rather than as universal theorems. More­
over, extant evidence indicates that formal deductive reasoning was 
not used by pre-Hellenic peoples. For these reasons the Greeks' 
ordinarily are regarded as the founders of mathematics in the strict 
sense of the word, for they emphasized the value of abstract generaliza­
tions {of which analytic geometry is a striking example) and the 
deductive elaboration of these. Just how or why this momentous 

1 See 0. Neugebauer and A. Sachs, MathematU:al Cuneiform Te%1s (American Oriental 
Series, v. XXIX), New Haven, Conn. (1945). Cf. also Neugebauer, The Emel Seienas in 
Antipily, Princeton University Press, 1952. 

' For the best general account of the Greek contribution see T. L. Heath, A History of Gruli Mathematics, 2 vols., Oxford, 1921 (or his later but briefer Manual of Gruli Mathe­
. tnaliu, Oxford, 1931). See also B. L. van der Waerden, Scienu At11akening (transl. by 

Arnold Dresden), Groningen, 1954. 
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change took place has been a favorite topic of speculation from which 
no categorical conclusion has been derived. It is of interest to note, 
however, that this early intellectual revolution occurred at about the 
time of a distinct geographical shift in the centers of civilization. The 
focal points previously had been river valleys, such as that of the Nile, 
or of the Tigris and Euphrates; but by the middle of the eighth 
century B.C. these ancient potamic civilizations were confronted with a 
vigorous young thallasic civilization established about the Medi­
terranean Sea. 

Thales (ca. 640-546 B.C.) and Pythagoras (ca. 572-501 B.C.) were 
largely responsible for, or at least typical of, the intellectual climate in 
Greece during the sixth century B.C. from which mathematics properly 
so-called arose; but their contributions lay more in their abstract point 
of view and in their deductive arrangement of material than in any 
novelty of subject matter. The theorems of Thales and Pythagoras 
are misnamed as far as original discovery is conceined, but these 
names are perhaps justifiable on the basis of the rational deduction of 
the theorems from other known relationships. The works of these 
men have not survived, but later accounts-especially by Pappus and 
Proclus-agree in ascribing the use of deduction to Thales of Miletus, 
''the first mathematician," and in attributing the rise of mathematics 
to the status of an independent and abstract discipline-a liberal art­
to Pythagoras of Sa.mos and Crotona, "the father of mathematics." In 
short, these two men-the first mathematicians to be known by name­
were the founders of demonstrative geometry. Thales contributed 
especially to geometry. He seems to have added little to arithmetic or 
to the pre-Hellenic association of algebra and geometry; but Pythag­
oras and his disciples went much further in this direction. Earlier 
peoples had related time and space to number; but the Pythagoreans 
sought to explain all phenomena through the association of things with 
the properties of the natural numbers. Their well-known slogan, 
"All is number", served as the inspiration for much mathematics, 
both good and bad-elements of analytic geometry, as well as of 
numerology. A3 part of this program, the Pythagoreans• continued 
the pre-Hellenic problems in length, area, and volume, confident that 
number could in all cases be associated with geometrical magnitude. 
They made the plausible assumption implicit in earlier work, that the 
relationships of line segments to one another (and similarly for areas 
and volumes) are expressible through ratios of integers; and hence the 
concept of ratio and proportion became basic in all Greek mathematics. 

Simple proportions had been used in many aspects of pre-Hellenic 
1 See, e. g., Heinrich Vogt, "Die Geometrie des Pythagoras," Bibliotheca Malhemalica 

(3), v. IX (1909), p. 15-64. 
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mathematics, especially in geometric problems of mensuration. Clear 
indications of the ratio concept are found in the Ahmes papyrus of 
about 1650 B.C., and in the earlier Moscow papyrus there is a term 
indicating the ratio of the larger to the smaller side in a right triangle. 
The Babylonians of this period made use of proportions in connection 
with linear interpolation within the tables of lunar phases, and they 
were acquainted also with simple geometric progressions. But there 
seems to have been no abstract study of ratio and proportion before the 
Hellenic era. 

The lack of the general fraction concept in ancient thought played a 
powerful role in science and mathematics, for it led to a domination of 
thought, lasting for two thousand years, by the idea of proportionality 
instead of the more general notion of function. For the modem word 
"ratio" the Greeks had two expressions :8 diastema, which meant 
literally "interval," and 'logos, which meant "word," especially in the 
sense of conveying meaning or insight. The latter term generally was 
used in mathematics, pointing to the Pythagorean idea that ratios 
express the intrinsic nature of things. The language and theory of . 
ratios were developed largely from musical theory, in connection with 
which Pythagoras discovered the oldest law of mathematical physics-­
the essence of harmony lies in the fact that the lengths of vibrating 
strings should be to each other as certain ratios of simple whole num­
bers . The Greek expression for proportionality or the equality of 
ratios, was analogia, which meant, literally, having "the same ratio." 
This was somewhat equivalent to the modem use of equations as ex­
pressions of functional relationships, although far more restricted, and 
for two millenia it served as the chief algebraic tool of geometry. 

In the days of Thales and the early Pythagoreans, the realm of 
number included only the positive integers; the only curves recognized 
in geometry were still the straight line and the circle. Had this situa­
tion continued, there would have been little real need for either analytic 
geometry or the calculus. However, toward the middle of the fifth 
century B.C. there OCCUJTed a crisis which rocked the very foundations 
of Pythagorean philosophy and its association of number and configura­
tion. This second intellectual revolution-the one which ultimately 
paved the way for elementary analysis-centered about :figures 
narrowly concentrated in time but widely scattered throughout the 
Mediterranean world: Zeno of Elea (born ca. 496 B.C.), Hippasus of 
Metapontum (ft. 445 B.C.), Democritus of Abdera (ca. 460-357 B.C.), 
Hippocrates of Chios (born ca. 460 B.C.) , and Hippias of Elis (born 

1 For a thorough scholarly account in this connection, see Kurt von Fritz, "The Discovery 
of lncommensurability by Hippasus of Metapontum," Ann. Math., 2nd series, v. XLVI 
(1945), p. 242-64. 
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ca. 460 B.C.). It is of interest to note that in each case the con­
tributions of these men were not the outcome of problems in natural 
science or technology, but they were motivated instead by purely 
philosophical or theoretical difficulties. Contrary to a widely held 
belief, important developments in mathematics are not necessarily 
related to the world's work or to man's material needs. 

The Greek search for essences had led the Pythagoreans to picture 
the universe as a multitude of mathematical points completely subject 
to the laws of number-a sort of arithmetic geometry, but not at all an 
analytic geometry. The rival Eleatic philosophy of Parmenides up­
held the essential "oneness" of the universe and the impossibility of 
analyzing it in terms of the ''many.'' Zeno of Elea sought dialectically 
to defend his master's doctrine by demolishing the Pythagorean associa­
tion of multiplicity with number and magnitude. 7 

Zeno proposed four paradoxes on motion, of which the first two-the 
dichotomy and the Achilles-are directed against the infinite divisibility 
of space and time, and the last two-the a"ow and the stade---refute 
the finite divisibility of space and time into ultimate countable ele­
ments, indivisibles, or monads. The paradoxes, as one sees now, in­
volve such notions as infinite sequence, limit, and continuity, concepts 
for which neither Zeno nor any of the ancients gave precise definition. 
They represented a confusion of sense and reason, and hence at that 
time were not answerable; but their influence was profound. The 
Greeks banned from their mathematics any thought of an arithmetic 
continuum or of an algebraic variable, ideas which might have led to 
analytic geometry; and they refused to place any confidence in infinite 
processes, the methods which would have resulted in the calculus. 
Whereas the Pythagoreans had envisioned a union of arithmetic and 
geometry, Greek mathematicians after Zeno saw only the mutual in­
compatibility of the two fields. 

The work of Hippasus, roughly contemporary with that of Zeno, was 
perhaps even more obstructive to the development of analytic methods. 
The Pythagoreans had continued the pre-Hellenic study of length, area, 
and volume, confident that number always could be associated with 
geometrical magnitude; but not long after 450 B.C. Hippasus (or 

' Accounts of the Zeno paradoxes are well-nigh numberless. Two of the most thorough­
going of the�d also the most appropriate from the point of view of matbematics--are 
by Florian Cajori: "History of Zeno's Arguments on Motion," Am. Math. Monthly, v. 
:XXJI(l915),p. 1-6,39-47,77-82, 109-115, 143-149, 179-186,215-220,253-258,292-297; 
and "The Purpose of Zeno's Arguments on Motion," Isis, v. III (1920), p. 7-20. See also 
Adolph Grfinbaum, "A Consistent Conception of the Extended Linear Continuum as an 
Aggregate of Unextended Elements," Philosophy of Scinee, v. :XI:X (1952), p. 288-306. 
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possibly someone else) blasted this doctrine by the discovery8 that 
there exist simple cases of line segments which are mutually incom­
mensurable. The ratio of the diagonal of a square to its side, for 
example, cannot be expressed in terms of integers. Just how this was 
discovered or proved cannot be determined with certainty. It may 
have resulted from the recognition of the non-termination of the 
geometrical equivalent of the process of finding the greatest common 
divisor; or it may have originated in the method given by Aristotle-­
the demonstration that the existence of such a ratio leads to the contra­
diction that an integer can be at once both even and odd. 

That the discovery of the incommensurability of lines made a strong 
impression on Greek thought is indicated by the story that Hippasus 
sufiered death by shipwreck as a penalty for his disclosure. It is 
demonstrated more reliably by the prominence given to the theory of 
irrationals by Plato and his school. The crisis which incommensur- ......­
ability caused in Pythagorean philosophy and Greek mathematics 
might have been met by the introduction of infinite processes and 
irrational numbers, but the paradoxes of Zeno blocked this path. 
Hence the Greeks were led by Zeno and Hippasus to abandon the 
pursuit of a full arithmetization of geometry, and the path was not 
resumed until after analytic geometry had reached maturity through 
more roundabout channels. Throughout Greek history there was 
no such thing as algebraic analysis. Geometry was the domain of 
continuous magnitude , arithmetic was concerned with the discrete set 
of integers; and the two fields were irreconcilable. Length, area, and 
volume were not numbers attached to a given configuration; they were 

1 There is considerable doubt about the time and circumstances of this disclosure, and 
much has been written on the subject. One of the most recent and convincing accounts is 
that by von Fritz {op. cil.). Another critical discussion is that by Heinrich Vogt: "Haben 
die alten Inder den Pythagoreischen Lehrsatz und das Irrationale gekannt," Bibliotheca 
Mathematica (3), v. VII {1906-1007), p. 6-23; "Die Entdeckungsgeschichte des Irrationalen 
nach Plato und anderen Quellen des 4. Jahrhunderts, " lbUl., (3), v. X (1910), p. 97-155; 
and "Zur Entdeckungsgeschichte des Irrationalen," lbUl., (3), v. XIV {1914), p. 9-29. 
See also Siegmund Guenther, "Die quadratischen Irrationaliti.ten der Alten und deren 
Bntwickelungsmethoden," Abl&antllungen or Geschicllle ti.er Mathematik, v. IV {1882), 
p. 1-134. 

There appears to be no satisfactory evidence of an anticipation of the discovery in India. 
H. G. Zeuthen bas pointed out {"Sur l'origine historique de la connaissance des quantites 
irrationelles," Orlersigt ooer tlet K011gelige Danske Videnskabernes Selskabs. Forl&andlinger 
{1915), p. 333--362) that the discovery must have been preceded by a clear distinction be­
tween exact and approximate values, but this apparently was not made by the Hindus. 
Vogt (op. cit.) and Heath (Euclid, v. I, p. 364) point out that three stages are implied by the 
discovery : (1) all values based upon direct measurement must be recognized as inaccurate, 
(2) a conviction must prevail that it is impossible to arrive at an accurate arithmetical 
expression of the value, and (3) the impossibility must be proved. Heath adds that there 
is no real evidence that at the date in question [the time of the Sulvasutras), the Hindus 
had reached even the first of these stages. 
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undefined geometric concepts. Greek "algebra" was a geometry ot 
lines instead of an algorithm of numbers; and classical problems called 
for the construction of lines-a sort of equivalent of mod.em existence 
theorems in analysis-for they had no independent algebraic formulas. 
Greek mathematicians, for example, always considered the ratio of two 
lines rather than the length of one. The quadrature of the circle called 
for the construction of a square, not the determination of a number. 

An enlightening example of the Greek attitude toward arithmetic 
and geometry is seen in the classical treatment of quadratic equations. 
The Babylonians of a thousand years before had reduced geometrical 
problems in mensuration to quadratic equations and then solved these 
numerically, using algebraic symbolism, much as is done nowadays. 
Greek geometers, on the other hand, made no such easy transition from 
the one field to the other.9 For them an equation arising from a 
geometrical problem represented an equality of lines, areas, or volumes, 
and hence the solution of quadratic equations was a sort of translation 
of Babylonian methods into the language of geometrical construc­
tions.10 The method by which this was accomplished, known as the 
application of areas, is given systematically in Euclid but may well go 
back to the Pythagoreans. An area was said to be applied to a 
straight line {segment) when an equal area was described upon this 
line as base, or, more generally, when one side of the area was thought 
of as lying along the line, even if the side exceeded the line or fell short 
of it. In its simplest form the application of areas amounted to finding 
the line which, together with a given line, determines a rectangle 
of given area-that is, it corresponded to the division of a given 
product by one of its factors. In more general form it amounted to 
an algebra of factoring, used in solving quadratic equations. As an 
illustration11 of its use, let it be required to solve x1+c1= bx {where all 
terms are positive and b>2c)-or, in Greek terminology, to apply to a 
straight line segment b a rectangle equal to a given square c1 and fall­
ing short (of the end of the segment) by a square figure. Draw AB = b 
and let this be bisected at the point C. (See Fig. 1 .) Draw CO=c 
perpendicular to AB. With 0 as center and b/2 as radius, draw an arc 
cutting AB in D. Then BD=x is the required line. (APQD is the 
rectangle applied to the segment b, and DBRQ is the square by which 

1 See, for example, Federigo Enriques, L' nolution des idles giomAtriqMu tlans la pensk 
v"'lfle (translated by Maurice Solovine, Paris, 1927), and H. G. Zeuthen, "Surles rapports 
entre les anciens et les modemes principes de la g�etrie," AUi del IV Congresso Inter· 
naftonale dei Mathematui, v. III (1909), p. 422-427. 

11 Neugebauer, "Zur geometriscben Algebra," Qf4ellen und Studien sur Geschuhle der 
Mathematill . .. , Abt. B, Studien, v. III (1934-1936), p. 245-259. 

11 For this method, as well as other aspects of Euclidean and pre-Euclidean mathematics, see TIN Tllirteen Boolu of the Elements of Euclid, edited by T. L. Heath, 3 vols., Cambridge. 
1908. 
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APQD falls short of the end of the segment.) By similar procedures 
the equations x1+bx = c1 and x1 = bx+c1 (the only other quadratics 
with positive roots) were solved geometrically.11 Such solutions show 
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that Greek algebra-as distinct from arithmetic and logistic--was 
wholly dependent upon geometry. Probably one of the chief reasons 
that Greece did not develop an algebraic geometry is that they were • 

bound by a geometrical algebra. After all, one cannot raise himself by 
his own boot straps. 

During the critical yea.rs when Zeno and Hippias were confuting the 
best efforts of mathematicians in the mensuration of figures, there 
arose three famous challenges within this very area.11 Had men of 
the time realized that all three of these classical problems-the squaring 
of the circle, the trisection of the angle, and the duplication of the 
cube-were unsolvable, the whole history of mathematics undoubtedly 
would have been quite difierent. This is particularly true of analytic 
geometry, for the search for new loci was the direct outgrowth of 
these questions. The origin of the three problems is not known, but 
it is said that Anaxagoras (ca. 499-427 B.C.), the teacher of Pericles, 
worked on the first one while in prison, presumably without success. 
So far as we know, the earliest exact results on curvilinear mensura­
tion were due to his younger contemporaries, Democritus and Hippoc­
rates. 

The middle of the fifth century B.C. saw the rise of one of the 
greatest scientific theories of all times-that of physical atomism. 

11 On the history of the solution of equations, the following two works are especially 
valuable: A. Favaro, "Notizie storico-critiche sulla costruzione delle equazioni," Memorie 
tklla Regia Accademia di Sciense, LeUere ell Arti in Modena, v. XVIII (1878), p. 127�0; 
and Ludwig Matthiessen, Gruntkilge Iler antiken untl modernen Algebra Iler liUeralen Gleichun· 
gen (Leipzig, 1878). 

11 For a good general account of the problems, see Felix Klein, Famous Problems in Geom­
etry, translated by Beman and Smith with notes by Archibald (2nd ed., New York, 1930). 
Cf. also Arthur Mitzcherling, Das Problem Iler Kreisteilung. Ein Beitrag nr Geschichte 
seiner Entwicklung (Leipzig and Berlin, 1913), which includes also valuable comments on 
the Delian problem. On this problem in particular see also J. H. Weaver, "The Duplication 
Problem," Am. Math. Monthl1, v. XXIII (1916), p. 106-113. 



10 HISTORY OF ANALYTIC GEOMETRY 

Democritus, one of the founders of the atomic doctrine, was also a 
mathematician, and to him Archimedes ascribed the determination 
or demonstration of the volume of the p:framid and the cone. This 
work is significant not only as an extension to three dimensions of 
Pythagorean mensurational efforts, but also for the bold use of infinite 
processes. Democritus composed numerous works bearing on critical 

Fig. 2 

Fig. 3 

aspects of the principles of geometry, but virtually all of what he 
said has been lost. It is consequently difficult to reconstruct his 
thought; but it seems clear that to him is largely due the introduction 
of the infinitesimal in geometry. This mathematical atomism be­
came, even in Greek days, a powerful heuristic device, and in the 
seventeenth century it was the motivating force which led to the 
calculus. However, the use of the infinitely small in antiquity could 
not be made rigorous because the algebraic notion of a continuous 
variable had not been developed. The Greeks therefore searched 
for, and later found, a meticulous but circuitous geometrical procedure 
by which to establish their theorems on curvilinear mensuration. 
This device, known as the method of exhaustion, was formulated by 
Eudo:xus of Cnidus, but there is reason to believe that it goes back to 
Hippocrates of Chios, the contemporary of Democritus. That 
Hippocrates was familiar with the attempts to unify arithmetic and 
geometry through measurement is indicated by the report that he 
was for a while a Pythagorean. (The story has it that he was expelled 
from the school because he accepted a much-needed fee from a student 
of geometry.) The method of exhaustion, the Greek equivalent of 
the integral calculus, was based on the so-called axiom of Archimedes 
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which assumes that continuous magnitudes by successive bisection 
can be reduced to elements as small as desired. The argument 
proceeded much as it would in the case of the modern method of limits 
except that the point of view was geometric instead of numerical. 
Inasmuch as length, area, and volume were not defined numerically 
as limits, the procedure was supplemented by a reductio ad absurdum 
argument. 

The method of exhaustion made it possible to prove that the areas 
of circles are to each other as the squares on their diameters. This 
theorem has been ascribed to Hippocrates, who made it the basis for 
the earliest exact quadrature of a curvilinear area. His proof that 
the lune APBQ (Fig. 2) bounded by circular arcs, was exactly equal to 
the triangle ABO led him to believe, mistakenly, that the exact 
quadrature of the whole circle was possible. Interest in the three 
classical problems was thus intensified. 

The circle and the straight line had possessed for the Greeks a 
peculiar fascination, and upon these alone they had sought to build all 
of their science and mathematics. The apotheosis of the straight-edge 
and compasses has played an enormous role in the development of 
mathematics; but it favored synthetic geometry at the expense of 
analysis. Fortunately, however, the three famous problems are un­
solvable under the classical restriction, a fact which motivated the 
search for, and discovery of, other curves. 

It is reported that Hippias the Sophist (ca. 425 B.C.) invented the 
first curve other than the circle and straight line, through the intrusion 
into geometry of the notion of a mechanical movement. If a hori­
mntal bar or line-segment AB moves downward with a uniform 
motion of translation to the position OC in the same time that an equal 
vertical bar or segment OA rotates about 0 to the position OC, the . 
intersection P of these bars or line segments will trace out a curve 
known as the quadratrix of Hippias (see Fig. 3) . This curve was used 
by the Greeks to resolve two of the three classical problems. It easily 
"solved" all multisection questions, including that of trisection. To 
trisect the angle COR, for example, one first trisected the segment OQ 
by the point Q', then found the corresponding point P' on the quad­
ratix, and :finally extended OP' to intersect the circle in R', the desired 
point trisecting the arc CR. Moreover, it was shown later by Dino­
stratus (fl. ca. 350 B.C.) that, once the quadratrix is constructed, the 
circle can be squared through the fact that the side of the square AB 

· is the mean proportional between the length of the quarter circular arc 
ARC and the linear segment OD. Thus, of the three classical problems, 
only the duplication problem remained "unsolved." 
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The quadratrix is of importance not only as a new curve, but also as 
heralding one of the basic ideas of analytic geometry-that of a locus. 
This idea is implicit in the definition of the circle, but the dynamic 
point of view seems not previously to have been appreciated. How­
ever, the plotting of the quadratrix presented practical difficulties. 
So long as one has no apparatus for describing the curve by continuous 
motion, a pointwise construction is necessary even though the language 
of the definition is kinematic. The distinction between curves defined 
geometrically and those described mechanically by a continuous motion 
was not made clear, and one does not know which point of view Hipp� 
adopted. It is not even known whether he and Dinostratus regarded 
the curve as furnishing solutions of the classical problems in a strict 
theoretical sense. Unfortunately, the limitless possibilities, in the 
idea of a locus, for the definition of new curves seems not to have been 
appreciated by Hippias and his contemporaries. 

Of the three famous problems of geometry, the duplication of the 
cube was the one which played the greatest role in the development of 
analytic geometry; and it evidently was one which fired the imagina­
tion of the ancient Greeks, if we are to believe the legend relating to it. 
The story goes that the people of Athens appealed to the oracle at 
Delos to relieve them from a devastating plague. Upon being told to 
double the altar of Apollo (presumably making use only of an unmarked 
straight-edge and compasses), the Athenians ingenuously increased 
each dimension twofold. The plague continued; and when complaint 
was lodged with the oracle, the people were reminded that they had 
increased the volume of the altar eightfold-i.e., they had solved 
geometrically the equation x1 = 8 instead of the equation x1 = 2. 
The plague finally abated; but attempts to duplicate the cube con­
tinued. Not until some two thousand years later did it become clear 
that the oracle sardonically had proposed an unsolvable problem­
henceforth known as the Delian problem. 

Following unsuccessful efforts to duplicate the cube according to the 
rules, the Greeks turned to other devices. The first "solutions" 
of the Delian problem differed considerably from those of the other 
two classical problems. Hippocrates of Chios made some progress 
toward the duplication of the cube in showing that if two mean propor­
tionals x and y can be determined so as to satisfy the continued propor­
tion a: x == x: y = y: 2a, then the proportional x will be the side of the 
cube desired-i.e., it will satisfy the equation x1 == 2a1• The problem 
thus called for the construction, through geometric methods, of such a 
proportional. The first one to cut the Gordian knot in this case seems 
to have been the Pythagorean scholar Archytas (ca. 428-347 B.C.). 
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He is reputed to have determined the required mean proportional through a remarkable construction calling for the intersection of three 
surfaces of revolution: a cone, a cylinder, and a tore. 

His construction is now easily verified by analytic methods: letting 
the equations of the three surfaces be 

bl(xl + 11 + zl) = 41x1 
xi+yi=ax 

xi + yi + ,11 = a'\/--�-+-,-1 
it is a simple matter to arrange these equations in the form of the 
continued proportion 

a v'x1 + y• + .si vx• + y• 
v xi+y1+z1 - v xi+y1 - b · 

)r � 
For Ji = 2A these equations obviously lead to the solution of the Delian 
problem. But such an anachronistic application of modem analysis 
fails to do justice to the ingeniousness of Archytas in inventing this 
solution with the aid of synthetic solid geometry alone. In his day 
surfaces were not defined by means of equations but by the revolution 
of known curves, such as the line and the circle. 

Following the Peloponnesian war, the center of mathematical 
activity shifted to Athens, although of the leading mathematicians 
there, only Plato (ca. 427-347 B.C.) was a native. Here Plato, the 
friend of Archytas, established the famous Academy. Plato exerted 
a powerful infiuence on mathematics by bis enthusia.mJ for the subject, 
but bis interests did not lie in the direction of analytic geometry. 
Archytas is said to have devised an organic solution for the duplication problem, and Plato is reported to have devised another mechanical 
locus for this purpose. But it seems that in general Plato condemned 
the use of mechanical contrivances in geometry on the grounds that 
these tend to materialize a subject which he felt belonged to the realm 
of etemal and incorporeal ideas. He reaJiT.00 that mathematics does 
not deal with things of the senses, such as the figures which are drawn, 
but with the ideals which they resemble. He seems to have been one 
of the first men to recognize the status of the premises of the subject 
as pure hypotheses and hence to see the need for stating carefully the 
assumptions made. lna.mJuch as the straight-edge and compasses 
are in a real sense mechanical contrivances, it is difficult to see why 
Plato felt that a gulf lay between the straight line and the circle on the 
one hand and all remaining curves on the other. It may have been the 
ease with which the line and circle are descnl>ed, or possibly the per-
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fection of these curves from the point of view of symmetry ; but in 
any case, tradition holds him largely responsible for the canonization 
of the ruler and compasses in geometry. 14 

Plato's rejection of curves other than the line and circle undoubtedly 
inhibited the development of analytic geometry, yet to him is ascribed 
(by Proclus and Diogenes Laertius) one of the fundamental aspects of 
the subject-the use of the analytic method. In the broad sense of a 
preliminary investigation, analysis is not to be ascribed to any one 
individual, for it undoubtedly has been used since the beginnings of 
mathematics. Even in the more technical sense it may antedate the 
time of Plato. If incommensurability was first proved in the manner 
described later by Aristotle-i.e. , by showing that if such a ratio of 
integers exists, it must be at the same time both odd and even-then 
at least one type of analytical reasoning, the argument by a reductio 
ad absurdum, was in existence probably before Plato's birth. Plato, 
however, paid particular attention to the principles and methods of 
mathematics, and so it is likely that he formalized and pointed out the 
limitations of the analytical procedure. It is reported (in the "Eude­
mian Summary" of Proclus) that Eudoxus, an associate of the school 
of Plato, made use of the method of geometrical analysis. As Plato 
seems to have used the term, analysis meant the method in which one 
assumes as true the thing to be proved and then reasons from it until 
one arrives at propositions previously established or at an acknowledged 
principle. By reversing the order of the steps (if possible) , one obtains 
a demonstration of the theorem which was to have been proved. 
That is, analysis is a systematic process of discovering necessary condi­
tions for the theorem to hold, and if by synthesis these conditions are 
then shown to � sufficient, the theorem is thereby established. It 
should be noted, however, that it is not primarily by virtue of this 
order of steps in the reasoning process that coordinate geometry now 
is known as analytic geometry. The signification of the word analysis 
has changed with circumstances, and today this term has several more 
or less distinct meanings. 111 The more recent applications of the 
word dift'er from the original Platonic use especially in an increased 
emphasis upon symbolic techniques. In Plato's day there was no 

u The correctness of this tradition, however, may be questioned. See D. A. Steele, 
"Ueber die Rolle von Zirkel & Lineal in der grieschischen Mathematik," Quellen 11rul Strulkn 
nr Gescliiclde tkr MtJtliemalik . . .  , Abt. B, Studien , v. III ( 1934-1936), p. 287-369, for the 
view that Plutarch 's statement in this connection has been misinterpreted by modem 
historians. Cf. also, by the same author, "A Mathematical Reappraisal of the Corpus 
Platonicum," Scripta MtJt/sematica, v. XVII ( 1951), p. 173-189. 

u See Paul T�nery, "Du sens des mots analyse et synth� chez les grecs et de leur 
�bre g&>metrique," Nolilms liistorique, in Jules Tannery, Notins de matlllflllJliques 
(Paris, 1903), p. 327-333. 
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formal algebra ; but when, almost two thousand years later, the ana­
lytic method of Plato came to be applied to primitive forms of alge­
braic geometry, then the invention of analytic geometry quickly 
followed. 

Plato appreciated keenly the problems which were raised in mathe­
matics by the paradoxes of Zeno and the discovery of the incommensu­
rable, and although he did not solve these, he suggested a possible 
method of attack. He regarded the continuum as generated by the 
flowing of an abstract unbounded infinite, rather than as made up by 
an aggregation of indivisibles. Such a point of view is somewhat 
analogous to the effective heuristic use by Leibniz and Newton of 
generative infinitesimals and fl�ons, but it is in essence a peti.tio 
principio through the lack of definition of terms. Indeed, in pursuing 
the thought of Plato on motion and continuity, his successors took 
two diametrically opposite points of view. The members of the 
Academy rejected the physical atomism of Democritus, yet they at­
tempted to develop the idea of indivisibles or fixed infinitesimals in 
mathematics. In this they were vigorously opposed by two of Plato's 
outstanding students, Aristotle (384-322 B.C.) and Eudoxus (ca. 
408-355 B.C.) ,  who were more inclined toward the natural sciences. 
The decisions of Aristotle on the indivisible, the infinite, and the con­
tinuous were those dictated by immediate common sense. He denied 
categorically the existence of minimal indivisible line segments and of 
an actual or completed infinite. The essence of continuity he found in 
that which is divisible into divisibles that are infinitely divisible. 
Emphasizing the gap in Greek days between geometry and arithmetic, 
he denied that number can produce a continuum, inasmuch as there is 
no contact in numbers. His study of motion was concerned with 
qualitative explanation rather than quantitative description, and so 
precluded a satisfactory science of dynamics. However, it was the 
study of Aristotle's works which, during the late Middle Ages, inspired 
those attempts to build a mathematical theory of motion and the 
continuum which brought medieval mathematicians very close to 
analytic geometry. 

The mathematical counterpart of the philosophical views of Aristotle 
is seen in the work of Eudoxus, most of which is known only indirectly 
through other sources. It is concerned largely with the early equiva­
lent of the integral calculus, inspired presumably by some problems 
in stereometry suggested to him by Plato. Democritus had given the 
volumes of pyramids and cones, but the demonstration of these is 
ascribed to Eudoxus. His proof, by the method of exhaustion, may 
have been original with him-inasmuch as Archimedes ascribed the 
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basic postulate to Eudoms-or it may have been adopted from ffippoc­
rates of Chios. The method of Eudoxus is somewhat equivalent in 
type of procedure to that involving limits, but it was quite different 
in point of view. The Greek method, dealing as it did with con­
tinuous magnitude, was wholly geometrical, for there was at the time 
no knowledge of the continuum of numbers ; the present method of 
limits, on the other hand, is essentially arithmetical. 

By the method of exhaustion Eudoxus {and perhaps Hippocrates 
before him) was enabled to compare, through the theory of ratio and 
proportion, curvilinear geometric magnitudes with rectilinear. How­
ever, the discovery of incommensurability had shown that ratios, even 
of rectilinear figures, can not always be defined in terms of integers. 
The Greeks of the time of Theaetetus {ft. ca. 375 B.C.) seem therefore 
to have made use of a modified definition (due possibly to Hippocrates 
of Chios) in terms of the process of finding the greatest common 
divisor : Magnitudes have the same ratio if they have the same mutual 
successive subtraction, analogous to the process of successive division 
in the Euclid algorithm for the highest common factor of two quanti­
ties. For example, whether the bases of two rectangles of equal 
altitude are commensurable or incommensurable, the ratio of the bases 
is equal to the ratio of the areas inasmuch as the successive application 
of the lines in the one case of mutual subtraction co1Tesponds directly 
to the application of areas in the other. But the usefulness of the new 
definition was limited, and so Eudoxus {about 370 B .C.) developed 
another which he found was needed in his proofs by exhaustion : 
Magnitudes are said to be in the same ratio, the first to the second and 
the third to the fourth, when, if any equimultiples whatever be taken 
of the first and third, and any equimultiples whatever of the second and 
fourth, the formeT equimultiples alike exceed, are alike equal to, or 
alike fall short of, the latter equimultiples respectively taken in corre­
sponding order. This definition might have served as a basis for a 
general definition of real number, whether rational or irrational. 18 
As used by the Greeks, however, it served to avoid all reference to 
numbers other than natural numbers or integers. All four of the en­
tities involved in the definition might be geometrical, as in the propo-

u For a profound study of pertinent aspects of the work of Eudoxus see Oskar Becker. 
"Eudoxos-Studien.' '  � und S'iulien nr Geschichk tkr Mafhemalik, As,ronomie und 
Pli1sik, Part B, S'iulien, v. II ( 1933), p. 3 1 1-333, 369-387 ; v. III ( 1936), p. 236-244, 370-
410. For a good general account of the relation of Eudoxus' theory of proportion to ancient 
and modem thought, see Coolidge, A Histor1 of Geometrical Methods (Oxford, 1940), p. 
29--34. Bell has pointed out ( "Sixes and Sevens," ScluPTA MATHEMATICA, v. XI (1945), 
see p. 163) that Eudoxus' theory of proportion still depends on infinities Inasmuch as the 
phrase "any equimultiples" implies an infinite number of possibilities ; but the Greeb seem 
to have o'ftl'looked this fact. 
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sition that the areas of circles are to each other as squares on the 
diameters of the circles. The ancient equivalents of the integral 
calculus were thus concerned with ratios of geometrical figures, such 
as circles and squares, rather than with analytic functions of continuous 
variables, such as A = 111'1• This emphasis made it difficult to recog­
ni7.e or establish a general analytic theory of curves or the algorithmic 
procedures which form the basis of modem analysis. The emphasis 
in the method of exhaustion was on the synthetic form of exposition ; 
it was not an analytic instrument of discovery. It represented a con­
ventional type of demonstration, but the Greeks never developed it into 
a concise and well-recognized operation with a characteristic notation. 
In fact they did not take the first step in this direction : they did not 
formulate the principle of the method as a general proposition, reference 
to which might serve to abbreviate subsequent demonstrations. How­
ever, the Greek theory of proportions had survived the crisis caused by 
incommensurability, and it continued, even in geometric form, to be the 
chief algebraic tool of Greek mathematics. 

Eudoms was without doubt the most brilliant mathematician of his 
century, but it remained for one of his pupils, Menaechmus (ca. 360 
B.C.)-brother of Dinostratus and tutor of Alexander the Great­
to make the most spectacular contribution of the time to the develop­
ment of analytic geometry. This work seems to have been inspired by 
the Delian problem for which Archytas had given his amazing triad of ' 
surfaces. Had Archytas studied carefully the sections of his cylinder 
by a plane, he would have discovered a new curve with striking proper­
ties. The ellipse may indeed first have entered Greek geometry as a 
section of a cylinder, or in some way not now known. Of all curves 
the ellipse is, with the exception of the straight line, the one most 
commonly seen in routine experience. Wheels and other circular 
objects, when viewed obliquely, appear as ellipses, and the shadows 
cast by circles generally are elliptical. Did not the earlier mathe­
maticians see these ? Democritus, in his infinitesimal geometry, is 
known to have studied the circular sections of a cone. Did he not, 
in this connection, note the more general elliptic sections ? There 
appears to be no evidence that he did. It is reported by Proclus and 
Eutocius that the ellipse, hyperbola, and parabola all were discovered 17 

17 For e:irtensive historical accounts of the conic sections see H. G. Zeuthen, Die u'/sre "°" 
tin Kegelsc'/sniaen im Almtum (Kopenbagen, 1886) ; J. L. Coolidge, A History of Ilse COiiie 
Set:&ms aftd Quadric Surfaces (Oxford, 1945) ; the prolegomena in Charles Taylor, An lnlro­
dtldion lo t'/se Ancient aftd Modern Geomdry of Conics (Cambridge, 1881 ) ;  the introductions 
to Apollonius of Perga, A Treatise on Conic Sections (translated by T. L. Heath, Cambridge, 
1886), and Les c011ique:s (translated by Paul Ver Becke, Bruges, 1925). For further his­
torical Dotes refer also to the section OD "Coniques" in the Eneyc� du SWmeel Jlaa.1-flltdiquu, v. III (3), p. 1-256, by F. Dingeldey. 
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by Menaechmus toward the middle of the fourth century B.C., and that 
accordingly these curves were at first called the "Menaechmian triads." 
Menaechmus seems to have been led to them by following the very 
path which Archytas had suggested-that is, he sought to solve the 
Delian problem by a consideration of sections of geometrical solids. 
Taking three right circular cones, one acute-angled, one right-angled, 
and one obtuse-angled, he cut each of these by a plane perpendicular to 
an element. This disclosed to Greek geometers for the first time a 
whole family of curves which, unlike lines, circles, and quadratrices, 
differ in shape as well as in size. By means of these conic sections the 
cube is easily duplicated, either through the determination of the inter­
section of the two parabolas x1 = ay and y1 = 2ax, or through the 
intersection of the first of these with the hyperbola xy = 2a1• 

If Menaechmus duplicated the cube with these curves, as is reported, 
he must have known the geometric equivalent of the equation of the 
equilateral hyperbola referred to its asymptotes as axes. Zeuthen, 
Heath, and Coolidge18 suppose that this equation was derived from the 
form with respect to a vertex-y1 = 2ax - xL-by translating axes to 
obtain the central equation x1 - y1 = a2, and then rotating axes 
through half a right angle to get 2xy = a1• 

The probable achievement of Menaechmus is given above in an­
alytic form and so the account fails to do justice to his ingenuity. 
He was a trail-blazer in discovering the most useful and intriguing 

, family of curves in all science and mathematics, and the path was made 
difficult by the lack of algebraic ideas and symbolism. The conic 
sections now are defined as loci in a plane-the locus of points for which 
the distance from a fixed point (focus) is to the distance from a fixed 
line (directrix) in a fixed ratio (eccentricity) . It is a relatively simple 
matter to translate this defining property into analytical language by 
means of modem algebraic notations and technique. Trigonometric 
symbolism and formulas now enable one easily to transform equations 
under a rotation of axes, passing readily from the equation of the 
hyperbola with respect to its axis to the equation with reference to its 
asymptotes. An extraordinary degree of originality would be required 
for Menaechmus to conceive of the equivalent of all of this in geometric 
form, but evidence seems to indicate that he did so. What he wrote 
has been almost completely lost, 18 and even the names he attached to 
his curves are unknown. His thought must be reconstructed, as best 
one can, from bits of information supplied by later commentators. 

18 See Coolidge, Hislory of t1" Conic Sections, p. 5. at See M. C. P. Schmidt, "Die Fragmente des Mathematilrers Menaechmus," PhilologtU, 
v. XLI I  ( 1884), p. 72-81. However, these fragments, in Greek with German commentary, 
are quite inadequate to give a picture of his mathematics. 
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To begin with, even the manner in which the conics were discovered is 
open to some doubt. Did the Greeks stumble upon the new curves or 
was the discovery the reward of a systematic search ? It has been 
suggested ID that Menaechmus may first have looked upon them as plane 
loci, constructed kinematically in a manner similar to that adopted by 
Hippias for the quadratrix. This view is in harmony with the fact 
that Hippocrates had shown the duplication problem to be solvable 
if the relationships in a continued proportion a/x = x/y = y/b can be 
constructed, from which, by analysis, the properties of the desired loci 
were clear. It would remain merely to draw curves-the parabolas 
x1 = ay and y1 = bx and the hyperbola xy = ab-having these proper­
ties, after which it would not be difficult to recognize the curves as 
sections of cones. In fact, the continued proportion above would be 
satisfied by the intersection of the circle x1 + y1 - bx - ay = 0 with 
any one of the new curves. Against this view, however, is the fact 
that such a procedure is contrary to Greek custom. Had they used 
such a method here, why would they have hesitated to draw curves 
with other desired (algebraic) properties ? Any problem could easily 
be solved in the same manner by sketching curves suitably defined. 
Such a cutting of the Gordian knot would hardly be in keeping with the 
strong Greek feeling for the appropriateness of methods of solution, 
and it was not, in fact, used in other connections. 11 Then, too, the 
designation the Greeks invariably adopted for problems and loci 
determined by conic sections-solid problems and loci, as distinguished 
from the plane problems and loci which are constructed by line and 
circle-would seem to point to a three-dimensional origin of the conics 
along the lines suggested above. 

Whatever the original source of the conics-planimetric or stereo­
metric-the amazing part of the discovery by Menaechmus is not so 
much the curves themselves as the fact that he apparently was able to 
go from the one aspect of them to others. The sections of cones were 
shown to have fundamental properties as plane loci ; and from these 
basic "geometric equations, " countless other plane properties of the 
curves were deduced. It is this aspect of the early work on conic 
sections which has led a number of historians, notably Zeuthen11 
and Coolidge, 11 to claim for the Greeks the invention of analytic 
geometry. The thesis of the latter is "that the essence of analytic 

• See, e.g., Taylor, Geometry of Conics, p. mi f. 
n See Loria, "Aper� sur le d�veloppement historique de la thbie des courbes planes," 

VerluJ1Ullngm du erstm inlemationalen Malllematiker-Kongress '" Zurid1, 1897 (Leipzig, 
1898), p. 289-98. 

11 "Sur l 'usage des coordonn� dans l'antiquit�." Kongelige Danske Vidnskabernes 
Selslwbs. ForluJ1Ullinger ( 188&-1890). 11 Coolidge, Hil""1 of Geomdrie Mdli«ls, p. 1 17-119. 
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geometry is the study of loci by means of their equations, and that this 
was known to the Greeks and was the basis of their study of the conic 
sections. The original discoverer seems to have been Menaechmus.''  

It  is a great pity that the works of Menaechmus have been lost, so 
that reconstructions of his work are largely conjectural.14 Under the 
circumstances it may be well to postpone a further consideration of the 
methods he might have used until one is on more solid ground in the 
published works of Apollonius. The opening portions of the Conics of �, 
Apollonius presumably are representative of the thought of Menaech­
mus. Before passing on to the period of Greek mathematical ma­
turity, however, it should be pointed out that although Menaech­
mus probably did study the conics more or less analytically, under 
the limitations imposed by the geometric character of Greek algebra, 
there is no hint, either in Menaechmus or in later works of antiquity, 
of a general analytic geometry in the sense of a mutual correspondence 
between curves and equations. Had the Greeks possessed such an 
analytic geometry, it is doubtful that the conics would have undergone 
an apotheosis second only to that of the line and circle. As it was, 
they never developed a theory of curves in general. In fact, they did 
not discover more than half a dozen new curves in all of their enormous 
mathematical activity, and these were not systematically classified. 
It was to be about two thousand years before Descartes undertook to 
bring order into higher plane curves, and in so doing he invented 
analytic geometry in a sense far more general than that of Menaechmus. 
To cany out his program, however, it will be seen that Descartes found 
it necessary to substitute for the theory of proportion and the applica­
tion of areas a symbolic algebra of which the Greeks did not develop 
even the rudiments. The incommensurable had left so deep an im­
pression upon Greek thought that they carefully distinguished between 
cases in which the magnitudes were rational and those in which they 
were irrational. Only in modern times was the ancient doctrine of 
proportion given arithmetic freedom by permitting the quantities in an 
equation or proportion to be indifferently either rational or irrational. 

" Neugebauer has made the interesting suggestion that the discovery of the conic sec­
tions may have resulted from a study of the shadows cast by sundials. See "The Astro­
nomical Origin of the Theory of Conic Sections," Proceedings of the A merican Philosophical 
Socidy, v. XCII ( 1948), p. 13fH38. 



C H A P T E R  I I  

The Alexandrian Age 

Akmnder, IM king of IM Macedonians, began UM a wrdch to 
karn geometry that M might know how liltk IM earth was 
whereof M had possessed. fJerJ liUle. 

---8BNECA 

GREEK history customarily is divided into two periods, the Hellenic ! · 1 '  ; , . -
and the Hellenistic. In the history of mathematics the division 
is strikingly illustrated by the fact that of the earlier period no 

mathematical treatises have survived, whereas representative works 
from even the earliest part of the later period have been preserved. 
The golden age in art and literature fell during the first period, but the 
great age in mathematics belonged to the early part of the second. 
Yet in mathematics, as in science, the earlier Hellenic period may be 
characterized as the heroic age, for it was during that time that the 
fundamental attitudes and principles were established. The Hellenis-
tic age added tremendously to geometrical knowledge, but it did so 
along the lines laid down before the time of Alexander the Great. 
The three greatest extant mathematical works of antiquity were com­
posed-all of them during the period of one hundred years following 
Alexander-by Euclid (fl. ca. 300 B.C.) ,  Archimedes (287-212 B .C.) , 
and Apollonius (fl. ca. 225 B.C.) ; but these represent the super­
structure erected upon the foundation begun by Pythagoras, Eudoxus, 
and Menaechmus. 

The Elements of Euclid1 undoubtedly exerted a wider influence than 
any other mathematical work ever written, but this was not primarily 
in the direction of analytic geometry. The work represented the de­
finitive formulation of earlier achievements, and so its significance lay 
in its characteristic form of logical exposition rather than in suggestions 
for future developments in methodology. Nevertheless, it is important 
to note that the Elements contains not only the elementary pure geom­
etry of present-day high-school courses, but also extensive sections on 

1 See Tise Tlirleen Boo'/u of Ewclitl's Elemnls, edited by T. L. Heath, 3 vols., Cambridge 
(1908). 
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the application of geometry to what now would be known as algebra. 
Ratio and proportion are now topics in generalized arithmetic, but 
Euclid systematized the Eudoxian theory in geometrical form-the 
nearest approach in his day to the ideas of function and equation. 
Euclid followed Eudoxus also in the use of the analytic method in con­
nection with the division of a line in mean and extreme ratio, but such a 
hint of a general point of view was overshadowed by an emphasis upon 
special geometric constructions. The solution of quadratic equations, 
for ex.ample, is carried out by Euclid in a geometric manner contrasting 
sharply with the algebraic methods of the Babylonians. Because of 
the lack of a general concept of negative number, quadratic equations 
were divided by the Greeks into three types equivalent to the following : 
x1 + bx = c2, x1 = bx + c1, and x2 + c1 = bx, where b and c are real 
and positive. The Euclidean geometrical solution of such equations 
was based on the method of the application of areas, described above, 
which the Pythagoreans seem to have devised. It strikes a modern 
reader as far removed from the graphical solution of analytic geometry, 
obtained by plotting a polynomial on a coordinate system ; and yet the 
modern method arose through gradual modifications of such ancient 
geometrical constructions. 

Euclid contributed more directly to the growth of analytic geometry 
through other treatises which have long been lost. One of these was a 
work on conic sections, much of the material of which was later in­
corporated into the Conics of Apollonius. Another was a treatise on 
porisms which has been partially reconstructed a dozen or more times 
on the basis of information from later commentators. Pappus (Mathe­
matical Collection, VII) says that a porism is intermediate between a 
theorem, in which something is proposed for demonstration, and a prob­
lem, in which something is proposed for construction. We are told 
that the Greeks divided geometrical propositions into three types­
theorems, problems, and porisms-according as one was asked to dem­
onstrate, to construct, or to find something. Chasles, referring to 
Simson, says that a porism is a proposition in which one announces 
the possibility of determining, and where one determines, certain 
things which have an indicated relation with those fixed and known and 
with others variable, establishing a law of variation. This description 
would cover the study of loci, and hence the loss of Euclid's Porisms is 
the more to be regretted in that it leaves an unfortunate gap in the 
history of analytic geometry. 1  As Chasles puts it, porisms were in a 

1 For a full account see Michele Chasles, Lu trois liwes tk porismes tl'Ew;lide, Paris ( 1860) ; 
or see his Aper'" historique sur l'origine el le tUveloppement tks mhlwtles en i6omhrie, Paris 
( 1875), p. 12-13, 274-84. Cf. also his excellent article, "Sur la doctrine des porismes d'Eu­
clide," COf'f'espondatu:e MalWmatique el Physique, v. X (new series IV, 1838), p. 1-2D, which 
includes an escellent bibliography. 
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sense equations of curves, and the doctrine of porisms was the . .  analytic , 
geometry of the ancients, " dift'ering from ours chiefly in the lack of 
symbols and algebraic processes. Not possessing the idea of the 
equation of a curve, Euclid seems to have used porisms to substitute for 
a geometric expression of a locus another geometric expression of the 
same locus, thus relating one construction to another equivalent on� 
sort of transformation of coordinates, or the equivalent of the modern 
use of formulas for points, lines, and circles. Chasles gives, as an in­
stance appropriate to the Euclidean use of porisms, the following : to 
find a point for which the sum of the squares of its distances from two 
fixed points is a given constant (area). It is today a simple matter to 
show that the result is a circle with center midway between the given 
points ; but the ancients, lacking uniform procedures, evidently ex­
perienced far more difficulty in reconciling the conditions of the locus 
with the definition of the circle. 

The Porisms was included in an ancient collection of works by Eu­
clid, Aristaeus, and Apollonius which was known as the ' 'Treasury of 
Analysis" and which Pappus describes as a special body of doctrine for 
those who, after going through the usual elements, wish to obtain 
power to solve problems involving curves. The "Treasury," which un­
doubtedly comprised much of what now goes to make up analytic 
geometry, included another lost work by Euclid, one on surface loci. 
The content of this treatise is quite conjectural. It may have been a 
study of surfaces known to the ancient Greeks-the sphere, cone, 
cylinder, tore, ellipsoid of revolution, paraboloid of revolution, and 
hyperboloid of revolution of two sheets-or it may have concerned 
twisted curves drawn on these surfaces. Chasles believed that it 
covered surfaces of revolution of second degree.• Tannery ascribes 
the discovery of the conoids and spheroids of revolution to Archimedes,'  
but Heath5 thinks it possible that Euclid's . .  Surface Loci" may have 
included these. In any case, this Euclidean work, did we but have it, 
would be an important link in the history of solid analytic geometry. 

The titles alone of the lost works of Euclid show that ancient ge­
ometry is comparable in breadth of interest with that of the seventeenth ,,. 

century. The dift'erence between ancient and modem geometry is one 
of method and manner of expression rather than of content. This im­
pression is strongly confirmed by a study of the Conics of Apollonius, 
where one finds the closest approach in antiquity to coordinate ge­
ometry. Pappus reports that Aristaeus the Elder (living between the 

1 See Cbasles, Apercu, p. 273, note II .  
• Paul Tannery, "Pour l'histoire des lignes et surfaces courbes clans l 'autiquit�,' '  Mlmoiru 

$cinlifttJ.tla, v. 11 ( 1912), p. 1-47. 
1 See TIN Worls of Arclitn«lu (edited by T. L. Heath, Cambridge ( 1897)), p. hi ff. 
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time of Menaechmus and that of Euclid) wrote a treatise in five books 
entitled "Solid Loci." This work, perhaps the first textbook on the 
conic sections, has been lost, probably irretrievably, along with the 
four books on conics by Euclid. Presumably, however, the first four 
books of the Conics of Apollonius8 include most of the material given by 
Aristaeus and Euclid. The author himself says that the first four 
books coordinate and complete previous knowledge, but he emphasized 
the originality of his mode of treatment ; the other four books, of which 
the last has been lost, are presumed to be substantially original in con­
tent. Apollonius made numerous changes in the method of handling 
the conic sections, especially in the direction of generalization. Menaech­
mus and his early followers had used right sections only. Archi­
medes undoubtedly knew (as perhaps Euclid did also) that a single 
cone with circular sections would suffice, by varying the angle of the 
cutting plane, to produce all three types of conics ; but he seems not to 
have taken advantage of this fact and he continued to use right sections 
of right cones. Archimedes therefore retained the old names ascribed 
by Pappus to Aristaeus-section of an acute-angled cone, section of a 
right-angled cone, and section of an obtuse-angled cone. Apollonius, 
on the other hand, started at once with the most general section of an 
oblique circular cone. (He noticed, incidentally, not only that sections 
parallel to the base are circles, but that there is also a secondary set of 
circular sections.) His predecessors appear to have noticed the oppo­
site branch in the case of the hyperbola, but Apollonius first investi­
gated the general properties of the hyperbola as a double-branched 
central conic. Moreover, whereas earlier geometers had emphasized 
the differences between the three fundamental types, Apollonius 

v developed the tendency to consider the curves as a single general family 
rather than as triads. 

- - The names ellipse, parabola, and hyperbola were attached to the 
conic sections by Apollonius in introducing a further significant change 

-
in the manner of treatment. Archimedes had preferred to characterize 
the curves in terms of the Euclidean theory of proportions. Thus the 
parabola has the property that abscissas, measured along the axis from 
the vertex, are to each other as the squares of the corresponding or­
dinates. Apollonius, on the other hand, made use of the Pythagorean 
idea and language of the application of areas, so that the basic name­
property of the parabola would be described by the fact that (for a 

• The English edition by Heath (Apollonius of Perga, Treatise on Conic Sections, Cam­
bridge ( 1896)) is altogether excellent. Some further information, especially on the prove­
nance of Apollonian manuscripts, is found in the introduction to the French edition by 
Paul Ver Becke, Les coniques d' Apollonius de Perge, Bruges ( 1923). 
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parabola referred to its vertex as origin and its axis as line of abscissas} 
the rectangle formed with the parameter by any abscissa is equal to the 
square on the ordinate corresponding to that abscissa. The names 
ellipse and hyperbola referred to the fact that for these two curves (re­
ferred to a vertex as origin and major or transverse axis as line of ab­scissas) the squares on an ordinate respectively fell short of, or exceeded, v 
the rectangle formed by the corresponding abscissa and the parameter.7 
It is possible that this property was known before Apollonius, but it 
was he that made it basic. The Archimedean equality of ratios is 
better adapted to the theory of proportions, as used in medieval and 
early modern times, while the Apollonian equality of areas is more in 
harmony with the later symbolic algebra of equations and with the as­
sociation of curves and equations in analytic geometry. It is a simple 
matter to convert the Apollonian propositions on the name-property of 
the ellipse, parabola, and hyperbola into the corresponding algebraic 
equations with respect to the vertex, so widely used in the seventeenth 
and eighteenth centuries-y1 = lx - (lx1/t) , y1 = lx, and y1 = lx + 
(l x2/t} , where l is the latus rectum and t the major or transverse axis. 

The Apollonian treatment of conic sections approaches the modern _ 

view likewise in its emphasis on planimetric study. His predecessors 
already had made progress in this direction, but Apollonius went fur­
ther and used the stereometric origin of the curves only so far as neces­
sary to derive a fundamental plane property for each. Thus, in the 
case of the parabola, Apollonius began with an oblique cone with vertex 
A and a circular base with diameter BC. Through any point P on the 
element AB he passed a plane cutting the base in a chord ED perpendic­
ular to BC. (See Fig. 4.) The section of the cone by this plane will be 
the parabola EPD. To derive the basic property of the curve, let Q be 
any point on it and pass a plane through Q parallel to the base, cutting 
the cone in the circle HQK. Now in this circle Q V2  = HV· VK. But ' 

fro simil. trian l HV = PV ·BC 
d 

v.·v = PA ·BC . H m ar g es  AC an 
.n. BA ence 

QV2 = P Y (��:�B; i. e. , the square of the ordinate Q V  is to the 

abscissa P V  in a constant ratio. For the ellipse Apollonius similarly 

derived the basic property QV2 = P V· VP ' (B��f'); i. e., the 

7 Eutocius said that the names given to the conic sections referred to the fact that the 
vertex angle of the cone was less than, equal to, or greater than a right angle ; or that the 
cutting plane fell short of, ran along with, or cut into the second nappe of the cone. These 
explanations, plausible enough on first glance, have been often repeated ; but Apollonius 
clearly gives the application of areas as the reason for the names. 
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square of the ordinate is to the product of the segments, PV and VP', 
of the axis in a constant ratio. A similar property was found for the 
hyperbola. From such planimetric relationships Apollonius then pro­
ceeded to derive innumerable properties of the curves, including those 
of the foci, asymptotes, and tangent and normal lines. The foci of the 

A A 

Fig. 4 

ellipse furnish another instance of the application (or parabolism) of 
areas, for he refers to these as points determined by "an application"­
i. e. ,  as the points which divide the major axis into two segments the 
rectangle on which is equal in area to the square on the semi-minor 
axis. Since this method of application fails for the parabola, Apol­
lonius here overlooked the focus. 

The work of Apollonius in many respects approaches so closely to the 
modern form of treatment that it not infrequently has been regarded as 
constituting analytic geometry. A decision on this point depends on 
precise definitions of such terms as coordinates and equations, and upon 
one's view of the essential features of analytic geometry. The use of 
reference lines by Apollonius, as previously by Archimedes and perhaps 
also by Menaechmus, does indeed resemble the modern application of 
rectangular and oblique Cartesian coordinates. A diameter of a conic 
corresponds to the axis of abscissas, where the abscissa is measured 
from the point of intersection with the conic ; the tangent line to the 
conic at this point serves as a second axis . Ordinates, then, are rep­
resented by segments, from points on the axis of abscissas to points on 
the conic, of lines drawn parallel to the second axis (or conjugate to the 
first axis) . The relationships, verbally expressed, between these or­
dinates and the corresponding abscissas, are tantamount to the equa-
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tions of the curves. However, the Greek use of auxiliary lines dift'ers · 

in several particulars from the modem applications of coordinates. 8 ,. 
In the first place, the geometrical algebra of antiquity did not provide 
for negative quantities or lines. More important than this, however, 
is the fact that the system of reference lines was in every case simply 
an auxiliary construction superimposed a posteriori on a given curve in 
order to study its properties. Hence the curve always passed through 
what would now be called the origin. There appear to be no cases in 
ancient geometry in which a coordinate frame of reference was con­
structed a priori. for purposes of graphical representation or in order to 
solve a given problem. 

In modern courses in analytic geometry the equations of the ellipse 
and hyperbola almost always are expressed in terms of a coordinate 
system in which the origin coincides with the center of the conic and 
in which the coordinate axes generally coincide with the axes of the 
conic ; but in antiquity the curves more frequently were studied with 
reference to other auxiliary lines, notably a tangent to the curve and 
the diameter of the conic which is terminated at the point of tangency. 
This meant that the Greek systems of auxiliary lines usually consti­
tuted the equivalent of an oblique coordinate reference frame ; and 
in this respect the ancient predilections were in agreement with those 
of Descartes many centuries later. The absence of rigid conventions 
in the ancient auxiliary-line geometry meant that there were no formu­
las for the transformation of axes ; but classical geometers nevertheless 

1 For an extensive discussion on this point see Siegmund Giinther, "Le origini ed i gradi 
di sviluppo del principio delle coordinate," B1'lleltino tli Bwliografia e tli Storia tleUe Scienu 
Matemaliche e Fisiche, X ( 1877), p. 363-406. This article originally appeared as "Die 
Anfange und Entwickelungsstadien des Coordinatenprincipies," Abhantllungen tler Natrw­
f orschentlen Gesellscha/t su Nilrnberg, v. 6. So nearly does the Greek work resemble the 
modern use of coordinates that Giinther and Zeuthen, both unusually competent historians 
of mathematics, disagreed sharply, the former insisting on the differences, the latter em­
phasizing the similarities. See H. G .  Zeuthen, "Sur l 'usage des coordonnees dans l 'anti­
quite," Kongelige Danske Vitlenskabernes Selskabs, Forhantllinger ( 1888), p. 127-144. Of 
more recent historians, the majority tend to agree with Giinther, although Heath and Cool­
idge are sympathetic to the view of Zeuthen. Heath holds that "His (Apollonius' ) method 
does not essentially differ from that of modern analytic geometry except that in Apollonius 
geometric operations take the place of algebraical calculations." (See bis Apollonisu, 
p. :ii:cvi f. ) L. C. Karpinski, in "Is There Progress in Mathematical Discovery and Did 
the Greeks Have Analytic Geometry, " Isis, v. XXVII ( 1937), p. 46-52, rejects this view. 
An excellent summary of the situation is given by Gino Loria :  

"In truth, whoever studies thoroughly the treatise of Apollonius on Ctnlics must confess 
the profound analogy it bears to an exposition of the properties of the curves of second 
degree by means of Cartesian coordinates ; not only do the fundamental properties em­
ployed by the Greek geometer to distinguish the three curves one from the other translate 
into the canonical equations of the same in Descartes' method, but many of the reasonings 
given, when translated into the ordinary language of algebra, answer to elimination, solu­
tion of equations, transformation of coordinates, and the like. What we would however 
seek in vain in the Greek geometer is the concept of a system of axes, given a priori, inde­
pendent of the figure to be studied." (Io "Sketch of the Origin and Development of Geom­
etry Prior to 1850,'' translated by G. B. Halsted, Monist, v. XIII ( 1902-1903), p. 80-
102, 218-34. See especially p. 94, note.) 
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were adept in problems involving the equivalent of coordinate trans­
formations. In the Conics of Apollonius there are numerous instances 
of propositions in which it is proved that a property derived with re­
spect to a given tangent and the related diameter holds as well for any 
tangent and the corresponding diameter. Apollonius frequently first 
assumed that the angle between the tangent and the diameter is a right 
angle, and then he reduced to this case the more general situation in 
whkh the angle is oblique . 

The use of coordinates in a broad sense is without doubt prehistoric. 
Coordinates are simply magnitudes associated with objects in order to 
locate them with respect to other objects taken as a frame of reference. 
Instructions given, or diagrams drawn, to indicate relative positions are 
in this sense applications of the coordinate principle. Primitive Chal­
dean star charts are specific and systematized instances of the use of co-

Fig. 5 

ordinates. Systems of coordinates in this sense were used also in the 
early Egyptian cadastral surveys, and again later in Greek astronomy 
and geography ; but the graphical representation of variable quantities 
was not associated with coordinates until the period of the middle ages. 
It is to be doubted that the coordinate systems used by Hipparchus, for 
example, directly influenced Greek or medieval geometry---or, for that 
matter, the early modern invention of analytic geometry. Greek geom­
eters did not seek to reduce the number of unknown quantities or 
lines in a figure to one or two, as is done in astronomy or in plane 
Cartesian coordinates, but they sought instead to make as simple as 
possible the relationships in terms of areas. For example, in modern 
notation the equation of an ellipse with respect to a vertex is written as 
(x - a) t  yt 

at 
+ bl = 1 ,  where x and y are the two unknown lines OQ and 

PQ. (See Fig. 5.) Apollonius would express this same property in rhe-
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torical language equivalent to the abbreviated notation ��: = �:�� 
where C is the center and OV the major axis) , a form involving a third 
unknown line, Q V. That is, bis equations for the ellipse and hyperbola 
are in terms of an ordinate and two abscissas. 

An important aspect of the Greek use of lines as coordinates arises in 
connection with the study of the conic sections by means of their fun- -
damental plane properties. In the Conics of Apollonius such prop­
erties, known as s-ymptomae, play much the same role as do the 
equations of curves in modem analytic geometry.' Inasmuch as the 
Greeks lacked symbolic algebra, a statement by Apollonius of a given 
property might run to as much as half a page in length, which compares 
unfavorably with concise modem terminology. This fact has led 
Tannery to say that what the Greeks lacked was not so much the 
methods of analytic geometry as the formulas appropriate to the 
methods. This is largely, but not entirely, true. The essence of an 
equation does not, indeed, lie in its brevity ; but on the other hand, out 
of symbolic notation there arose much later the concepts of algebraic 
variable and equation of a curve. Philosophical difficulties precluded 
the Greek acceptance of the former concept, but it was probably de­
ficiencies in symbolic algebra which prevented Apollonius from de­
veloping the latter. Of Greek geometry one may say that equations 
are determined by curves, but not that curves are defined by equations. 
Coordinates, variables, and equations were subsidiary notions derived 
from a given geometrical situation. Presumably it was not sufficient 
to define curves abstractly as loci of points satisfying certain given 
conditions. Hence finding a conic meant to Apollonius localizing it in a 
cone or finding a cone of which the required curve is a section. To 
guarantee that a locus was really a curve, Greek geometers had to ex­
hibit it stereometrically as sections of a solid or to describe it kinemati­
cally by means of a mechanical construction. Perhaps nowhere is the 
gap between Apollonius and modem analytic geometry brought out i.--· ·  
more clearly than in the fact that at no time did he begin with a coor­
dinate system, two unknowns or variables, and a relationship or equa­
tion between the variables, and then plot the curve corresponding to 
the equation as the locus of points whose coordinates are values 
of the variables which satisfy the given equation. And yet so thorough 
was the Apollonian treatment of conics that he would have recognized 
that a geometrical relationship equivalent to xy + ax + by + c = 0 is 
representative of an equilateral hyperbola. Such recognition is equiva-

' See H .  G. Zeuthen, "Sur l 'origine de l 'al�bre," Det Kongelige Danske Vitlenskabernes 
Selskab. Ma.themaJisk-fymke Meddelelser, v. II ,  p. 4. 
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L lent to the modern transformation of coordinates, the differences being 
more in emphasis and point of view than in substance. Apollonius 
knew also the equivalent of other forms of the equations of conics, in­
cluding the constancy of the sum or difference of focal radii for the ellipse 
or hyperbola. Tangents and polars he constructed by using the prop­
erties of hannonic division ; and he showed that normals are the 
shortest lines to a conic, and that the subnormal is constant for the 
parabola. He found that in general as many as four normals could be 
drawn to a conic from a given point ; and by noting the locus of points 
from which fewer normals could be constructed, he found and studied 
evolutes of conics, even though he did not regard such a locus as de­
fining a curve in the strict sense of the word. In this connection he 
'.YVOrked with the geometrical equivalent of equations of sixth degree in v'/ two unknowns. One might almost say that the Greeks had an analytic 
geometry of conic sections but not an analytic geometry in the general 
sense. There are two sides to the fundamental principle of analytic 

· geometry : the one is that with a given known plane curve there is 
associated, with respect to any coordinate system in its plane, an 
equation in two indeterminate quantities. With this fact Apollonius 
seems to have been throughly fammar, at least as far as the conic sec­
tions are concerned. The converse is that an equation in two indeter­
minate quantities determines, with respect to a given plane coordinate 
system, a curve in this plane. This the Greeks did not know, except 
for special cases. The differences, however, are more in emphasis and 
point of view than in substance. 10 

The material in the Conics of Apollonius is remarkably extensive and 
includes numerous well-known properties of the curves. It is pre­
sumed that he, and perhaps also Aristaeus and Euclid, was aware of the 
familiar focus-directrix ratio definition of these curves, but this is not 
even mentioned in his Conics. There is no reference to the focus of the 
parabola, but from a number of theorems it would appear that he 
knew of this important point (although not necessarily of the direc­
trix) . 11 He seems to have known how to determine the conic through 
five points, but this also is omitted from the Conics, perhaps because it 
was given elsewhere in one of the many lost works of Apollonius. The 
books of the second half of the Conics include a study of normals ap­
proaching the modern theory of evolutes, work on the similitude of 
conic sections and their segments, and the properties of conjugate diam-

• H. G. Zeuthen, Hislorie des ma.tWmaliquu tlaa l'anlitJ.uiU d 14 · moyn  ttge (translated 
by Jean Mascart, Paris (1902)) treats Apollonius' Conics m modern notation, and hence 
he is led to say that the treatment corresponds euctly to ours. See, e. g., p. 177. 11 See Neugebauer, "Apollonius-studien," QMeUn •ntl Statlin SIU' Guchiclsle tier Matlse­
malu • .. , Abt. B, Studien, v. II ( 1932-1933), p. 210-54. 
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eters, topics beyond the scope of the now-customary course in ele­
mentary analytic geometry. 

The Conics was not the only contribution of Apollonius to analytic 
geometry. In fact, it was probably his work on loci which, a long time /, 
later, chiefly influenced Fermat in the formation of coordinate geom­
etry. Unfortunately, the Plane Loci of Apollonius has been lost, but 
the nature of its contents is to some extent known through comments 
of Pappus, Eutocius, and others. Two of the loci are now quite famil­
iar in synthetic geometry : the locus of points the difference of the 
squares of whose distances from two fixed points is constant is a straight 
line perpendicular to the line joining the points ; and the locus of points 
the ratio of whose distances from two fixed points is constant is either a 
circle or a line.11  The latter locus is now known as the "Circle of 
Apollonius, "  but this is a misnomer inasmuch as it was known to 
Aristotle who used it to give a mathematical justification of the semi­
circular form of the rainbow. In modem times the numerous efforts / 
made to restore the Plane Loci were influential in the development of 
analytic geometry. Attempted restorations have been made also of 
his Determinate Section, which seems to have been a sort of algebraic 
analysis. 

The work of Archimedes on conics was somewhat earlier than that of 
Apollonius, but it has not been reviewed in detail inasmuch as it 
centered about problems of the calculus rather than those of analytic 
geometry. Archimedes probably did not write a separate book on the 
conic sections, but his treatises include an extensive study of them, with 
special reference to mensuration. 11 Attempts to square the ellipse 
seem to have been made before his time, but the first successful quadra­
ture of a conic section was that given by Archimedes for the segment of 
a parabola. This was followed by other quadratures and cubatures of 
conics, conoids (solids obtained by revolving a segment of a parabola 
or a branch of an hyperbola about its axis) , and spheroids (ellipsoids of 
revolution) ,  as well as by determinations of centers of gravity. In 
connection with this work he indicated the construction of the ellipse in 
terms of two concentric circles and the eccentric angle. 14 The results 
of Archimedes were so spectacular that they seem to have over­
shadowed those of Apollonius. When in the early modem period the 
works of these two great geometers were again eagerly studied, the in-

11 See notes by R. C. Archibald in A merican Matlsematical Monthly, v. XX.III ( 1916), p. 
1�1. 11 See Heath's The Works of A rchimedes. Cf.  also Heath 's History and Manual of  Greek 
mathematics ; J. L. Heiberg, " Die Kentnisse des Archimedes fiber Kegelschnitte," Zt:itschrift fii.r Mathematik untl Physik, v. XXV ( 1880) ; Zeuthen, Gt:schichtt: der Kt:gt:lschnittt:, Coolidge, 
History of Conic Sections. 

" See Dingeldey, op. cil.,  and Works of Arclaimedu, "On Conoids and Spheroids," V. 
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terest in infinitesimal mensurations exceeded that in so-called pme 
geometry, so that Cartesian geometry at first made slow progress in 
comparison with that of the calculus. However, so closely related is 
the subject matter of the two fields that advances in the one were di­
rectly related to achievements in the other. 

Archimedes contributed to analytic geometry not only indirectly 
through his infinitesimal methods but also through the introduction of a 
new curve. The spiral of Archimedes is defined as the locus of a point 
which moves at a uniform rate along a ray which revolves uniformly 
about its end-point, always lying in the same plane. As the Greek 
study of conics approaches closely to the modem application of rec­
tangular coordinates, so also does the work on the spiral resemble the 
use of polar coordinates. The definition is, in fact, equivalent to the 
polar equation r = k8. The attempt sometimes made to read into 
Archimedes the concept of polar coordinates can be carried further, if 
one wishes, to cover the pre-Hellenic geometry of the circle, for the defi­
nition of the circle leads immediately to the equation r = k. Precisely 
where one places the origin of the idea of coordinates, whether polar or 
rectangular, is largely a matter of taste and judgment ; but it should be 
noted that not until modem times were curves derived from polar or 
Cartesian equations by plotting them on coordinate systems. The 
classical Greek geometers divided curves into three ranks or orders : 
the highest place was reserved for the only perfect curves, the line and 
the circle. These were called the plane loci. Second place was granted 
to the Menaechmian conics which, probably on account of their original 
mode of definition, were known as solid loci. 15 All other curves, 
whether algebraic or transcendental, were grouped together under the 
heading ·linear loci. Pappus described this last category as made up of 
those curves ' 'the origin of which is more complicated and less natural 
[than that of the plane and solid loci ],  as they are generated from more irregular surfaces and intricate movements. "  In this description we 
see the two types of curve definition which the Greeks recognized­
the kinematic and the stereometric. 

The most important of the Greek linear loci were the quadratrix of 
Hippias and the spiral of Archimedes, both transcendental. The origi­
nal definition of these was kinematic, although Pappus later studied 
them as projections of curves of double curvature traced on surfaces. 
Other curves defined kinematically were the cissoid of Diocles (a cubic) 

11 Heath, Works of Archimedes, p. cxl-cxli, suggests that the phrases "plane loci" and 
"solid loci" were used at first to express the fact that the former sufficed to solve quadratic 
equations-i. e. ,  problems involving the comparison of areas-whereas the latter were neces­
sary in the solution of cubic equations-i. e. ,  in questions concerning relationships between 
volumes. The more extensive classification given later by Descartes was simply a generali­
zation of this idea. 
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and the conchoid of Nichomedes (a quartic) , both introduced during 
the earlier part of the second century B.C. All four of these curves, as 
well as the conic sections, served to furnish solutions of the three fa­
mous problems. Centuries later Proclus (ca. 412-85) applied the kine­
matic approach to the conics, showing that if a line segment moves so 
that its extremities slide along two perpendicular straight lines, then 
each point of the segment describes an ellipse. Similar constructions 
were revived and varied during the seventeenth and eighteenth cen­
turies when the "organic description" of conics loomed large as a part 
of analytic geometry. 

The -most elaborate ancient attempt, apart from the study of the 
conics, to extend the number of curves by the stereometric means of 
definition was made by Perseus, probably during the period between 
Euclid and Apollonius. 111 He first determined solid figures, called 
spires, generated by a circle revolving about an axis such that the plane 
of the circle passes through the a.xis. There are three general cases, 
according as the radius of the circle is less than, equal to, or greater 
than the distance from the center of the circle to the axis of rotation. 
Perseus then cut these surfaces by planes, obtaining certain quartic 
oval-shaped curves (of which the lemniscate of Bernoulli is a special 
case) which he called spiric sections. He appears to have studied these 
in a manner comparable to the treatment of conic sections by Apol­
lonius. 

There are evidences that a few further curves, not all plane, were 
known to the Greeks. Apollonius may have squared the circle through 
the cylindrical helix, a curve known later to Geminus, Pappus, and 
Proclus. Eudoxus apparently had sought to represent the motions of 
the planets by what was known as the hippopede, a curve perhaps 
derived through Archytas as the intersection of a sphere with a cylin­
der. A little later, however, the motions of the planets were repre­
sented in the classic manner, by Apollonius and others, as combinations 
of circular motions. Such representations are tantamount to construc­
tions of epicyclic curves, but the interest of Greek astronomers and 
geometers seems to have been focused on the uniform circular motions 
rather than on the geometrical curves resulting from these superim­
posed movements. Even the cycloid appears to have escaped the at­
tention of ancient geometers, although this may have been the "line of 
double motion" which, lamblichus tells us, Karpis of Antioch con­
structed in order to square the circle. 

A comparison of the Greek definition and study of curves with the 

11 D. B. Smith, however, places Perseus In the middle of the second century. See History of Mathematics, v. I ,  p. 1 18. 
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flexibility and extent of the modem treatment shows surprising nar­
rowness of the ancient point of view. Inspired by the Pythagoreans, 
they had found number everywhere in nature, but they overlooked 
much of the geometric beauty which natural phenomena afford. 
Aesthetically one of the most gifted people of all times, the only curves 
which they found in the heavens and on the earth were circles and 
straight lines. Even in theoretical geometry they restricted themselves 
for the most part to the dyads of Plato and the triads of Menaechmus. ·/ The Greeks did not effectively exploit even the two means of definition 
which they possessed. The kinematic approach and the method of the 

. ./ ,,, section of surfaces are capable of far-reaching generalizations, yet 
scarcely a dozen curves were familar to the ancients. The failure of 
Greek mathematicians to develop analytic geometry may well have 
resulted from the lack of a theory of curves. General methods are not 
necessary where problems concern always one of a limited number of 
particular curves. 

With the exception of the spiric sections, curves were not sought and 
J studied in and for themselves, but only in so far as they possessed prop-

.,_ erties useful for the solution of problems arising in other connections. 
The determination of volumes of spherical segments, for example, had 
led Archimedes to the equivalent of the cubic x1 + a1 b = cx1 ; and this 
equation, Eutocius tells us (ca. 520) , he solved by finding the intersec­
tion of the parabola cx1 = a1 y with the hyperbola cy = xy + be. 
Whereas now the tendency is to find the intersection points of curves 
through algebraic elimination and solution, the Greek habit was to 

.; solve an algebraic equation-such as x1 = 2-by reducing the problem 
to the geometric determination of the intersections of curves. That 
is, the Greeks used curves, especially the conics, as a sort of ersats 
algebra in the solution of certain equations. The application of areas 
of Euclid and the Pythagoreans showed ·that the line and circle sufficed 
in the case of quadratics, but the cubics of Hippocrates and Archimedes 
required the use of conic sections. 17 With an important exception to be 
noted in the case of Pappus, Greek geometry did not in general lead to 
equations beyond the third degree, but Descartes long afterward was. 
led to the invention of analytic geometry largely by the desire to ex­
tend and systematize the traditional geometrical solution of equations 
of degree greater than four through the intersection of curves of order 
higher than two. 

v The centuries immediately following the time of Euclid, Archimedes, 
and Apollonius added little to the history of analytic geometry. The 

n See H. G. Zeuthen, "Note sur la resolution g�Mrique d'une �uation du 3• degr� 
par ArcliimMe", Biblwlleea Jlalhemalica (2), v. VII ( 1893), p. 97-104. 
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period from Hipparchus (fl. 150 B.C.) to Ptolemy (fl. 150 A.D.) was f/ 
significant largely for the rise of applied mathematics, where one finds 
coordinates widely used in astronomy and geography. The use of 
rectangular coordinates in laying out plans for cities was, in fact, one 
of the few portions of geometry adopted by the Romans. The Metrica 
of Heron illustrates clearly the use of coordinate methods (both plane 
and spherical) in mensuration during the later Alexandrian Age ; and 
some of his methods are tantamount to the use of coordinates in three­
space. 18 However, the use of coordinate methods in astronomy, geog- � 
raphy, and technology seems not to have exerted any clearly definable 
influence on the later rise of analytic geometry. Of more significance, 
paradoxically, was the tendency in Heron to dissociate arithmetic and 
algebra from geometry. Whereas Euclid and Apollonius would have 
refused to add an area to a line, Heron occasionally did so. This 
practice may well have resulted from the influence of the Babylonians 
who in a great number of problems had added magnitudes of unequal 
dimensionality. 111 This early arithmetization of 

·
mathematics ap­

peared in more pronounced form a century later in the Arithmetic of 
Diophantus (ca. 250 A.D.) . In his work the classical graphical solu­
tion of equations was replaced by the older Babylonian non-geometrical 
methods. Diophantus used letters and abbreviations to represent the 
powers of an unknown, and his symbols were no longer thought of as � 

lines ; they were numbers. For this reason it was easy for him to go v" 
beyond cubic equations and to consider powers of the unknown up to 
the sixth, which he called a "cube-cube. " 20  The tendency to widen the 
gap between algebra and geometry was accentuated by his strong in­
terest in the theory of numbers. The paradoxes of Zeno had left a 
profound impression on Greek thought causing the ideas of change and 
variability to be relegated to metaphysics. Geometric magnitudes 
were static and continuous ; algebraic quantities were discrete con­
stants. The symbols of indeterminate quantities in the A rithmetic of 
Diophantus therefore represent unknown numbers rather than variahks 
in the sense of analytic geometry. Modern higher analysis emphasizes 
the W eierstrassian static nature of variables and the theory of aggre­
gates, but historically both analytic geometry and the calculus arose 
from the idea of variability. From this point of view Diophantine 
analysis may be regarded as having constituted a hindrance to the 
development of coordinate geometry ; but in another respect it was a 

u See Max Dehn, "Historische 'Obersicht," in A. Schoenflies and M. Dehn, EinfiJhrungin 
tlu analytische Geometric tler Ellene und des Raumes (2nd ed., Berlin ( 1931 )), p. 379-393. 

11 See, e. g., 0. Neugebauer and A. Sachs, "Mathematical Cuneiform Texts" (American Oriental Series, v. XXIX), New Haven, Conn. ( 1945), passim. 
• See T. L. Heath, Diofi/tq.ntus of Alemndria, Cambridge (1910), p. 129. 
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step forward. The chief deficiency of Greek mathematics was the 
lack of an independent symbolic algebra, and the work of Diophantus 
is one link in the algebraic chain from the Babylonians to Descartes. 

The century of Diophantus and Pappus (fl. ca. 300) represents a 
sufficient revival in mathematical interest to be called the silver age of 
Greek mathematics. However, whereas the work of the former betrays 
a strong Babylonian-Egyptian influence, the work of the latter repre­
sents a return to the classical interest of the golden age. Pappus made 
no striking new advance in method, his role being rather that of or­
ganizer and commentator. He rivals Euclid as an expositor, and Pro­
clus as a preserver, of the knowledge of antiquity. Most ancient 
treatises on advanced geometry have been lost. For Apollonius alone 
the lost works include his Proportional Section, his Determinate Section, 
his Tangencies, his IncUnations, and his Plane Loci. In many cases the 
Mathematical Collection of Pappus is now the chief source of informa­
tion concerning these lost works. For example, the focus-directrix­
eccentricity property of the conic sections, including that for the parab­
ola, is given here for the first time, although for the central conics the 
general focal properties were known to Apollonius. 21 It is surprising 
that this property was so frequently overlooked. It is said that even 
in modern times it remained unfamiliar to some geometers who first 
read of it in the Principia of Newton (I, 14) . Pappus solved the 
problem of finding a conic through five points, a construction appar­
ently also known to Apollonius but subsequently lost. Pappus gave a 
definitive formulation of the Greek division of curves or loci into three 
categories, as indicated above ; and he gave a clear-cut statement of the 
clasmcal ideas on the curves appropriate to the solution of a given prob­
lem-solid and linear loci should not be used where plane loci suffice, 
and linear loci are not to be applied where the problem can be solved by 
means of solid loci. This important notion of the appropriateness of 
solutions (equivalent to the idea, arising much later, of the irreduci­
bility of equations) was a natural extension of the Platonic glorification 
of the line and circle, and one which probably had arisen long before 
the time of Pappus. Archimedes, for example, had made a practice of 
avoiding the use of two geometric means (the determination of which is 
a solid problem) where arithmetic means (found by plane loci) suffice, 
even when the latter are less convenient. 22 Long afterwards, the in­
sistence on the use of the simplest possible means appropriate to a 
given geometrical problem was strongly emphasized in the analytic 
geometry of Descartes and his successors. 

11 J . H. Weaver, "On Foci of Conics," Bulletin, American Matliematical Society, v. XXIII 
( 1916-1917), p. 357--365. 11 See T'he Works of Archimedes (Heath), p. lxvii.  
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To Pappus one owes also the clearest statement in antiquity on the 
nature of analysis. Greek geometry was divided into three parts : 
the elements (as found in Euclid) ; practical geometry or geodesy (rep­
resented by Heron) ; and higher geometry (illustrated by Apollonius 
and Archimedes) . The loss of many ancient works in the third cate­
gory makes the Mathematical Collection of Pappus (itself incompletely 
preserved) an indispensable work on the elements of higher geometry. 
Pappus says that in the last division two methods are used-synthesis, 
or composition, and analysis, or decomposition. These words do not 
refer to the method used, but to the order of demonstration. Kant had 
this in mind when, long afterward, he referred to the former as "pro­
gressive" and the latter as "regressive. "  That is, analysis is used by 
Pappus in the Platonic sense of assuming as known the thing to be 
found or proved. One finds a little of this in the Euclidean proofs by 
the indirect method, and more in Archimedes' treatise "On the Sphere 
and Cylinder, " in which one reasons .with unknown quantities as 
though they were known. The Diophantine use of unknowns is a 
clear example of analysis, but this was not related to geometry. 

It was through Pappus that Descartes became acquainted with t 
the problem-the locus to three or four lin�which inspired him to 
invent his coordinate geometry. The problem of Pappus21 calls for 
the locus of a point such that if line-segments are drawn from the point 
to meet three or four given lines at given angles, the product of two of 
these segments shall be proportional to the product of the other two 
(if there are four lines) or to the square of the third (if there are three 
lines) . Euclid evidently had constructed the locus only for some 
special cases, but evidence indicates that Apollonius, in works now lost, 
probably had given a complete solution of the problem. 24 Pappus, 
however, gave the impression that Greek geometers had failed in their 
attempts at a general solution, and that it was he who first showed the 
locus in all cases to be a conic section. Pappus then went on to con­
sider the equivalent problem for more than four lines. 26 For six lines 
he recognized that a curve is determined such that for any point on it 
the solid contained by the distances from three of the lines is pro­
portional to the solid contained by the distances from the other three. 

11 Throughout this book the phrase "problem of Pappus" will be used in this sense. It 
should be pointed out, however, that the phrase is often used for another problem-through 
a point on a bisector of a given angle to pass a line segment of given length with extremities 
on the sides of the angle. See A. Maroger, Le prob�me de PapfnU et ses cent premwes solu­
lions, Paris ( 1925).  

M See J. J. Milne, An Ekmenlary Treatise on Cross-Ratio Geometry, with Historical Notes, 
Cambridge ( 19 1 1 ), p. 146-49, for a good account of this problem in the history of geometry. 

• The definitive edition of the Mathematical Collection of Pappus is the Latin one by 
Hultsch (3 vols., Berlin ( 1876-1878)). The French translation by Ver Eecke (2 vols., Bruges 
( 1933) )  is also very useful. 
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Pappus hesitated to go on to cases involving more than six lines since 
"there is not anything contained by more than three dimensions" ; but, 

V he continued, "men a little before our time have allowed themselves to 
interpret such things, signifying nothing at all comprehensible, speak­
ing of the product of the content of such and such lines by the square 
of this or the content of those. These things might however be stated 
and shown generally by means of compounded proportions. ' '28  These 

/ unnamed predecessors of Pappus evidently were attempting to take a 
V highly important step in analytic geometry-the consideration of lines 

not directly as such but only in terms of numerical measures of their 
length-one which would have led to a truly algebraic treatment. Had 
Pappus pursued the matter further, he might conceivably have been 
the inventor of analytic geometry, for his observations pointed toward 
the practicability of a general classification and theory of curves and 
loci far beyond the scope of the classical distinction between plane, 
solid, and linear loci. His recognition that, no matter what the number 
of lines in the Pappus problem, a specific curve is determined, is the 
most general observation on loci in all ancient geometry. Greek geo­
metrical algebra would indeed have been far from ideal as a tool with 
which to develop the theory of higher plane curves, but it would have 
sufficed. But Pappus either did not perceive the possibilities lying in 

L this direction or else he regarded the locus problem as inadequate for 
the definition of new curves ; and hence he did not follow the fruitful 
lead which was here suggested. He was satisfied to point out that the 
discussion of the locus to three or four lines can be generalized to show 
that for any number of lines, whether odd or even, the point will lie on a 
curve given in position. This observation is equivalent to saying that 
the equations 

X1 · Xa • • •  x.- 1 
k d 

X1 · X1 . • .  x. 
k ---- == an == 

X2 · X4 • • .  x. X2 · X4 • • .  a 

(where the x's are the variable segments drawn to the fixed lines at 
given angles, a is a given line segment, and k is a given constant) define 
curves ; and no one again so nearly anticipated the invention of ana­
lytic geometry before modern times. Pappus remarked with surprise 
that no one had made a synthesis of this problem for any case beyond 
that of four lines, and hence one was unable to recognize the loci ; but 
he himself made no further study of these loci "of which one has no 
further knowledge and which are simply called curves. " 1'1 

• Quoted from Charles Taylor, An Introduc'ion lo '1" Ancient and Motkrn GeOtMtry OJ 
Coniu, p. xlvi. Cf. also Ivor Thomas, Seleaions Illiu,rating t/N Hu,ory of Grull Mat/Nmaliu 
(2 vols., Cambridge, Mass. ( 1939-1941)), v. II ,  p. 601 f. 

17 La colleelion malMmaliqtu {edited by Ver Eecke), v. II, p. 508-510. 



THE ALEXANDRIAN AGE 39 

It is customary to bold that Greek algebra, because of its geometrical 
bonds, was limited to the first three powers or dimensions, but work of 
Diophantus and Pappus makes such a view open to question. It 
should be noted, however, that Descartes finally was led to the inven­
tion of his geometry by precisely the problem which Pappus here _ 

touched upon but did not develop-the study of higher plane curves 
determined as loci for the case of more than four lines. The problem of 
Pappus long after served as a challenge to the vain-glorious Descartes 
to surpass the best efforts of antiquity. So well did Descartes succeed 
in his efforts that he boasted, with some justification, that his method 
was to ancient geometry as the rhetoric of Cicero was to the ABC of 
children. Between Pappus and Descartes, however, there is a gap of 
some thirteen hundred years. This interval witnessed the develop­
ment of a number of significant achievements bearing on the history of 
analytic geometry, but of these the most important was the rise of 
symbolic algebra-the tool which Apollonius and Pappus wanted above 
all else. 



C H A P T E R  I I I  

'The Medieval Period 

Neglect of mat'hematics works injury to all knowledge, since 
he who is ignorant of it cannot kwow the other sciences or 
the things of this world. 

-ROGER BACON 

THE medieval age is conveniently divided, with respect to the 
history of mathematics, into an earlier and a later period. The 
first part covers the long interval between Boethius ( t524) 

and Fibonacci (ca. 1 1 70-1250) , and during this time interest in mathe­
matics was found chiefly in the Hindu, Byzantine, and Arabic civiliza­
tions. Among the Hindus the computational side of the subject 
overshadowed the logical and speculative aspects, so that one finds 
there little material related to the rise of analytic geometry. As 
David Eugene Smith wrote, "To the Orient we may look for early 
progress in algebra, trigonometry, and the creation of a remarkable 
number system, but not for any geometry whatever until relatively 
modem times.' '  1 Among the Hindus, for example, so little concern 
was shown for the theory of curves that there is hardly a trace even 
of the conic sections. Applications of arithmetic to geometry were 
limited largely to questions of measure. It is true that the Hindus 
made use of negative numbers, and this may have had some influence 
upon the later generalization of coordinates to include negative values, 
but such a conjecture is open to doubt in view of the fact that negative 
coordinates were rarely used before the eighteenth century. There 
appears to be still less likelihood that the Hindu acceptance of zero 
and the irrationals as numbers had any significant effect upon the Car­
tesian association of numbers and lines in analytic geometry. One 
frequently reads that the Hindus began the practice, so important in 
algebraic geometry, of substituting letters for magnitudes and of op­
erating with literal symbolisms. This view is fundamentally erroneous, 

' "The Geometry of the Hindus," Isis, v. I ( 1913), p. 197-204. See also F. W. Kokomoor, 
"The Status of Mathematics in India and Arabia during the 'Dark Ages' of Europe," 
Mafhemaliu Teacher, v. XX.IX ( 1936), p. 224-231. 
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as a study of Aristotle's symbolism of letters in the Physica, for ex­
ample, shows. But Hindu arithmetic did develop further ·a synco­
pated calculation with symbols and letters which Diophantus had 
used, and so it represents a step from the Greeks toward Viete. More­
over, the introduction of the so-called Hindu numerals (which may, 
however, have been invented by the Greeks or the Egyptians or some 
other people) served further to simplify algebraic calculations and so 
to make attractive later the substitution of algorithmic devices for 
geometric constructions. On the whole, however, the Hindus were 
indifferent to fundamental principles and logical order, and they dis­
played little concern for mathematical method. 3 

In the Byzantine empire mathematical works continued to be written 
in Greek from Pappus and Proculus down to the dawn of the Renais­
sance, but they did not rise above the level of undistinguished com­
mentaries. In the sixth century Anthemius of Trales ( t534) , archi­
tect of St. Sophia, described the use of the parabola in connection 
with burning mirrors, and he gave also the "gardner's construction" 
in the laying out of ellipses ; but both of these basic properties had been 
known to Apollonius. Isidore of Miletus, an associate, seems to have 
known the string-and-ruler construction of the parabola, but this is 
simply a mechanization of a property familiar to Pappus. The com­
mentaries of the same period by Isidore's pupil, Eutocius (ca. 560) , 
on the works of Apollonius and Archimedes preserved some knowledge 
of earlier work which might otherwise have been lost ; and the com­
mentaries of Simplicius (fl. 529) on the Physica of Aristotle inspired 
later discussions which bordered more on the calculus than on analytic 
geometry. 

Arabic mathematics in general characteristics was a compromise 
between the arithmetic of the Hindus and the geometry of the 
Byzantines, with additional Greek, Babyloµ.ian, and Egyptian ele­
ments. Irrational numbers were retained but negatives were 
dropped. Algebra followed mainly the Babylonian and Hindu pat­
tern, and remained largely independent of geometry ; but Al-Khowari­
zmi's solution of quadratic equations nevertheless betrays Greek in­
fluence in that the process of completing the square is illustrated in 
terms of geometrical areas. It is to be noted, however, that this 
solution, in spite of its geometrical background, represents, as far as 
the development of analytic geometry is concerned, a retrogression 
from classical Greek work. It did not call for a strict construction 
in conformity to specifically stated postulates (as had the Pythagorean-

1 G. R. Kaye, "Some Notes on Hindu Mathematical Methods," Bibliolheea Malhemalica 
(3), v. XI ( 191 1 ), p. 289-299. 
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Euclidean solutions) , nor did it make use of the intersections of new 
curves (as in the solutions of cubic8 by Menaechmus and Archimedes) ; 
and these were the very principles upon which Descartes later based 
his work. 

Diophantus is sometimes called the father of algebra, but this title 
belongs more properly to Al-Khowarizmi (ca. 825) in that the work of 
the latter emphasized the Babylonian solution of determinate equations 
rather than the Diophantine analysis which is characteristic of higher 
arithmetic. The Hindus had been much attracted by the Diophan­
tine problems and had extended the development of syncopated forms 
of expression. It is unfortunate that the Arabs did not adapt the 
Hindu syncopation to the solution of equations but reverted instead 
to rhetorical forms. Specific forms of notation in themselves are not 
always of great significance, but frequently the use of symbols exerts 
a decisive influence on the subsequent development of concepts. This 
is aptly illustrated by the relationship of algebra to analytic geometry. 
It is customary to recognize three stages in the development of alge­
bra : the rhetorical, the syncopated, and the symbolic. Diophantus 
had risen to the second stage but Al-Khowarizmi slipped back to the 
first. The ideas of algebraic variable and equation of a curve arose 
only after the last stage had been reached, and hence the Arabic be­
ginnings in algebra had to be developed further in the sixteenth and 
seventeenth centuries to serve as a basis for modem algebraic geom­
etry. 

Muslim mathematicians were much interested in the geometry of 
the Greek golden age, translating into Arabic the works of Euclid, 
Archimedes, and Apollonius. Had it not been for their translations, 
some portions of Archimedes (especially his trigonometry) would now 
be unknown, and all of the last four books of Apollonius would be lost, 
instead of only the last one. The conic sections, overlooked by the 
Hindus, did attract the Arabs, and the latter made some further con­
tributions in this connection, the optical properties of the parabola 
being given a place of prominence. Archimedes had studied the solid 
obtained by revolving a parabola about its axis, and Alhazen (Al­
Haitham, ca. 1000) generalized this by revolving parabolic segments 
about arbitrary diameters and ordinates, both perpendicular and ob­
lique, determining the cubatures of the various figures. 3 Such work, 
however, was more closely related to the calculus than to analytic geom­
etry, for surfaces at that time were regarded as boundaries of solids 

1 See "Die Abhandlung fiber die Ausmessung des Paraboloides von el-Hasan b. el 
Hasan b. el-Haitham," translated with commentary by Heinrich Suter, Bibliotheca Mathe­
matica. (3), v. XII ( 191 1-1912), p. 289--332. 
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and were not studied in terms of coordinates. Similarly, the "prob­
lem of Alhazen"-to find the point on a given circle at which light issu­
ing from a given point as source will be reflected toward a second fixed 
point-was not associated with coordinate geometry until the seven­
teenth century. 

One of the high points of Arabic mathematics is the geometrical 
solution of cubic equations in the traditional manner of Menaechmus. 
Alhazen here, too, followed Archimedes, solving the cubic x1 + a2b = 
a2 through the intersection of x2 = ay and y(c - x) = ab. His work 
was continued on a broader scale by Omar Khayyam (ca. 1 100) who, 
although he believed numerical solutions for general cubic equations to 
be impossible, nevertheless asserted that by means of the intersections 
of conic sections he could give a solution for each type. 4 This claim is 
illustrated for various cases :  those of the form x• + b2x = b2c were 
solved by using the parabola x2 = by and the circle x2 + y2• = ex; 
those of the form x1 + ax2 = c1 by using the hyperbola xy = c2 and the 
parabola y2 = ex + ac; those of the form x• ::1: ax2 + b2x = b2c through 
the hyperbolas x(b ::1: y) = be and the circles y2 = (x ::1: a) (c - x) . 
As in the case of quadratic equations, cubics having no positive roots 
were omitted from consideration. It is significant that Omar felt that 
even where algebraic solutions were possible, it was necessary to 
supplement and verify these by means of geometric constructions, a 
view which makes him an important link between the Greeks and the 
geometry of Descartes. 

While the Hindus, Byzantines, and Arabs were maintaining an in­
terest in mathematics, Latin Europe had been struggling through the 
dark ages. Little of any consequence was added to the history of 
analytic geometry, unless one excepts rough graphical representations 
of the courses of the planets through the zodiacal constellations. 
Using thirty subdivisions in longitude and a dozen in latitude, the 
paths of the planets, as given in Pliny's Natura/, History, were plotted 
during the tenth or eleventh century on a crude system of rectangular 
coordinates.1 

The Latin world was largely unfamiliar with the ancient mathe­
matical treatises until, in the twelfth century, Latin translations were 
made from Arabic, Hebrew, Syriac, and Greek manuscripts. Even 
after the Greek classics in geometry and the Arabic works in algebra 

• See D. S. Kasir, The Algebra of Omar Khayyam ( New York, 1931 ). chaps. IV-VIII .  
Cf. also Matthiessen, op. cit. 

• See Harriet Lattin, "The Eleventh Century MS Munich 14436 : its contribution to the 
history of coordinates, of logic, of German studies in France," Isis, v. XXXVII I  ( 1948), p. 
205-225, and H. G. Funkhouser, "Historical Development of the Graphical Representation 
of Statistical Data," Osiris, v. III ( 1937), p. 269-404. See also Funkhouser, "A Note on a 
Tenth Century Graph," tbitl., v. I ( 1936), p. 260-262. 
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became available, western European scholars at first displayed little 
interest in them, occupied as they were with questions in theology and 
metaphysics. Nevertheless, the thirteenth century opened auspi­
ciously with works on algebra and geometry by Fibonacci (Leonardo 
of Pisa, ca. 1 1 70-1250) . His Liber abaci in 1202 did more than popu­
larize the Hindu-Arabic numerals, for it emphasized the interrelation­
ships of arithmetic and geometry. This work opens with the assertion 
that the complete doctrine of number cannot be presented without 
looking to geometry inasmuch as many of the demonstrations are in 
terms of geometric figures. Conversely, in his Practica geometriae of 
1220 he solved many questions "secundum algebram. "• Such an as­
sociation of algebra and geometry does not in itseH constitute analytic 
geometry ; but three and four centuries later it was the reappearance 
and rapid spread of similar work which paved the way for coordinate 
geometry. 

The interval from Fibonacci to Chuquet (ft. 1477) , known as the 
later medieval age, was noteworthy more for certain abortive efforts in 
new directions than for achievement in the traditional subject matter. 
This is especially true in connection with the application of curves to 
the study of dynamics. The Greeks bad built up an elaborate mathe­
matical theory, but they bad applied only the most elementary portions 
of it to science ; the scholastic philosophers of the fourteenth century, 
on the other hand, possessed the most elementary mathematical tools 
but sought ambitiously to make an elaborate quantitative study of 
science. Archimedes had not tackled the simple problems of dynamics, 
even though he possessed rudiments of the calculus. The Greek 
sciences of astronomy, optics, and mechanical statics bad been elabo­
rated geometrically, but there was no such representation of variable 
physical phenomena. The scholastics, however, essayed, in what they 
called the latitude of forms, a broad study of physical variation. The 
word form referred to any quality which admits of variation, and the 
latitude of a form was the degree to which it possessed this quality. 
In general the discussion centered about the intensio and remissio 
of the form, or the rate of change of the quality. Aristotle had dis­
tinguished between uniform and non-uniform velocity, but the scho­
lastics at Oxford and Paris went further. They applied these ideas to 
acceleration, intensity of illumination or thermal content, and density ; 
and they distinguished not only between uniform and non-uniform 
rates of change, but subdivided the latter according as the rate of 
change of the rate of change was constant or not. 

• See Ettore Bortolotti, Laioni di geomdria analilica (2 vols., Bologna, 1923), "lntro­
duzione storica," v. I, p. ix-xxxix. 
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The origin of the study of the latitude of forms is far from clear. 
Duns Scotus appears to have been among the first to consider the in­
crease and decrease of forms, and shortly thereafter treatises on the 
latitude of forms were composed by James of Forli, Walter Burley, 
Albert of Saxony, and Richard Suiseth (ca. 1345) . The work of the 
last named, better known as Calculator, was a leading model which 
exerted a wide influence for several centuries. In this the author dis­
cussed at length the a�erage intensity of a form representing thermal 
intensities and concluded that if the rate of change over an interval is 
uniform, then the average intensity is the mean of the first and last 
intensities. The rigorous proof of this requires the use of the limit con­
cept, but Calculator based his reasoning on the crude experience of 
rate of change. He argued at great length that if the greater intensity 
is allowed to decrease uniformly to th� mean while the lesser is increased 
at the same rate to this mean, then the whole is neither increased nor 
decreased. For example, if the intensity of a form increases uniformly 
from four to eight, or if for the first half of the time it is four and for the 
last half it is eight, then the effect is that which would result from a uni­
form intensity of six operating throughout the whole time. 

The latitude of forms illustrates more clearly than had any earlier 
mathematical work the idea of one quantity varying as a function of 
another ; nor was this notion limited to cases of direct proportion­
alities. The Liber calculationum of Suiseth includes problems such as 
the following : if throughout ·half of a given time interval a variable 
quantity has a certain constant intensity, and if throughout the next 
quarter of the interval it continues at double the initial intensity, and 
throughout the next eighth of the interval at triple the initial intensity, 
and so on ad infinitum ; then the average intensity for the whole in­
terval will be the intensity of the variable during the second sub­
interval. This is equivalent to saying that the sum of the infinite 

series � + � + � + � + . . . + ; .. + . . .  is 2. The study of infinite 

series is important in the calculus, but the. example of Calculator is 
significant in analytic geometry as another instance of a verbally de­
fined functional relationship-one which has discontinuities and in 
which the dependent variable increases indefinitely. 

The proofs given by Suiseth are tediously long because of the com­
plete lack of algebraic or geometric symbolism, other than the use of 
letters for quantities and of the customary abbreviations in manu­
script writing. However, as the center of the new mathematical 
science shifted from the logicians of O:xf ord to the Ockhamites of Paris, 
a striking change took place. At the University of Paris, Nicole 
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Oresme (ca. 1323-1382) felt that the study of the latitude of forms 
could be clarified through reference to geometrical figures. Although 
his work is clearly an outgrowth of earlier Scholastic philosophy, 
Oresme seems to have had no pred�rs in the matter of graphical 
representation.7 The manner in which this is to be accomplished is 
described at length in a manuscript work, Tractatus de Figuratione 
potentiarum et mensurarum, written probably before 1361 ,8 and also in 
the brief er printed work, the Tractatus de latitudinibus f ormarum. 
Following the Greek tradition which regarded number as discrete and 
geometrical magnitude as continuous, he said that measurable quanti­
ties other than numbers can be represented by points, lines, and sur­
faces. To carry this out, intensities are to be represented by lines 
drawn perpendicular to the interval or region under consideration. 
If, for example, the velocity of an object is to be represented as a func­
tion of time, then time is measured along a horizontal straight line 
(Oresme calls it a "longitude") and the intensities of the velocity are 
then drawn perpendicular to it (as representations of "latitude") . 
This does not mark the first use of coordinates, but it appears to be the 
earliest use of the graphical representation of functions on a coordi­
nate system. The work of Apollonius may be interpreted as the first 
stage in the mathematical development of coordinates-in which one 
introduces as coordinate axes certain auxiliary lines determined by a 
figure or curve previously given. The work of Oresme represents a 
second stage in which the coordinate system is laid down first and the 
points of a curve are then determined with respect to this, subject to 
given conditions verbally expressed. 

Giinther9 would recognize three stages in the development of the 
idea of coordinates : (1)  the introduction of two axes on the surface 
to be studied ; (2) the plotting of a curve by constructing ordinates for 
given abscissas and then connecting the end points ; {3) the use of 
equations permitting one to go from abscissas to ordinates, or vice 
versa. He correctly points out that Oresme clearly belongs to the 
second stage ; but there seems to be room for doubt that this stage is a 
necessary preliminary to step three, as he holds. Historically, the 

7 See Adolf Krazer, Zur Gesclicltte der 1raphischm Darstellung 11on Funktionen (Karls­
ruhe, 1915). This Festschrift of 31 pages gives a cogent summary of Oresme's work. 

• This work is known also by other titles, such as De unif ormitate et diff ormitate intentio­
num and De configuratione qualitatum. For an extensive account of this work see Heinrich 
Wieleitner, "Ueber den Funktionsbegrifi und die graphische Darstellung bei Oresme," 
Bibliotheca Mathematica (3) ,  v. XIV ( 1914), p .  193-243. Commonly ascribed to Oresme is 
another smaller work, the Tractatus de latitudinibus formarum, which is probably a student's 
notes on Oresme's longer treatise. A full description of this shorter work is given by 
Wieleitner in an article, " Der 'Tractatus de latitudinibus formarum' des Oresme," Bibliotheca 
Mathematica (3), v. XIII ( 1912-1913), p. 1 16-145. 

• Op cu. 
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three stages are easily discernible, but it appears likely that the third 
step developed from the first step, possibly uninfiuenced by the inter­
mediary stage. 

Oresme used the method of graphical representation to give a simple 
proof of Calculator's proposition on average intensities where the rate 
of change of velocity is uniform. If a body, starting from rest, moves 
with uniformly increasing speed, the lines representing the intensities or 
velocities will form a surface area in the shape of a right triangle. 
(See Fig. 6.) Now the area of the triangle ABC is exactly equal to the 
area of the rectangle ABGF (where F bisects A C) ,  and this rectangle 
is the graphical representation of a motion for the same time interval 
but having a uniform speed equal to the mean of the initial and final 
speeds for the former case. Oresme did not state explicitly the fact, 
demonstrated in the integral calculus, that the areas ABGF and ABC 
represent in each case the distance covered ; but this seems to have been 
his interpretation inasmuch as he derived the equality of the distances 
from the congruence of the triangles CFE and EBG. 

Fig. 6 

Oresme studied graphically other instances of functional relationship, 
including the discontinuous function of Calculator described above. 
This he then modified in various ways such as the following : let the 
body move during the first half of the time interval with a given uni­
form velocity ; then for the next quarter of the time let the velocity 
increase uniformly from the given velocity to double this speed, for 
the next eighth of the interval with the uniform speed attained at the 
end of the previous sub-interval, for the next sixteenth with uniform 
acceleration until the velocity again is doubled, and so on ad infinitum. 
Oresme found that in this case the total distance covered is to that of 
the first half of the time as seven is to two. 

The work of Oresme has been hailed by some historians as equiva-
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lent to Cartesian geometry. Duhem, a competent but over-enthusi­
astic authority, has asserted that Oresme "gives the equation of the 
right line, and thus forestalls Descartes in the invention of analytical 
geometry." 10 It is true that Oresme knew that a constant rate of 
change or a rate of change which is proportional to time can be rep­
resented on a coordinate system by means of a rectilinear configuration, 
and that other types of variation are associated with characteristic 
diagrams. However, the facility Oresme displayed in handling linear 
and broken-line graphs could not be extended to curvilinear figures, 
although his discussion in connection with the latter sometimes in­
cluded significant observations. In connection with a form represented 
graphically by a semicircle, it is pointed out that the rate of change of 
an intensity (such as velocity) is least at the point corresponding to the 
maximum intensity. Nevertheless, he was prevented from taking full 
advantage of his novel idea by deficiencies in geometrical knowledge 
and algebraic technique. Consequently, there is in the work of Oresme 
no systematic association of algebra and geometry in which an equation 
in two variables determines a specific curve, and conversely. As a 
matter of fact, his graphs are associations of (physical} variables with 
geometric representation from which number is specifically excluded. 
His treatise De continuitate intentionis opens with the statement, 
"Anything measurable, except for number, is imaginable in the manner 
of continuous quantity. " The Greek idea of the ratio between two 
geometrical magnitudes still was dominant. 

Even apart from the lack of the fundamental principle that algebra 
and geometry can be associated, Oresme's graphical representation 
differs in several respects from the later point of view. Wieleitner 
stresses the fact that Oresme lacked a clear idea of an origin in his co­
ordinate system and that his longitudinal axis was a finite time interval 
and not infinite in extent ; but these differences are of lesser importance, 
as is also the fact that there is no reference to negative coordinates. 
More important, it appears, is the fact that he looked upon the figures 
formed by the latitudinal lines as plane figures the areas of which were 
his chief concern. A form with uniform intensity was not a horizontal 
line, but a rectangle ; or again, as Oresme explains, "Any uniformly 
difform quality terminating in zero intensity is imagined as a right 
triangle"-not as a straight line. 1 1  The upper boundary line played 

11 See his article, "Oresme, " in the Catholic Encycloptillia. Duhem here similarly exag­
gerates the role of Oresme as a precursor of Copernicus : "and the whole of his argument in 
favor of the earth's motion is both more explicit and much clearer than that given by 
Copernicus." A more reliable estimate of Oresme's views on the motion of the earth is 
given by Lynn Thorndike, Histor1 of Magic and &perimemal Science (6 vols. ,  New York, 
1928-1941) .  1 1  Cf. Krazer, op. cit. 
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only a secondary role, whereas in analytic geometry properly under­
stood it is precisely the locus of the end points of the lines of latitude 
which is associated with the equation or law of variation. The "form" 
or function in problems of uniformly increasing velocity was not velocity 
but distance, the latitudes of which were the vertical lines representing 
the intensities of the rate of change of distance with respect to time. 
Oresme pointed out in connection with such graphs (see Fig. 6) the 
constant-slope property : CF:ED = AD:DB; and it is largely upon 
this that Duhem bases his argument that "analytic geometry of two 
dimensions was created by Oresme,"  for he reads into it the two­
point form of the equation of the straight line. 12 It should be noted, 
however, that the slope of the line here represented the rate of change 
of the rate of change {the second derivative rather than the first) 
of the function with respect to the independent variable. That is, 
what would now be regarded as a velocity-time graph was to Oresme a 
distance-time graph. The same point of view dominated his suggestion 
with respect to solid analytic geometry-the intensio or function in the 
case of a qualitas superjicialis (two independent variables) was not 
represented by a surface but by the volume made up of all the ordinates 
erected upon the portion of the reference plane. Incidentally, even 
long after the time of Descartes surfaces were looked upon generally 
as bounding volumes rather than as loci satisfying equations in three 
variables. Oresme boldly sought to extend consistently his idea of 
graphical conception to a fourth dimension. For a qualitas corporalis 
(involving three independent variables) one takes not a reference line 
or plane, but a reference body or volume. With each point of this 
volume there is associated a line indicating the degree of intensity, 
and the {four-dimensional) totality of these lines represents the inten­
sity (i. e . ,  function) of the quality or form. 11 Obviously pictorial 
representation failed in this case. What was needed here was an 
a/.gebraic geometry which Oresme did not possess . 

Oresme's graphical method made possible the diagrammatic rep­
resentation of any type of variation of one variable in terms of one or 
two others. That is, curves and surfaces might have been defined by 
analytic means or by the equivalent of differential equations, for his 
work foreshadowed the very important notions of variable, function, 
and rate of change. Smith 14 has written : ' 'The real idea of function­
ality as shown by the use of coordinates was first clearly and publicly 

11 Pierre Duhem, :&wles sur Ll<mard de Vinci (3 vols., Paris, 1900-1913), v. III, p. 386. 11 Wieleitner, "Zur Friihgescbichte der Riume von mehr als drei Dimensionen," Isis, v. 
VII ( 1925),_p. 486-489. For later history of this subject see Cajori, "Origins of Fourth 
Dimension Qmcepts," America• Mathematical Monthly, v. XXXIII ( 1926), p. 397-406. 

14 History of Mathematics, v. I, p. 376. 
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expressed by Descartes."  It would appear more appropriate, how­
ever, to ascribe the graphical representation of functions (as distinct 
from algebraic expressions) to Oresme, and to attribute to Descartes 
(and to Fermat) the use of coordinates in connection with algebraic 
curves and equations. 

As the failure to use empirical methods hampered the development 
of medieval science, so also the weakness of mathematical technique 
precluded the construction at that time of an effective analytic geom­
etry or a theory of curves and surfaces. The fourteenth century was, 
in fact, scarcely familiar with the conic sections or of other curves be­
yond the line or circle. It is said that the limacon had been recognized 
by Johannes Campanus (ft. ca. 1260) and Jordanus Nemorarius in the 
previous century, four hundred years before its rediscovery by 
:£tienne Pascal, but this discovery was not related to the latitude of 
forms or to analytic geometry. Moreover, Oresme's graphs were dis­
cussed more in terms of physical variation than of geometric definition 
and significance. 

The relationship of the latitude of forms to the later development of 
analytic geometry is difficult to determine. The work of Suiseth and 
Oresme was much admired by men of the fifteenth and sixteenth cen­
turies, and several printed editions of the Li.her calcu'lationum and the 
Tractatus de 'latitudinibus formarum, as well as commentaries on each, 
appeared in the interval from 1477 to 1520. In some cases the latitude 
of forms was required work in the universities. The traditions de­
veloped at Oxford and Paris were continued at Padua and other Italian 
universities by an A verroistic interest in quantitative science, u; and 
there can be no doubt that Galileo was thoroughly familiar with the 
Scholastic doctrines in dynamics. The widespread belief that Galileo 
created the idea of acceleration is completely false, for the general 
concept of acceleration is found in Aristotle and the specific idea of a 
uniform rate of change of the rate of change of distance with respect to 
time goes back at least as far as Calculator, a scholar to whom Galileo 
specifically referred in his early work. In his Two New Sciences of 1638 
Galileo reproduced with striking fidelity the diagram and argument of 
Oresme for uniformly accelerated motion, outlined above. The in­
ftuence of Oresme on modern dynamics is clear, but the case for geom­
etry is less certain. Descartes' early interest in mathematics was con­
nected with the laws of falling bodies, and here he made use of dia-

11 For a good account of such intellectual l'Urrents see J. H. Randall, Jr. ,  "The Develop­
ment of Scientific Method in the School of Padua," J01'rnal of lhe History of Itleas, v. I 
( 1940), p. 177-206. For a more extensive but less judicious history of the physical science 
of the time see Pierre Duhem, :&udes sur Lbmard de Vinci. 
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grams resembling those of Oresme and Galileo. 111 Descartes carefully 
avoided any reference to his predecessors and so one cannot say with 
assurance that he was familiar with the work of Oresme, but this seems 
quite probable. Nevertheless, it will be seen later that the differences 
(in motivation and purpose, as well as in substance) between his 
analytic geometry and the graphical representation of the latitude of 
forms are so great as to make questionable any decisive influence of 
Oresme on Descartes. 17 The same thing is true also in the case of 
Fermat, and inasmuch as his interests were more narrowly classi�al, 
any significant indebtedness to medieval learning is unlikely. It is 
more likely that Oresme's graphs and the scholastic use of indivisibles 
made themselves felt in geometry indirectly through the medium of 
infinitesimal analysis and the function concept at about the time of the 
first appearance of Cartesian geometry. Whatever his influence, how­
ever, in estimating his graphical method one should note that whereas 
the later inventors of analytic geometry had predecessors-notably 
Apollonius and Pappus--out of whose work theirs was developed, 
Oresme was here a trail-blazer with no appreciable mathematical back­
ground. Had he been guided by Greek geometry, the history of mathe­
matics might have been radically changed. 

There is another medieval contribution to mathematics which in­
directly may have affected analytic geometry through the development 
of formal algebra. Although Europe in the fourteenth century over­
looked much of the classical geometry of Greece, there was at the time a 
widespread interest in the theory of proportion which had been handed 
down from Pythagorean musical theory. The fifth book of Euclid 
remains a monument in the application of the theory to geometry, but 
the ancients made practically no attempt to carry the ideas over into 
physical science. Through the primitive works of Boethius and 

11 As late as 1654 one finds a reproduction of Oresme's diagram on uniformly accelerated 
motion in the work of Huygens. (Oewwu comf>Ulu, v. XVI, p. 1 14-115.) 

" There is a great difference of opinion on this subject. C. R. Wallner, "Entwickelungs­
pschichtliche Momente bei Entstehung der Infinitesimalrechnung," Bibliotluca Mallie­
malica (3), v. V ( 1904), p. 1 13-124, especially p. 120, sees not the least influence of Oresme on 
Descartes ; Edward Stamm, "Tractatus de continuo von Thomas Bradwardina. Eine 
Handschrift aus dem XIV. Jahrhundert," Isis, v. XX.VI ( 1936), p. 13--32, especially p. 24, 
says that the problem of the latitude of forms of Oresme was undoubtedly the most impor­
tant influence on Descartes ; Curtze, who rediscovered the work of Oresme, and Cantor, in 
his Gucliiclite tler Mathematik, see a strong similarity between the geometry of Oresme and 
that of Descartes ; Weileitner, in his article "Ueber den Funktionsbegriff" (cited above), p. 
242, says that Descartes undoubtedly knew of Oresme's latitude of forms, but he is inclined 
to doubt that Descartes recognized the element their work had in common. Dingeldey, of>. 
cit., doubts that medieval graphical representation played even a minor role in the definitive 
introduction of coordinate geometry. Hankel's estimate of Oresme's work is low, but 
Gelcich calls it "epoch-making." ( E. Gelcich, "Eine Studie iiber die Entdeckung der 
analytischen Geometrie mit Beriicbichtigung eines Werkes des Marino Ghetaldi," Ablu11ul­
lunge11 nr Gucliiclde der Malliemalik, v. IV ( 1882), p. 191-231.)  
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through Arabic translations of Euclid, the Latin medieval world was 
acquainted with the theory of proportions at least by the time of Cam­
panus ; and about a century later one finds treatises devoted to the 
subject, such as the Liber de proportionibus of Thomas Bradwardine in 
1328. In this book one finds a continuation of the work of Euclid, 
Iamblichus, and Boethius in the idea of fractional proportions, in 
which, for example, one quantity varies as the cube of the square root of 
another. Somewhat later in the century Oresme composed an Al­
gorismus proportionum in which fractional "powers" are freely used. 
Here again one finds a medieval advance which might have had con­
siderable influence, for Oresme introduced occasional symbolic rep­
resentations of proportions, the forerunners of the Cartesian notation of 

exponents. 18 Thus he used expressions such as 
1 .

1:. 
4 

and ;� to desig­

nate 4'1•. He did not, however, carry out such abbreviation syste­
matically, and his statements of rules of "exponents"--equivalent to 
such expressions as (a"')11" = (a"'1) 11" or a"' · a11" = a• + Ul11>-gener­
ally are verbal rather than symbolic. Had he and his successors gone 
further in the direction of syncopation, the history of algebra would be 
quite different, for it was here that emphasis was placed in the early 
modem period. Unfortunately, the medieval development was cut 
short by weakness in algebraic knowledge and technique. The spirit 
of quantitative science was strong, but the necessary mathematical 
equipment was lacking. 

The artist Leone Battista Alberti (1404-1472) also has been charac­
terized as a precursor of Descartes because of his application of co­
ordinate systems in perspective and architecture. We are told111 that 
in one treatise (now lost) he seems to have been occupied with prob­
lems of analytic geometry ; but even if this be granted, there is no 
evidence that his work influenced the later inventors of the subject. 
The use, in early works on the theory of perspective, of concentric 
circles and radiating lines in problems relating to deformations (ana­
morphoses) , represents an anticipation of the idea of polar coordinates, 
much as latitude and longitude in astronomy and geography are 
considered forerunners of rectangular coordinates. However, there 
was no correlation between such systems and an analytic theory of 
curves. Here, again, the practical arts and sciences seem to have 
played a smaller part than one would have anticipated in the history 
of analytic geometry. 

11 For further details and references see my paper, "Fractional Indices, Exponents, and 
Powers," National Mathematics Maganne, XVIII ( 1943), p. 81-86. 

'' Georg Wolft', "Leone Battista Alberti als Mathematiker," Scientia, v. LX ( 1936), p. 
3�59, and supp., p. 142-147. 
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The medieval latitude of forms and the theory of proportions con­
tinued to dominate thought for some time. In the fifteenth century 
one finds the physicist Marliani using them to study problems in dy­
namics, but he made little if any progress, for he failed to master the 
elements of proportion of Bradwardine. His century missed the op­
portunity of making outstanding progress in the development of science 
because it was not mathematically prepared. It was not equipped 
to fashion the theory of proportions into an algebra, or the latitude of 
forms into an algebraic geometry, because the scholars of that period 
had not first mastered the background which they had inherited from 
ancient Greece and medieval Arabia. It was largely during the six­
teenth century that this situation was remedied through a renewed in­
terest in, and a systematic coordination of, the classic results of geom­
etry and algebra. 



C H A P T E R  I V  

The Early Modern Prelude 

In mathematics I can report no deficiency, except it be thal men do 
not sufficiently undMstand the excellent use of the Pure Mathe­
matics. 

-FRANCIS BACON 

THE traditional distinction between the Middle Ages and the 
Renaissance is a convenient one, but it is also deceptive. For 
one thing, a noticeable revival in the fields of art and literature 

was not at first accompanied by marked advances in science and 
mathematics ; and in the second place, there are definite connections 
linking the medieval with the modern period in algebra and geometry. 
No new and outstanding mathematical trend, comparable to the 
artistic, is found, for example, between the time of Petrarch {1304-
1374) and that of Leonardo da Vinci {1452-1519) .  On the other hand, 
numerous editions of the works of Bradwardine and Oresme appeared 
in the late fifteenth and early sixteenth centuries, and treatises on 
proportion continued to betray medieval influence for still another 
hundred years. The end of the fifteenth century produced two notable 
works, both of which were based on earlier sources but which in some 
measure anticipated future lines of development. These two books-­
Chuquet's Tri.party en la science des nombres of 1484 and Pacioli's 
Summa de arithmetica of 1494-may for convenience be taken to mark 
a reasonably clear line between medieval and modern mathematics. 

From the titles of the works of Chuquet ( tea. 1500) and Pacioli ( tea. 1509) it is clear that the modern period opened with emphasis 
in a new direction-toward q.lgebra. The Triparty represents a 
marked expansion of the timid symbolization of Oresme. Here for 
the first time integral powers of an unknown are clearly indicated by 
exponents. One finds expressions such as .5. and .6 .  2 and . 10. a to 
designate what now would appear as 5x and 6x2 and 10x1• In this 
remarkable work negative integers and zero also are used as exponents, 
for 9x0 is written as .9.0, and one reads correctly that .72. 1 divided by 
.8. 1 is .9.2·"' (i . e., 72x + 8x1 = 9x-2) . Chuquet possessed also a brief 

54 
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notation for roots--such as :ij1.7. for the square root of 7 and :ij'. 10. 
for the fourth root of 10, corresponding to our forms ..V7 and V'rn. The 
particular forms of such abbreviations are not nearly so significant as 
is the whole tendency toward symbolic algebra which they represent. 
This tendency enabled mathematics more easily to transcend the limits 
of geometric visualization and to use powers beyond the cube. Chu­
quet himself referred to terms of fourth degree, using a phrase equiva­
lent to "square-square," a terminology reminiscent of that of 
Diophantus. 

It would be of interest to know more about the inspiration for the 
work of Chuquet-whether it was influenced by Greek sources ; 
whether or not it came, directly or indirectly, from Oresme ; and who, 
if any, were the intermediaries. There is some appearance of Italian 
influence in the Triparty, and it is not impossible that the author knew 
of Fibonacci's Liber abaci of 1202 ; but Chuquet mentions only two 
authors, Boethius and Campanus, whose lives are separated by a span 
of seven hundred years. Further evidence on the forces at work here 
may some day serve to qualify the general impression that algebra 
developed primarily from the work of the Hindus and the Arabs. 
Possibly more credit for originality should be given to the late medieval 
scholars in Europe. 

Unfortunately, the Triparty went unpublished for very nearly four 
hundred years, 1 but part of its substance appeared as early as 1520 
(again in 1538) in an Arism4tique of Estienne de la Roche {born ca. 
1480) . Chuquet's symbolic methods may well have been known to 
others also, and so they may have paved the way for the notations of 
Descartes ; but the chief source of European algebra seems to have been 
Italy rather than France. Here the influence of scholastic philoso­
phers--such as Bradwardine and Oresme-had continued in the uni­
versities at Pavia, Bologna, and Padua ; but there was also a strong 
tendency in non-academic circles toward commerical arithmetic, such 
as had been evident almost three centuries before in the Liber abaci. 
Hindu and Arabic algebra had tended to emphasize applied aspects of 
the subject at the expense of questions of logical fundamentals ; but in 
Italy at the time of Leonardo da Vinci, this oriental tendency was 
balanced by two contrary force� lingering scholasticism and rising 
interest in the Greek classics of geometry. 1  Luca Pacioli inherited all 

1 It appeared in print for the first time, edited by Aristide Marre, in Boncompagni's 
BulleUino di Bibliografia e di Storia delle Sciense Matmratidie e Fisiche, v .  XIII ( 1880), p. 
555--659, 693--814;  v. XIV ( 1881 ), p. 413-460. Cf. Ch. Lambo, "Une alg�bre fran�se de 
1484. Nicolas Chuquet," ReJJUe des Questions Scientifiques (3), v. II ( 1902), p. 442-472. 

1 See E. W. Strong, Proct.dures and Metafilsysics. - A Study in the f>llilosof>lly of mathe­
matUal-f>llysical science in Ille s�enth and seventeenth cenl•ries (Berkeley, Cal., 1936). 
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three tendencies, for he contributed to bookkeeping, he wrote on the 
golden section, and he referred to the work of medieval mathemati­
cians. The algebra in his Summa de arithmetica was not greatly ad­
vanced over that to be found in the LiJJer abaci, but it shows the same 
tendency toward symbolism8 that was so evident in the Triparty. 
Moreover, its influence was widespread, for it linked mathematicians 
and technicians of the Low Countries with the Latinized learning of 
Italy. Furthermore, the Summa initiated a movement which con­
tinued for almost a hundred and fifty years, culminating in the end in 
Cartesian geometry. One section of the work is devoted to the ' 'method 
of solving various cases of rectangular quadrilateral figures by the 
algebraic method."  Such applications of algebra to geometry were to 
become a commonplace in the work of ViMe, the greatest mathe­
matician of the sixteenth century. But Pacioli and his early successors 
were handicapped by the fact that algebra itself was not free of geom­
etry. As in Greek geometric algebra, he constructed equations geo­
metrically, a custom which persisted for another three centuries. 

One of the important influences on analytic geometry was a dis­
covery made in Italy which Pacioli had not anticipated. In the 
Summa, echoing the pessimism of Omar Khayyam, Pacioli had com­
pared the impossibility of the algebraic solution of the cubic equation 
with that of the squaring of the circle. Little did he realize that a few 
years later the seemingly impossible was to be accomplished by his 
fellow countrymen. The discovery of the solution of the cubic equa­
tion seems to have been due to del Ferro (1465-1526) about 1515, but 
it was publicized a generation later by the unpleasant controversy 
between Cardan (1501-1576) and Tartaglia (1506-1557) . The solu­
tion of the cubic equation was of great importance in the history of 
mathematics for several reasons, among which was the impetus it gave 
to the development of algebra in general and the theory of equations 
in particular. Such a development was indispensable to the rise of 
analytic methods ; but in one sense it served, for just about a century, 
to direct attention away from coordinate geometry. Menaechmus 
long before had very nearly invented analytic geometry when in solv­
ing the Delian problem he gave the first plane geometric solution of a 
cubic equation. To be sure, he had not thought of this as a problem 
in determinate equations, for Greek mathematicians sought to cir­
cumvent these through geometric devices. Nevertheless, since that 
time determinate cubic equations and the curves given by indeter-

• For the development in algebra at this period see H. G. Zeuthen, "Sur l'origine de 
I'�," Det Kongelige Danske Videnskaberrus St:lskab. Mat'lsematisk-fymke mt:ddt:lelser, v. 
II, p. 4; Ettore Bortolotti, Studi e rieerclse nlla storia de/la matematica in Italia nt:i secoli 
X VI c X VII (Bologna. 1928). 
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minate equations of second degree had been closely connected. The 
work of Ferro, Cardan, and Tartaglia on the cubic, and of Ferrari 
(1522-ca. 1560) on the quartic, temporarily broke down this associa­
tion and caused the study of indeterminate equations in two unknowns 
to be relegated to the Diophantine theory of numbers. Cubics and 
quartics now were solvable by calculation instead of by intersecting 
conics. For about a century the relationship between algebra and 
geometry was to be simply a pact of mutual assistance in the solution 
of determinate problems-not an association of curves and indeter­
minate equations. But the dependence was no longer to be one­
sided, as it had been in Greece, for there now had arisen a greater 
confidence in the operations of algebra, independent of any geomet­
rical significance. As Stevin (1548-1620) was to express it, what can 
be done in geometry can also be done by arithmetic. The develop­
ment of operations, notations and concepts in arithmetic and algebra 
was perhaps the chief contribution of the sixteenth century to the 
history of analytic geometry. The ancient Greeks had had a sort of 
algebraic analysis in geometric form in which the solution of deter­
minate equations was avoided through the reduction of problems to 
questions of :finding intersections of known curves. The Arabs had 
continued this point of view with respect to cubic equations. But 
the startling success of the early modem period in solving cubics and 
quartics by algebraic means led to the development of an elementary 
theory of equations.'  Cardan was familiar with some of the simple 
relations between the roots of an equation and its coefficients, but the 
generalization of these required the formalization of algebraic quan­
tities and the operations performed upon these. The Algebra of Bom­
belli (born ca. 1530) in 1572 and 1579 contributed greatly to this 
tendency, begun almost a century before by Chuquet, by the system­
atic use of letters and of abbreviations for operations and relation­
ships. The idea of denoting quantities by letters was certainly not a 
new one, 6 for it had been found not only among the Hindus but also 
among the Greeks, at least as far back as Aristotle. However, the 
application of special signs and abbreviations for operations to literal 

• In Matthiessen, Gr11nllsflge rler afltiim untl morlmsm Algebra, one will find more than 
300 pages devoted to the methods used in solving these two equations. This is not a his­
tory in the strict sense, but it is a very useful volume of a thousand pages with a good index 
and copious bibliographical references. See also the valuable work of A. Favaro, "Noti.zie 
storico-critiche sulla costruzione delle equazioni," Memorie rlella Regia Accademia rli Scieue, 
LeUere t.tl A rti in Marlena, v. XVIII ( 1878), p. 127-330. This includes an exceptionally use­
ful bibliography. 

1 ] • M. Peirce, "References in Analytic Geometry," Hanxml Unwersil1 [Libra,.,] Bulldin, 
v. I ( 1875-1879 ), p. 157-158, 246-250, 289-290, gives a generally excellent account of Vi�te's 
work (and an even better one of the work of Descartes), but repeats the erroneous idea that 
Vi�te was first to represent known quantities by letters. 
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symbols for quantities seems to be due in large part to Bombelli. 
Moreover, in the case of polynomial expressions he indicated powers in 
a manner somewhat similar to that of Chuquet ; so that x2 + 2x - 3  
would be written as l 2p.21m.3. I t  will be noted, however, that the 
letters were simply abbreviations for the words which they replaced. 
The particular form of his notations' is of less significance here than is 
the idea of symbolic algebra, but both the form and idea seem to have 
had a wide influence. The notations of Stevin for decimal fractions 

0 1 2 3  
and polynomials-he would have written 6789 for 6.789 and 1 (])  + 
2© + 3© + 4@ for 1 +2x+3x2+4x8-in all probability were inspired 
by those of Bombelli. 

The Algebra of Bombelli is significant also for the anticipation of 
some later points of view : the use of algebraic proofs independent 
of geometric justification ; the suggested application of rectang­
ular coordinates in the location of a point in a plane ; and the 
use of an arbitrary unit of length in geometrical constructions. But 
these ideas were largely overlooked by his successors. However, the 
work of Cardan and Bombelli on imaginary numbers was of immediate 
significance in that it showed the necessity of a serious consideration of 
these in real situations, even though geometric interpretation was 
lacking. One could dismiss the imaginary roots of a real quadratic 
equation with the simple statement that the equation is impossible of 
solution ; but the role of imaginaries is quite different in connection 
with the cubic, for here, in the so-called "irreducible case," they lead 
in the end to real roots. 

In a manuscript which did not form part of his Algebra and which 
was never published, Bombelli studied the constructions or graphical 
solutions of determinate problems in a manner somewhat analogous 
to that which Descartes made the core of his Glomltrie.7 About 
the same time, and at least by 1587, Paolo Bonasoni composed 
a somewhat similar work with the title Algebra geometrica. In it he 
sought to give a logical basis for algebra by basing it upon geometry, 
an idea going back to Fibonacci. All problems reducible to equations 
of second degree, Bonasoni showed, can be constructed with ruler and 
compasses. For such problems he gave various graphic constructions, 
including some by the application of areas. He did not use symbols of 
operations or Bombelli's exponential notation, but he did use letters to 

• The best account of the rise of notations is that by Florian Cajori, A History of MatM­
matical Notations (2 vols., Chicago, 1928-1929). 

' See Bortolotti, Laioni tli geomdria analuit:a, v. I, p. xxxv. 
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represent both given and unknown quantities.• This represents an 
important anticipation of the notation of Viete, but unfortunately 
Bonasoni's work was never published and hence its influence is ques­
tionable. 

The work of the Italian algebraists9 encouraged the study of whole 
classes of equations, but there was at the time no satisfacory notation 
(with the possible exception of that of Bonasoni) for what would now 
be called a parameter. Quantities were either known numbers--in 
which case the Hindu-Arabic form would be available-or unknown 
numbers-in which case suitable abbreviations were invented. The 
problems which arose generally were particular instances leading to 
equations with specific numerical coefficients. In this respect the 
algebraists of Italy did not differ essentially from the arithmetical 
"cossists" of Germany. Cases of polynomials and of polynomial 
equations were familiar, but the notion of a polynomial as such seems 
not to have arisen. Perhaps further historical studies, especially of 
the German cossic works, will clarify this situation, but at the present 
time the credit for introducing the idea of a parameter seems to go 
largely to Viete (1540--1603) . The importance of his contribution has 
been widely recognized and is perhaps not exaggerated in the state­
ment of E. T. Bell that Viete was "the first mathematician of his age 
to think occasionally as mathematicians habitually think today." 10 

His achievement was not so much a contribution to notation as it was 
to algebraic ideas. Algebra before his time was in general concerned 
with particular numerical equations, such as the cubic "cubus p. 6 
rebus aequalis 20"-i.e. , x• + 6x = 20-which Cardan gave. Viete, 
on the other hand, in the De recognitione aequationum studied the prop­
erties of equations of the form A cub. - B planum in A aequatur B 
plano in Z-i.e., x• - b2x = b2c. Using vowels to designate un­
known quantities and consonants to represent quantities assumed to be 
known, Viete made it possible to distinguish not two, but three, types 
of magnitudes in algebra-specifically given numbers, parameters, 
and variables. Viete did not himself speak of parameters or vari­
ables, but his work prepared the way for these ideas. He was not the 

1 See Ettore Bortolotti, "Primordi delta geometria analitica : !'algebra geometric& di 
Paolo Bonasoni," Rend. tlelle Susioni tlella R. A ccademw tlelle &iense dell' I slit"'° di Bologna 
1924-1925, Classe di Sciense Fisiche, Sesione di Sciense Fisiche e Matematiche. This is re­
printed in his Studi e ricerche sulla storia della matematica in Italia nei s«;oli X VI • X VII 
(Bologna, 1928). 

1 See Ettore Bortolotti, "L'algebra Della storia e Della preistoria della scienza," Osiris, v. 
I ( 1936), p. 184-230. 

18 TM DeJJelopment of Mathematiu (New York, 1940), p. 99. 
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first to use symbols in equations, for germs of a literal algebra are 
found in Bombelli 11 ; but he seems to have originated the practice of 
using letters as coefficients of terms in an equation-i.e.,  of consider­
ing "affected" equations. It became possible to build up a general 
theory of equations-to study, not cubic equations, but the cubic 
equation. Viete realized the significance of this point of view, 11 for 
he contrasts the ordinary logistica numerosa with his "new" logistica 
speciosa. The former applied to calculations on numbers ; the latter 
was concerned with "species" or "the forms of things, "  and this 
latter was made possible, he held, through his "alphabetic elements. "  
These "things" might be incommensurable geometrical elements, the 
relationships among which are not expressible in terms of whole 
numbers. Here Viete ca.me close to the idea of a real algebraic vari­
able, one of the most important in the evolution of mathematics in 
general and of analytic geometry in particular. The invention of such 
variables is, in fact, frequently ascribed to him . Nevertheless it must 
be recalled that, on the one hand, there had been geometrical antici­
pations of the idea, notably in the medieval latitude of forms ; and, 
on the other hand, Viete's vowels were not, strictly speaking, vari­
ables in the sense of symbols representing any of a whole class of 
values. The vowel-vs.-consonant notation, as applied to determinate 
equations, was not so much a distinction between mriable and fixed 
magnitudes as it was between those constants which are taken to be 
unknown and those assumed to be known. It was only when such 
conventional notations were applied later to graphical representations 
of indeterminate equations that vowels came to be looked upon as 
variables rather than as fixed unknowns. But the transition from the 
one point of view to the other was a natural outgrowth of Viete's 
literal notation, and it was this transition which marked the beginning 
of analytic geometry in the strict sense of the word. As L. C. Kar­
pinski has well said, it was Viete's algebraic literal notation which 
"gave a tongue to the analytical geometry of Descartes. "  11 

Viete restricted himself to equations in a single unknown, and largely 
11 See Ettore Bortolotti, L'algebra., ofJera di Rafael Bombelli da. Bologna. (Bologna, 1929). 

I have not seen this book, but cite it on the basis of a review in Scrif>la Mathemmica., v. IV 
( 1936), p. 166-169. 

11 The importance of this viewpoint seems to have been realized by at least one con­
temporary, Adriaen Roomen (or Adrianus Romanus, 1561-1615), who in 1598 claimed as his 
own the distinction between an equation "numerosa" and an equation "figurata." ViMe, 
however, seems to have anticipated him in this. See H. Bosmans, "Le fragment du Com­
mentaire d'Adrien Romain sur l'al�bre de Mahumed ben Musa El-chowArezmi," Annales 
de la So'"" Scientifique de Bruxelles, v. XXX ( 1906), part 2, p. 266. 11 See "The Origin of the Mathematics as Taught to Freshmen," ScluPTA MATBBKATICA, 
v. VI ( 1939), p. 133-140. On this point consult also his paper, "Is There Progress in Mathe­
matical Discovery and Did the Greeks Have Analytic Geometry?" Isis, v. XXVII ( 1937), 
p. 46-52. 



THE EARLY MODERN PRELUDE 61 

for this reason he failed to invent analytic geometry ; but he played a 
preparatory role in this direction above and beyond that of developing 
algebraic ideas. He was one of those who systematically applied 
algebra to the solution of geometric problems. In fact, his vowels and 
consonants generally referred to geometrical magnitudes, as is implied 
by the names by which they were designated. His distinction between 
parameters and unknowns is brought out in this terminology, as well 
as in the vowel-vs.-consonant convention : the first nine powers of a 
given constant quantity are known, respectively, as longitudo or 
latitudo (recalling the work of Oresme) , planum, solidum, plano­
planum, . . .  solido-solido-solidum ; the corresponding powers of an 
unknown magnitude are designated, respectively, by latus or radix, 
quadratum, cubus, quadrato-quadratum, . . .  cubo-cubo-cubus. u It will 
be noted that Vi�te in his algebra did not hesitate to go beyond the third 
dimension, even though he continued to use a geometric nomenclature, 
reminiscent of that of Diophantus and Chuquet, for powers of quan­
tities. 

In the terminology of Vi�te for known and unknown quantities one 
sees a close connection between algebraic operations and geometric 
visualization, but this relationship in no way represented an anticipa­
tion of Cartesian geometry. As a matter of fact, it in one respect served 
to obscure the path toward the use of coordinates, for it encouraged 
the tendency (seen long before in Pappus) to visualize cubic equations 
in terms of stereometric representations, rather than graphically in 
two dimensions, as is required in algebraic geometry. That is, it 
would have been better to regard A 1 or B1 as numerical magnitudes-­
or, better still, as linear quantities-rather than as geometrical cubes, 
for then the association of these quantities with lines on a coordinate 
diagram would have been facilitated. This fact shows how erroneous 
it is to speak of analytic geometry as nothing more than a combination 
of algebra and geometry. The association of geometry and algebra 
in the sense of ViMe led inevitably to the notion that all equations must 
be homogeneous in terms of the variables and coefficients. This meant 
that the constants or parameters in a given expression, as well as the 
unknown magnitudes, possessed geometric dimensionality. The 
equation x1 + bx = c1, for example, would be interpreted as a pro­
portion between the lines x : c  = c :  (x+b) . This idea of ratios 
between homogeneous magnitudes did not preclude the later develop­
ment of analytic geometry, as the work of Fermat will testify ; but 
it did misdirect attention, as Descartes to some extent realized. 

It was not so much the geometric terminology in the algebra of 
H See Vi�te. Opera matlsematica (ed. by van Schooten, Lugduni batavorum, 1646). 
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Vi�te which prepared the way for Descartes : there was another aspect, 
not far removed, which formed a more direct link. This is the sys­
tematic application of syncopated algebra to the solution of geometric 
problems. The sixteenth century witnessed a rising interest in the 
classical problems of antiquity at a time when simplifications in arith­
metic processes and advances in algebra were striking. The result was 
that men sought a royal road to geometry through numerical tech­
niques. Vi�te was neither alone nor first in this respect, but he carried 
the idea further than did his predecessors. Vowels were substituted 
for unknown geometric lines, the construction of which was called for, 
and consonants for known lines ; and these letters were then subjected 
to the appropriate algebraic operations. This was not the earliest use 
of unknowns in geometry, for ancient mathematics consisted largely of 
a rhetorical geometrical algebra of unknown magnitudes. The novelty 
lay rather in the application to geometrical problems of literal symbolism 
fol'lowed by mechanical methods of calculation-the translation of a 
problem from the field of geometry to that of algebra. This prepared 
the way for the free manipulation and simplification of the relevant 
algebraic expressions according to algorithmic rules. Where the 
geometrical problem was determinate, the result of the simplification 
invariably was an (irreducible) algebraic equation in one unknown, 
the roots of which gave the possible magnitudes of the original un­
known lines. 

An important part of Vi�te's work on the application of algebra to 
geometry, Ad logisticam speciosam, has been lost ; but a simple example 
from the Zeteticorum libri quinque may serve to illustrate his general 
method of procedure : Given the area of a rectangle and the ratio 
of its sides, to find the sides of the rectangle. ViMe takes the area as 
B planum and the ratio of the sides as S to R. Let the larger side be 

A .  Then S is to R as  A is to 
R ti�es A_ Therefore the smaller side 

will be 
R times A 

H B 1 . 
al to 

R times A squared 

S 
. ence p anum 1s

. 
equ 

S 
Multiplying by S one obtains the final equation, R times A squared 
equals S times B. In this form the geometric construction of A is 
easily indicated. Vi�te repeats this process to find the smaller un­
known side E. 11 

The example above illustrates �ell the literal symbolism of Vi�te as 
applied to quantities, and its application to a simple geometric problem. 
It shows also the great need for further abbreviation through the 
application to the vowels and consonants of symbols for arithmetic 

u O/Jef'a rnatllemalit:a, p. 50. 
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operations and relationships. Viete did adopt the symbols + and - , 
but he went little beyond this. The change from syncopated to sym­
bolic algebra and from the manipulation of proportions to the use of 
equation-forms took place largely in the interval between ViMe and 
Descartes. Another example, chosen from a French edition {1630) of 
Viete's Zetetic, shows how gradual the transition was : to cut a given 
line into two parts so that a given proportion of the first part combined 
with another given proportion of the second part shall make a given 
sum. Let the line be B and let the required proportion of the first 
part be D to B and let the given proportion of the second part be F to 
B; and let the required sum be H. Let the desired portion of the 
first part of the line B be A .  Then the desired portion of the second 

part will be H - A .  Then the first part will be � and the second part 

. BH - BA BA BH - BA . will be 
F 

and the sum of the two parts, 
D 

+ 
F 

, will 
be equal to the whole line B. Multiplying this equality by DF, the 
result is FBA + DBH - DBA equal to BDF. Dividing by B, one 
obtains FA + DH - DA equal to DF. Transposing (assuming D 
greater than F) , we get DH - FD equal to DA - FA . Dividing by 

. DH - FD 
D - F results m 

D 
_ 

F 
equal to A .  Then D - F is to H - F as 

D is to A ,  by which proportionality A is determined and can be con­
structed. 11 

Geometrical problems generally called for the construction of certain 
lines. In such cases it was necessary to show how to construct geo­
metrically the roots of the resulting algebraic equation. The Euclidean 
geometrical algebra was adequate for equations of first and second 
degree, but it failed for those of higher degree. The early modern 
algebraic solutions of the cubic and quartic had not resolved the clas­
sical problems of antiquity inasmuch as such methods do not provide 
for the geometric constructibility of the roots. Through the use of 
intersecting conics Menaechtiius, Archimedes, and Omar Khayyam 
had associated problems of construction with the study of loci, and a 
continuation in this direction would almost inevitably have led Viete to 
coordinate geometry, just as it did Descartes half a century later. 

As it was, Viete anticipated Descartes only to the extent of showing 
that algebra could be used to bring about some order in questions of 
constructibility, and that, conversely, the algebraic solution of deter-

11 See l.u cinq liores des sddiq#es de Fran,ots Vie4e (transl. by Vaulezard, Paris, 1630), p. 
37-38. 
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minate equations could be given geometrical meaning by constructing 
the roots. 

Analytic geometry frequently is described as the subject in which 
algebra is applied to geometry, and vice versa. The inadequacy of 
such a statement becomes apparent with the realization that Viete's 
work clearly satisfies this description and yet it is not analytic geom­
etry. It is not this for a very simple reason-it is not coordinate geom­
etry. It already has been pointed out that Viete's application of 
algebra to geometry did not include locus problems. Conversely, his 
application of geometry to algebra did not take the form of the graphi­
cal representation of equations or functions by plotting on a coordinate 
system. It was, rather, a survival of the classical Greek geometriza­
tion of algebra, and the pattern here set was continued not only by Viete's 
immediate successors, but by geometers in general for over a century 
after the invention of analytic geometry. In a canonical review of 
geometric constructions of algebraic operations (in the Supplementum 
geometriae of 1593) Viete pointed out that the representation of the 
roots of an irreducible cubic or biquadratic equation is equivalent 
either to the trisection of the angle or to the duplication of the cube, 
thus giving these problems a wider significance than they had had 
previously. To solve these problems Viete proposed extending the 
Euclidean postulates to include constructions by instruments similar 
to the ancient mesolabe of Eratosthenes. The work of Descartes was 
primarily an effort to extend such systematization to equations of 
higher degree, where he, too, suggested a bold liberalization of the 
usual postulates. Descartes realized the power of Viete's analytic art 
as an algebraic tool, as contrasted with its limitations on the geometric 
side. In seeking to remedy the latter weakness, Descartes was forced 
to seek new curves to effect the constructions, and it was for this 
reason that he, rather than Viete, invented analytic geometry. 

i., It has been noted that in the work of Viete there is no analytic 
geometry properly so-called. It is an algebraic geometry in the sense 
that algebra serves as a handmaiden to geometry, but it is not co­
ordinate geometry . 17 Menaechmus and Apollonius had used the 
equivalent of a coordinate system, but lacked symbolic algebra ; 
Viete possessed the latter but overlooked the former. Probably the 
explanation of Viete's oversight is to be found in the preponderant 
interest of his age in determinate geometrical problems. In such 
cases the use of a coordinate frame may offer little advantage. Prob-

11 The claim that Viete anticipated analytic geometry by giving the relationship between 
the coordinates of points on a line has been refuted by G. Enestr6m, "Auf welche Weise bat 
Viete die analytische Geometrie vorbereitet?" Bibliothua Mathematica (3), v. XIV ( 1914), 
p. 354. 
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lems involving loci, on the other hand, imply or invite the use of axes 
of reference. When expressed in algebraic symbolism, however, 
problems of the latter type generally involve an equation in two un­
knowns, one of which is thought of as a function of the other. Such 
functional relationships were not adequately considered at that time, 
for the medieval graphical representation of "forms" or functions had 
not been associated with algebraic geometry. 

There is in the work of Viete a further contribution to the history of 
analytic geometry which hinges on his use of the word "analysis."  
In  a broad sense he defined analysis as doctrina bene inveniendi in 
mathematica. More specifically, ViMe regarded the "analytic art" 
as consisting of three parts : setetic, or the determination of the prop­
erties of things required from things which are given ; poristic, or 
verification ; and exegetic, or demonstration of the proposition. Here 
one sees a new application of the term "analysis."  As used by Plato 
and Pappus, the word had reference primarily to the order of ideas in a 
demonstration. Analysis was the path of investigation, synthesis was 
that of exposition. Viete, on the other hand, applied the word es­
pecially to his algebraic geometry, which he regarded as a new form of 
mathematical analysis. 18 His use of the term to some extent overlaps 
with the old, for Viete remarked that zetetic, or the algebraic attack, 
generally proceeds indirectly from the assumption of what is to be 
proved or constructed, unknown quantities being operated upon as 
though they were known. That is, algebra seemed to be the instru­
ment appropriate to the analytic path in geometry. But his emphasis 
is more upon the use of 'logistica speciosa than upon the order of demon­
stration. Following this lead, his successors lost sight more and more 
of the Platonic meaning and came to look upon analysis as synonymous 
with the use of symbolic techniques, or even with algebra itself . 111 

Considerable emphasis has been placed above upon the contribution 
of Viete because he served as the chief connecting link between the 
earlier periods and the invention of coordinate geometry. In Chasles' 
division of the history of geometry into five epochs, Viete is the figure 
marking the transition from the first epoch to the second. Never­
theless, it must be home in mind that he was by no means an isolated 
figure. Viete probably realized more fully than his contemporaries 
the fundamental character of his analytic art ;  but he had numerous 
rivals and successors, both in the application of algebra to geometry 

11 See Introduction en l'art analytic, tn1 ntn1flelle algebre de Fran,ois Viite (transl. by Vaulez­
ard, Paris, 1630). Cf. also Algebre de Viete by James Hume (Paris, 1636). See also French 
translations of parts of Vi�te's work in BulleUino di Bibliografia e di Stori.a delle Scieue 
MaJematicM e Fisice, v. I ( 1868), p. 223-276. 11 For example, Raimarus Ursus (or Reymers) in 1601 used it in this sense in his A ritls­
melica analytica vu/go cosa . 
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and in the geometric interpretation of the solution of algebraic equa­
tions. Moreover, only a little of his work was published during his 
lifetime, and then generally in small editions for private distribution, 
circumstances which served to limit his direct influence. Fortunately, 
he had a distinguished pupil, Marino Ghetaldi (1566-1627) , who fell 
heir to some of his master's manuscript material and who continued 
Vi�te's interest in algebraic geometry. 

Ghetaldi studied with Vi�te at Paris, and there he took an active 
part in the movement of the seventeenth century to restore the lost 
works of Apollonius. During the medieval period classical geometry 
had been largely forgotten, but during the sixteenth century there 
appeared numerous editions of the extant works of The Great Geometer. 
Following these, there was a flurry of attempts at the restitution of 
parts of the lost treatises. This trend was signalized at Paris by the 
Apollonius gallus of Vi�te in 1600, at Leyden by the Apollonius batavus 
of Snell (1581-1626) in 1607 and 1608, and at Venice by the Apol­
lonius redivivus of Ghetaldi in 1607 and 1613.  The frequency of 
appearance• of such works shows the remarkable resurgence of in­
terest in geometry during the early seventeenth century. Through­
out the preceding century, work in elementary geometry had been 
divided largely into two branches, one centering about Euelid's Elements 
and the other emphasizing practical geometry . 1 1  The treatise on 
conics by Werner (1468-1528) in 1522 had no direct line of descendants 
and interest in the curves was found mainly on the higher level, es­
pecially in connection with the treatises of Archimedes. In general 
such works did not make use of the newer algebraic or analytic point 
of view. 

Toward the close of the sixteenth century the gap between practical 
and theoretical geometry narrowed, as did that between the elementary 
and higher branches. Among the distinctive features at the time was 
a greatly expanded use of symbols, paralleling the coordination of 
algebra and geometry. The Euclidean application of areas continued 
to be emphasized, for it served, even in the early seventeenth century, 
as the basis for the geometric construction of the roots of quadratic 
equations. The construction or geometrical solution of problems of 
arithmetic and algebra-such as is found, for example, in the Di-

• There was also an edition at Paris in 1612 of Ghetaldi's work, as well as a Suf>f>lemenlum Apollonii redi'Di'Di by Alexander Anderson, also at Paris in 1612. The trend declmed some­
what after this, but restitutions continued to appear for almost two centuries---one by van 
Schooten at Leyden in 1656-1657, another by Halley at Oxford in 1706, and one by Simson 
at Glasgow in 1749, as well as further editions by Vi�te at London in 1771 and Gotha in 
1796 and by Snell at London in 1772. 11 See F. W. Kokomoor, "The Teaching of Elementary Geometry in the Seventeenth 
Century," Isis, v. X ( 1928), p. 21-32. 
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versarum speculationum of Benedetti {1530-1590) in 1585, or the 
Algebra.Jiscorsiva numerale et bineare of Cataldi {1548-1626) in 1618-­
has been hailed by Libri12 as an anticipation of analytic geometry. 
Such claims are completely unwarranted. 11 The "construction of 
equations" had formed a traditional part of the ancient geometrical 
algebra, so that the innovation in this connection by Benedetti, Cat­
aldi, and other contemporaries of Vi�te, was largely a carrying over of 
the Euclidean tradition from geometric rhetorical equations to alge­
braic symbolic equations. In a somewhat different sense, Cardan and 
Tartaglia also had applied geometric ideas in the solution of equations. 
However, there was in all such work no reference to the essential 
element of analytic geometry : the association of loci, given alge­
braically, with a coordinate system. This was missing in Benedetti 
and Cataldi, and it was overlooked also by Vi�te and hy his disciple, 
Ghetaldi. 24 

Following the lead of Vi�te, and in line with the tendencies of the 
time, Ghetaldi made the reduction of determinate geometric problems 
to algebra a systematic device, devoting to this theme a book of his 
Apollonius rediuirJUS. Conversely, he gave geometric proofs of such 
algebraic rules· as a2 - b1 = (a+b) (a - b) , and he constructed geomet­
rically the roots of determinate algebraic equations. In 1630 there 
was published posthumously his De resolutione et compositione mathe­
matica, a work in which this topic is so extensively treated that it has 
been referred to as the first textbook on algebraic geometry. How­
ever, the material treated and the point of view do not differ greatly 
from what had appeared before. Quite incidentally, nevertheless, 
Ghetaldi came somewhat closer to hitting upon analytic geometry, for 
he considered algebraically several indeterminate geometrical problems. 
One of these, for example, called for the construction of a triangle with 
a given base and such that the difference of the other two sides is half 
the base. Calling the base 2B and letting A be the unknown difference 
of the segments into which the altitude divides the base, Ghetaldi 
arrived at an "aequatio inutilis," A 1 - B1 = A 1 - B1• From this 
identity he correctly concluded that the number of triangles satisfying 

n G. Libri, Histoire des sciences matWma.tiqrw en Italie tlef>#is la renaissance des leUres 
jruqM'a la fin du dis-se�IUme .sUcle (4 vols ., Paris, 1838-1841), v. III, p. 124, and note 
XXVII, v. IV, p. 95. 11 See, for example, Gino Loria's magnificent work, " Da Descartes e Fermat a Monge e 
Lagrange. Contributo alla storia delta geometria analitica," AUi tlella Reale A ceadernia 
Nazionale dei Lincei, Classe di scieme fisiclse, malemaliclse e nalurali, Memorie, series 5, v. 
XIV ( 1923), p. 777-845. 

H For a brief biography see M. Saltykow, "Souvenirs concemant le g&>m�tre Yougoslave 
Marious Ghetaldi," Im, v. XXIX ( 1938), p. 20-23. For full analysis of his contribution to 
algebraic geometry, see Gelcich, op. cit.,  and Wieleitner, "Marino Ghetaldi und die Anfinge 
der Koordioatengeometrie," Bibl•olhu:a. Mathematica (3), v. XIII ( 1912-1913), p. 242-247. 
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the given conditions is infinite ; but unfortunately he did not notice 
that the third vertex in this case traces out an hyperbola. He in­
cluded the problem among those which are "vana seu nugatoria."111 
Like his illustrious predecessor, he shied away from the algebraic 
treatment of problems on curves and loci. The invention of analytic 
geometry was made a generation later by two men who discovered that 
indeterminate equations are far from "fruitless and futile, "  for, when 
applied to curves such as the conics, they served as a more effective 
bridge between algebra and geometry than the algebraic geometry 
of Vi�te, Cataldi, Benedetti, and Ghetaldi. 

Original contributions to the theory of conics in the early modem 
period were primarily synthetic or kinematic in nature. Werner, in 
spite of his general return to the stereometric emphasis in connection 
with the conics, nevertheless gave a v;ariation on the planimetric 
construction of the parabola by means of circles and lines, 28 and Gui­
dubaldo del Monte (Planisphaeriorum universalis theorica, 1579) 
supplemented Anthemius' string (or gardner's) construction for the 
ellipse with the corresponding construction of the hyperbola. Kepler 
(1571-1630) in 1604 gave the usual string constructions for all 
three conic sections (that for the parabola probably having been 
known at least 1000 years before to Isidore of Miletus) . He also 
envisioned the curves as constituting a single family : from a pair of 
intersecting lines one passes through an infinite number of hyperbolas 
to the parabola and thence through an infinity of ellipses to the circle. 
Of all hyperbolas the most obtuse is the line-pair, the most acute the 
parabola ; of all ellipses the most acute is the parabola, the most 
obtuse the circle. It is surprising to note that the unification of the 
conics, through Kepler's "law of continuity," should have occurred in 
synthetic geometry, rather than in analytic geometry in which general 
cases are the rule rather than the exception. The parabola, Kepler 
said, has a "blind" focus at infinity. Such ideas, however, led toward 
the projective geometry of Desargues and Pascal, rather than toward 
the study of loci by Fermat and Descartes. 27 Kepler (to whom we owe 
the term "eccentricity" of a conic) applied the ellipse to celestial 
motions (1609) and Galileo (1638) gave the application of the parabola 
to terrestrial trajectories, but here too the association of conics with 
practical problems probably had little influence on the origins of 

• See Moritz Cantor, Vorlesungen uber GeschiclUe der Mathetnalik (4 vols., Leipzig, 1880-
1908), v. II, p. 737-740 ; or A. G. Kaestner, GeschiclUe der Mathematik (4 vols., Gottingen, 
1796-1800), v. Ill ,  p. 188-195. 

• See Coolidge, History of the Conic Sections, p .  26-27. 
rr Ad Vitellionem ;aralif>omena; or see Opera (ed.  by Frisch}, v. II, p. 187-188. For an 

excellent account of this work on conics see C. Taylor, "The Geometry of Kepler and 
Newton," Cambridge Philosophical Society Transaaitnu, v. XVIII ( 1900}, p. 197-219. 
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coordinate geometry. Kepler's use of coordinate devices was similar 
to that of the Greeks, based upon special lines in a given construction 
rather than upon general auxiliary lines. In fact, the discoveries of 
new properties of the conic sections during the early seventeenth 
century were themselves largely unrelated to algebraic geometry, for 
the synthetic and analytic streams of thought flowed on more or less 
independently of each other. Mydorge (1585-1647) in 1631 published 
his Prodromus catoptricorum et dioptricorum sive conicorum, a work 
which combined the ancient classical tradition of antiquity with the 
more recent interest in mechanical constructions and uses. (He had 
planned to add several books on the conics as applied to physics, 
especially in the reflection and refraction of light.)  Yet in spite of the 
fact that he was a friend of Descartes and that his work appeared sub­
sequently in several editions (1639, 1641, 1660) , there is little in 
common between coordinate geometry and the Prodromus of My­
dorge.28 

The immediate path to the Cartesian method seems to have been 
prepared more by developments in algebra than by those in geometry. 
In the years 1629 and 1631  (i . e . ,  virtually simultaneously with Ghe­
taldi's De resolutione and Mydorge's Prodromus) there appeared sev­
eral significant works29 in this direction-the Invention nouvelle en 
l'algebre of Girard (1595--1632) ; the Artis analyticae praxis of Harriot 
(1560-1621) ; and the Clavi.s mathematicae of Oughtred ( 1574-1660) . 
All three of these books placed great emphasis upon abbreviations and 
symbols in algebra. The importance of the vowel-consonant conven­
tion of ViMe should not obscure the weakness in his notations for 
operations and relationships. It was just here that the triad of works 
mentioned above made significant advances. The Invention nouvelle 
popularized the index notation for powers, which had come down from 
Chuquet and Bombelli through Stevin. Thus he wrote as @ esgale 
'- - 6© + 20 what would now appear as x3 = -6x+20. The Vi�te 
geometric terminology has here completely disappeared, but one sees 
the continued lack of a symbol for equality. One striking aspect of 
Girard's work is the free use of negative quantities in equations and in 
their solution. For example, he seems to have been the first one to 
solve a quadratic equation with two negative roots. This was im­
portant in his anticipation of the fundamental theorem of algebra, but 

• It may be noted incidently that Mydorge was among the first to use the word 
"parameter" for the quantity 2b1/a which designates the length of the latus rectum of the 
ellipse and hyperbola. 

11 One might add also the NOfJ<J geomelriae claw algebra of Jacques de Billy a few years 
later (Parisiis, 1648). This work, non-analytic in character (even though published half a 
dozen years after Descartes' Giom�rie), shows clearly that the application of algebra to 
geometry does not in itself constitute analytic geometry. 
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it was also of significance in analytic geometry, for Girard was possibly 
the first person to point out the geometric, as well as the algebraic, 
usefulness of negatives. He said, "The negative solution is explained 
in geometry by a retrogression to the less advanced, while the positive 
advances,' ' ao  an idea which seems to have been adumbrated by the 
ancient Babylonians. The importance of signed segments in analytic 
geometry was somewhat dimly recognized by Fermat and Descartes, 
but the idea was developed more particularly during the later seven­
teenth century. 

Harriot's work, published posthumously in 1631 ,  was thought out 
largely before 1604, not long after that of Vi�te, and so it did not 
include a recognition of negative roots. The Artis analyticae praxis 
is significant mainly as a continuation in modified form of the ViMe 
notations, of his theory of equations, and of the emphasis on the 
analytic or algebraic attack on geometrical problems.11 The change 
from the capital letters of Vi�te to the small vowels and consonants of 
Harriot was of minor importance, but the substitution of aaaa, for 
example, for the A quad. quad. of Vi�te was an advance along the 
lines of Girard. Such a form as aaa - 3bba = 2ccc popularized the 
symbol of Recorde for equality and also brought the literal calculus 
close to the Cartesian notation. In fact, it was but a short step from 
the aaa of Harriot through the a3 of Hengone (in the Cursus math­
ematicus of 1634) to the a1 of Descartes. 

Girard and Harriot form but two of the links from Vi�te to Descartes. 
A third, and possibly the most infiuential, link is found in the Clams 
mathematicae of Oughtred. 11 The inspiration for the Clavis clearly 
came from Vi�te, as one sees from the full title : Arithmeticae in 
numeris et speciebus institutio: quae tum logisticae, tum analyticae, 
atque adeo totius mathematicae, quasi clavis est. In it one finds the 
same tendency toward symbolism which was evident in Gir�d and 
Harriot ; and as in Girard's work, minus signs are used both as symbols 

• Albert Girard, Inoenlion n0"'1elle en l'algebre (Amsterdam, 1629), 4th page from the end 
of the section on algebra. 11 F. V. Morley, in an article on "Thomas Harlot," Scienlifie Momhly, v. XIV ( 1922), p.  
60-66, made the unfortunate statement that in this work "There is a well-formed analytical 
geometry, with rectangular coordinates and a recognition of the equivalence of equations 
and curves." Florian Cajori, in "A Revaluation of Harriot's Artis Analyticae Praxis," 
Isis, v. XI ( 1928), p. 316-324, showed that this is not the case. Cajori's conclusion has 
been confirmed by D. E. Smith, History of Mathematics, v .  II, p. 322. See also J.  L. Coolidge, A History of Geometrical Methods ( Oxford, 1940), p. 1 18-1 19. 11 See Henri Bosmans, "La premiue edition de la Clavis malhemalicae d'Oughtred, son 
intluence sur la ·�m�trie' de Descartes," .4.nnales de la Socie" ScientifaJ.ue de Bruxelles, v. 
XXXV ( 19 10-191 1 ), p. 24-78. See also Florian Cajori, William Oughlrild. A Jreal Seoen­
leenlh-Century Teacher of Mathematics ( Chicago and London, 1916). An English transla­
tion by Ougbtred of the first two books of the Conics of Mydorge is found in Jonas Moore, 
.4.rilllmdick in Two Books (London, 1660). 
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of operation and as qualities of numbers. Few of the many new signs 
and abbreviations which Oughtred used have survived, the symbol x 
for multiplication (which he may have borrowed in modified form 
from Recorde, along with the symbol for equality) being an important 
exception. Even his abbreviations A q  and Ac for the second and 
third powers of the unknown (where Viete would have written A 
quadr. and A cubus) were replaced a few years later by the exponential 
notation ; but Oughtred's contribution to the symbolic movement was 
important for its emphasis. He put great stress on the "analytical 
art." By this he meant essentially the same thing that Viete had had 
in mind. The arithmetic of numbers is contrasted with the "much 
more convenient" arithmetica speciosa, "in which by taking the thing 
sought as knowne, we find out that we seeke. "  That is, the analytic 
art is both a notation and an order of presentation. On the one hand, 
the "specious and symbolicall manner" of analitice is contrasted with 
the "verbous expressions" of the "usual synthetical manner. " On 
the other hand, it is an "inventive way" in which "by framing like 
questions problematically, and in a way of Analysis, as if they were 
already done, resolving them into their principles, I sought out reasons 
and means whereby they might be effected. ' '  

Oughtred's key to mathematics involves three parts : arithmetic 
calculation, symbolic algebraic calculation, and applications of algebra 
to geometry. This is essentially the subject-matter of Viete and 
Ghetaldi, from whom Oughtred undoubtedly borrowed. His algebra 
is more formal and further removed from dependence upon geometry 
than that of his predecessors, but it contained the usual construction of 
algebraic formulas by ruler and compasses. This continued to be the 
chief link between algebra and geometry, and it was, in fact, destined 
to be the aim of the opening book of the geometry of Descartes. 

The Clavis mathematicae went through five Latin and two English 
editions in the seventeenth century. It was the most influential 
mathematical work in Great Britain between the time of Na pier and 
that of Wallis. Yet analytic geometry originated in France rather 
than England. In fact, the new geometry had been twice invented­
although not published-before the appearance of the Clavis. The 
extent of the infiuence of Girard, Harriot, and Oughtred upon French 
mathematics is not definitely known, but it is clear that there was 
something missing in the works of these precursors of analytic geom­
etry. As in the case of Viete and Ghetaldi, the lacuna was a con­
sideration of locus problems. Girard tried his hand at a reconstruc­
tion of the Porisms of Euclid, yet he overlooked the opportunity this 
might have afforded of applying algebra to geometry. The ancient 
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and medieval periods had failed to invent coordinate geometry because 
they lacked an algebra in which to express locus problems and the 
graphical representations of the latitude of forms ; the early modern 
applications of algebra to geometry fell short of the invention because 
they failed to include an algebraic study of loci and of functional 
variability. It was probably no accident that the men who first 
framed analytic geometry were also the men who, independently and 
within a period of a dozen years, invented more new curves (or loci) 
than had been discovered in the whole history of mathematics up to 
that time. 

During the early modem centuries mathematical activity had been 
devoted in large measure to improvement in arithmetic and algebraic 
technique and to the recovery of the geometry of the ancients. Here 
and there were to be found some new developments in the theory of 
curves, but the straight line and the circle continued to play the 
fundamental role in science as well as in geometry. Copernicus 
(1473-1543) , for example, seems to have felt that the Ptolemaic as­
tronomy was physically impossible because it could not be reconciled 
with the principle of uniform circular motion. However, it is reported 
that the imaginative Nicholas of Cusa (1401-1464) had noted the 
curve traced out by a point on the rim of a cart wheel as the wheel 
rolled along the road. Although he seems to have been unable to 
determine its nature or properties, this observation constituted a 
significant step in the study of curves, for it seems to represent the 
first modern instance in which a new curve was suggested by natural 
phenomena. The ancients had invented new curves ad hoc to solve 
specific geometrical problems ; they had not discovered these, except 
for the line and the circle, in the world of nature. The new curve of 
Cusanus was followed two centuries later by other curves which were 
disclosed by, and useful in, the study of physical science. 

During the early sixteenth century there were a number of con­
tributions to curve theory. The study of conic sections, revived 
especially by the work of Werner, has ever since occupied a prominent 
place in mathematics and science. At about the same time, Dilrer 
(1471-1528) made significant original additions to the theory of higher 
curves. He introduced the idea of an asymptotic point and illustrated 
it by a curve strongly resembling the logarithmic spiral. This curve, 
later made famous by Jacques Bernoulli, may have been suggested by 
the revived interest at the time in map construction ; it is the plane 
stereographic projection of the loxodrome on the sphere, and the 
latter was studied in 1530 by Nunez (1502-1578) . Diirer revived also 
the ancient kinematic definition of curves, and gave as examples an 
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epicycloid and a new conchoid. Copernicus and Cardan similarly 
noticed the locus (a straight line) generated by a circle rolling on the 
inside of another circle with a radius twice as great-a result which had . 
been known earlier to the Muslim Nasir Eddin. Copernicus knew also / 
that an ellipse is generated by a point rotating in an epicycle the 
center of which moves along a deferent with equal angular speed in 
the opposite sense. 11 However, such work on curves is typical of the 
time in that it is casual and not systematically developed. Bovelles, 
for example, noted the cycloid near the beginning of the century, and 
Galileo referred to it again toward the end, but neither of these men 
made any headway in determining its equation or properties. 

During the first third of the seventeenth century the study of 
geometry beyond the elements centered about the conics, for the 
number of known curves was little greater than it had been two thou­
sand years before. In the decade from 1634 to 1644, however, the 
situation changed completely. This was the result of the development 
both of the latent possibilities in methods of curve definition previously 
adopted and also of new principles which were devised. The cycloid 
had been noted several times before, but when Mersenne (1588-1648) 
in 1634 and Galileo (1564-1642) in 1639 again suggested it as a curve 
worthy of study, its shape and properties were promptly determined 
through the composition of motions. This ancient method was 
supplemented, however, by a powerful new approach-the use of 
analytic geometry. 

11 For bibliographical references and further details, see my note in Isis, v. XXXVIII 
(1947), p. M-06. 



C H A P T E R  V 

Fermat and Descartes 

Mathematics is the a/,phabet in which God wrote the world. 
-BOYLE 

ANALYTIC geometry was the independent invention of two men, 
neither one of whom was a professional mathematician. Pierre 
de Fermat (ca. 1608-1665) was a lawyer with a deep interest in 

the geometrical works of classical antiquity. Ren� Descartes (1596-
1650) was a philosopher who found in mathematics a basis for rational 
thought. Both men began where Viete had left off, but they continued 
in somewhat different directions. Fermat retained the notation of 
Viete, but applied it in a new connection, the study of loci. Descartes 
adopted the aim of Viete-the geometrical construction of the roots of 
algebraic equations--but continued it in conjunction with modern 
algebraic symbolism. The two paths led to the same .fundamental 
principle, but there continued to be a divergence in emphasis, especially 
during the period in which efforts were made to recover as much of 
Greek geometry as possible. Most of the work of Apollonius, excepting 
the first seven books of the Conics, had perished ; but Viete, Snell, and 
Ghetaldi had joined in the effort to reconstruct some of the lost treatises 
on the basis of information supplied by Pappus and other commenta­
tors. Fermat, too, was fascinated by such attempts and composed a 
restitution of the two books of Apollonius on Plane Loci. This led him 
to the Apollonian problem of circles tangent to three circles, and he 
generalized this in a work on spheres tangent to four spheres. These 
early works he wrote in the classical style, with no reference to Viete's 
analytic art. He was, nevertheless, well acquainted with the content 
and method of Viete, Ghetaldi, and other early modem writers. By 
1629 he seems to have hit upon an analytic treatment of maxima and 
minima, and at somewhat the same time he applied the analysis of 
Viete to locus problems, thus inventing the new geometry. One would 
like to know how the transition from the analytic art of Viete to the 
fundamental principles of analytic geometry took place, but Fermat 
gave only some incidental hints of this. 

74 
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Fermat composed only a very short treatise on analytic geometry, 
and this he called Ad Locos Planos et Solidos Isagoge. It is a work of 
about a score of pages devoted to the line, circle, and conic sections. It 
opens with the statement that although the ancients studied loci, they 
must have found these difficult, to judge from the fact that in some 
cases they failed to state the problem in general form. Fermat proposed 
to submit the theory of loci to an analysis which is appropriate to such 
problems and which would, he asserted, open the way for a general 
study of locus problems. Without further introduction, he then state1 
in clear and precise language the fundamental principle of analyti<" 
geometry : 

Whenever in a final equation two unknown quantities are found, we have 
a locus, the extremity of one of these de.scribing a line, straight or curved.1 

This brief sentence represents one of the most significant statements 
in the history of mathematics. It introduces not only analytic geom­
etry, but also the immensely useful idea of an algebraic variable. The 
vowels in Vi�te's terminology previously had represented unknown, but 
nevertheless fixed or determinate, magnitudes. Fermat's point of view 
gave meaning to indeterminate equations in two unknowns--which 
previously had been rejected in geometry-by permitting one of the 
vowels to take on successive line-values, measured along a given axis 
from an initial point, the corresponding lines representing the other 
vowel, as determined by the given equation, being erected as ordinates 
at a given angle to the axis. In ancient Greek works, certain lines as­
sociated with a given curve had played a role equivalent to that of a co­
ordinate system, and the properties of the curve had been expressed in 
terms of these lines by means of rhetorical algebra. The curve came 
first, the lines were then superimposed upon it, and finally the verbal 
description (or algebraic equation) was derived from the geometrical 
properties of the curve. Fermat's genius made it possible to reverse 
this situation. Beginning with an algebraic equation, he showed how 
this equation could be regarded as defining a locus of points- a curv� 
with respect to a given coordinate system. Fermat did not invent co­
ordinates and he was not the first one to use graphical representation. 
Analytic reasoning had long been used in mathematics, and the ap­
plication of algebra to geometry had become a commonplace. How­
ever, there appears to have been no appreciation before the times of 
Fermat and Descartes of the fact that, in general, a given algebraic 

1 See Onvru 41 Fermat (4 vols. and supp.,  Paris, 1891-1922), I, p. 91 ; III, p. 85. The 
Latin of the Isagog• is found in v. I, p, 91-1 10 ; a French translation is given in v. Ill, p. � 
101 .  The Latin is found also in the Varia Opera M<UMmatica of Fermat (Tolosae, 167g). 
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equation in two unknown quantities determines, per se, a unique geo­
metric curve. The recognition of this principle, together with its use as 
a formalized algorithmic procedure, constituted the decisive contribu­
tion of these two men. 

It will be noted that neither Fermat nor Descartes used the term 
"coordinate system" or the idea of two axes. Fermat chose a conveni­
ent line to play the role of the modern x-axis, and a point on it-or 
"extremity, " as Fermat called it-was taken as equivalent to what 
later became the origin. For a given equation in A and E, values of A 
were measured along this line from the fixed point. Corresponding 
values of E were then erected as line-segments (later known as ordi­
nates) making a given fixed angle with the base line. Fermat indicated 
that ordinarily this angle was taken as a right angle. Although in some 
cases a line equivalent to a y-axis appears, the abscissa, or quantity A ,  
is not interpreted as a line drawn from the point in question to such an 
axis of ordinates. Fermat's scheme, like that of Descartes, may be 
characterized as an ordinate-rather than coordinate-geometry. 
Moreover, Fermat restricted his operations to what would now be called 
the first quadrant. It will be seen that in this respect Descartes went 
somewhat further than Fermat. 

The analytic geometry of Fermat is surprisingly systematic for a 
newly discovered subject. It begins with the classic division of loci 
into three typesL-plane, solid, and linear-and then there follows the 
important statement that if the powers of the terms in a given equation 
do not exceed the square, then the locus is plane or solid. This state­
ment, constituting the central theme of the work, is justified by the de­
tailed consideration of cases of equations, taken in order. Fermat be­
gins with a linear equation, in the terminology of Vi�te : 

"D in A aequetur B in E." This is equivalent to dx = by, where d and b are given constants. From the proportion B is to D as A is to E, one 
sees that the locus of the point in question (point I in Fig. 7) is the line 

N Z M 

Fig. 7 

(or, strictly speaking, the ray or half-line) NI. The more general linear 
equation, equivalent to dx + by = c1, is shown similarly to correspond 

• It is surprising that Fermat should have retained this ancient classification in the face 
of the ordering by degrees which his own work so clearly suggested. Descartes was less 
hesitant. 
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to the line MI, where MZ == c1/d - A .  It is to be noted that the 
literal coefficients, as well as the coordinates, are taken as positive, a 
point of view generally persisting throughout the century. Fermat 
stated that all equations of first degree can, without difficulty, be 
shown to represent straight lines ; but presumably he had in mind only 
such forms as are satisfied by posi,tifie values of A and E. 

To show the power of his new method in handling original locus 
problems, Fermat next announced a "tr� belle proposition" which be 
had discovered by its means : 

Given any number of fixed lines, the locus of a point, from which the sum 
of any multiples of the segments drawn at given angles from the point to the 
given lines is constant, is a straight line.1 

No proof is given, but the proposition would follow as a simple corollary 
from the fact that the segments are linear functions of the coordinates 
of the point and from the proposition that every equation of first de­
gree represents a straight line. 

Going on to equations of second degree, Fermat showed that " A in E 
aeq. Z pl." [i e. ,  xy == k1] is an hyperbola. This is obvious from the 
asymptotic property of the curve which was known, probably, from the 
time of the discovery of the conics by Menaechmus. Fermat simply in­
dicated that the equation corresponded to the Greek verbal statement 
of the symptoma,· but it should be noted again that Fermat here went 
from the equation--or the "specific property, " as he sometimes calls 
it-to the curve, whereas his predecessors had proceeded inversely from 
the curve to a basic property or S'J'f'PIO'ma. Fermat added that any 
equation of the form d" + xy = rx + sy can easily be reduced to the 
previous case of the hyperbola. The reduction is effected by substitu­
tions which are equivalent to translations of axes, but the process is not 
formalized. 

Fermat next considered equations involving squares of the unknown 
quantities, beginning with x1 == y1• This, and other quadratic equa­
tions homogeneous in x and y-such as those in which either A 1 or the 
quantity A 1 + AE is to E1 in a given ratio-he interprets as a single 
straight line (or rather ray) , for he did not consider negative coordi­
nates. 

Fermat then demonstrated that x1 = dy and y1 == th (and the more 
general forms b1 :1: x1 = dy) are parabolas. After showing that x1 + y1 
+ 2dx + 2ry = b1 is a circle, Fermat added that on the basis of this fact 
he had reconstructed all the propositions of the second book of Apol­
lonius on P'lane Loci. This observation would tend to confirm the 

1 The language of the original, here and in some other connections, has been considerably 
modified to correspond to current usage. 



78 HISTORY OF ANALYTIC GEOMETRY 

presumption that Fermat was led to analytic geometry through the 
study of loci rather than through the geometric solution of equations 
which occupied so much of the attention, not only of his predecessors, 
but also of his contemporaries, including Descartes. 

After demonstrating that b1 - x2 = ky1 is an ellipse and b1 + x1 = ky1 
an hyperbola (for which he gave both branches) , Fermat considered 
"the most difficult of all equations [of second degree ) "-one involving 
x2, y1, xy, and other terms. By the equivalent of a rotation of axes he 
converted b1 - 2x1 = 2xy + y2 to the form of the ellipse previously 
given. Beyond this one reads only that any equation in x1, y1, xy, and 
other terms can be treated in an analogous manner "by means of a tri­
angle known as to type"-that is, by transformations involving trig­
onometry. 

As the "crowning point" of his treatise, Fermat then considered the 
following proposition : 

Given any number of fixed lines, the locus of a point, from which the sum 
of the squares of the segments drawn at given angles from the point to the 
lines is constant, is a solid locus. 

The truth of this is made evident from the fact that, "according to the 
rules of the art, " one is led in every instance to an equation of second 
degree. Such a problem illustrates well the power of analytic geome­
try as a systematic approach to 19(i. Had he discovered this method 
prior to his restitution of the Plane Loci of Apollonius, Fermat de­
clared, the constructions of the locus theorems would have been 
rendered much more elegant. 

Fermat's Introduction to Loci was followed by an appendix on Tlie 
Solution of Solid Problems by Means of Loci. This represents a con­
tinuation of the work of Menaechmus, Archimedes, Omar Khayyam, 
and Vi�te on the geometric solution of cubic and biquadratic equations. 
The advance made by his treati�e is in the fact that he was able to in­
terpret questions of algebraic elimination directly in terms of inter­
secting loci, making use of his new principle that any second degree 
equation in two unknowns is a plane or solid locus. Systematic alge­
braic operations now replaced ingenious geometrical constructions. 
As Fermat pointed out, the involved methods of Vi�te are not needed. 
He boasted that "biquadratics are resolved with the same elegance, the 
same ease, and the same rapidity as cubics, and it is not possible, I be­
lieve, to imagine a more elegant solution. "  To make good his claim, he 
applied the method to show that all cubic and quartic problems can be 
constructed by means of a parabola and a circle. As an example, the 
equation x4 - .z1 x = d4 [or Aqq.-Zs. in A aequetur Dpp. ,  as Fermat 
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wrote it in the terminology of Vi�te ] is solved through the intersection 

of the parabola V2 by = x1 - b2 and the circle 2b2x1 + 2b'y1 = s1x + 
b' + d'. The method is easily extended to other cases. Fermat adds 
the significant remark at the close of the appendix, "He who will pay 
attention to the preceding will not attempt to reduce to plane prob­
lems . . . the trisection of the angle and others like it. "  The impossi­
bility of this ancient problem was becoming apparent not through syn­
thetic geometry, but from the analytic study of loci. 

There are three broad general approaches to the conics : as sections 
of a cone, as planimetric loci, and as graphs of equations of second de­
gree. The I sagoge of Fermat constituted an excellent introduction to 
the analytic geometry of the conic sections in the third sense. Why did 
he not carry the work further to include curves of higher degree ? 
Fermat was fully aware of the unlimited possibilities of the subject for 
the invention of new curves, for in the opening paragraphs of the work 
he specifically says that "the species of curves are indefinite in number : 
circle, parabola, hyperbola, ellipse, etc. " Later he added that he was 
omitting the consideration of linear loci because the knowledge of these 
"is very easily deduced, by means of reductions, from the study of plane 
and solid loci. "  Does this mean that Fermat believed that equations 
of higher degree always could be reduced to those of lower degree, and 
hence solved by means of conics ? If so, his point of view was diamet­
rically opposed to that of Descartes, and also to his own later re­
flections. One respect in which the Geometrie of Descartes stands in 
sharp contrast to the Isagoge of Fermat is in the attention paid to the 
hierarchy of higher plane curves. The great contribution of Fermat to 
the disclosure of new curves is not found in his work on loci, but in the 
applications of analytic methods to infinitesimal geometry, in which he 
very nearly anticipated the invention of the calculus by Newton and 
Leibniz. 

The infinitesimal methods of Archimedes had survived the medieval 
interlude better, perhaps, than had the geometry of Apollonius, and 
translations of Archimedean mensurational treatises flourished during 
the early modern period. The impact of algebra here was somewhat 
similar to that on elementary geometry, and attempts were made to 
arithmetize the method of exhaustion. This movement was ably rep­
resented by Stevin, among others, but it faced several serious difficul­
ties. One of these was the lack of the limit concept in arithmetic and 
algebra ; another was the want of an analytic theory of curves. The 
curves known to Kepler and Cavalieri, two of the most ardent admirers 
and continuators of the geometry of Archimedes, were virtually the 
same as those known to the great Syracusan. The number of curves 
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was too small to encourage the search for algorithmic rules which could 
be applied in all cases ; and, moreover, the known curves were not such 
as lent themselves readily to the devices which later constituted the 
calculus. Further developments in infinitesimal geometry clearly 
waited upon the rise of analytic geometry, and in this connection 
Fermat supplied the key. Not only was he one of the inventors of co­
ordinate geometry, but he led in the application of the new methods to 
problems of slope and curvilinear mensuration. He introduced the 
curves upon which the methods of the calculus were built, and he sup­
plied the method of tangents which served as the forerunner of dif­
ferentiation. This work is found in his Methodus Disquirendam Maxi­
mam et Minimam, 4 a treatise composed a few years after the Isagoge. 

The Method of Maxima and Minima is significant in the development 
of analytic geometry for the introduction of the curves y = x" and 
y = x-•, the so-called higher parabolas and hyperbolas. Here, too, 
Fermat adopted the cumbersome terminology of Vi�te and used pro­
portions rather than the newer forms of equation ; but ideas are more 
important than notations, as one sees from his work. He retained the 
vowel A to represent abscissae, but omitted the use of a letter repre­
senting ordinates. This necessitated an awkward semianalytic form, 
for the proportions defining a curve, which is in contrast to that used 
in the Introduction to Loci. The reason is perhaps to be found in the 
fact that his method of tangents and maxima and minima called for a 
variable increment equivalent to the modern Ax. Following his previ­
ous interpretation of A and E as algebraic variables, Fermat retained A 
for the independent variable and used E for the increment in A .  His 
procedure for maxima and minima consisted essentially of forming, for 
a given curve or function, f(A ) ,  the difference quotient Lf (A + E) -! 
(A) ]/ E and then finding the limit of this as E tends toward zero. 
Neither the functional notation and idea nor the limit concept was 
specifically used, but the technique was virtually the same. This 
method was of signal importance, for it represented the earliest of the 
analytically formulated algorithmic rules which in the end converted 
infinitesimal geometry into infinitesimal analysis. Fermat found also, 
by analytic means, the quadratures of the parabolas and hyperbolas of 
higher order ; ·but he failed to notice the inverse character of area and 
tangent problems, and so he missed, by a very narrow margin, the in­
vention of the calculus. He is remembered, nevertheless, for the in­
troduction into analytic and infinitesimal geometry of the family of 
curves y = x '"'", since known by his name--the "parabolas and hyper­
bolas of Fermat. "  

1 See Oeuwu tle Fermat, v .  I ,  p. 133-179 : v .  III , p .  121-156. 
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Fermat's works contain references to numerous other curves, for he 
realized that in general every new equation in two unknowns repre­
sented a new curve. Nevertheless, one does not find complete graphs of 
these, for the equations are understood to indicate points with positive 
coordinates. Moreover, curves frequently were proposed solely to 
illustrate methods of the calculus, the interest being more in tangents 
and quadratures than in the shape of the curve itself. For many of 
these not even a partial sketch is given. For example, in a work on 
quadratures Fermat proposed, 6 along with many others for which dia­
grams are not given , the curve determined by the following equation : 

Be. aequalis Aq. in E + Bq. in E. 

This is the curve b1 = xty + bty which later became known as the 
"'witch of Agnesi, "  although it reappeared several times in the interval 
between Fermat and Agnesi. Unfortunately, Fermat here was con­
cerned solely with the question of area and so he showed no interest in 
the shape of the curve or in its properties as a locus. 

There are other aspects of the work of Fermat which bear on analytic 
geometry, but they had less significance in its historical development 
than did those previously mentioned. A short treatise, Isagoge ad Locos 
ad Superficiem, carried the problem of loci to three dimensions, but it 
did not make use of the analytic method. The surfaces in question 
were those known in antiquity-the plane, sphere, spheroid, paraboloid, 
two-sheeted hyperboloid of revolution, cone, and (circular) cylinder. 
The single-sheeted hyperboloid of revolution, known probably to 
Cavalieri (or possibly earlier) , is not included. The loci are not given by 
equations, and a coordinate system was not used. In fact, the results 
are not in all cases correctly stated.• The rise of solid analytic geom­
etry did not take place until about a century later, even though 
Fermat himself was aware of the fundamental principle. In a half­
page work entitled Novus Secunda.rum et Ulterioris Ordinis Radicum in 
Analyticis Usus, he repeated and extended his discovery of 1629 : 

There are certain problems which involve only one unknown, and which 
can be called ddmninate, to distinguish them from the problems of loci. 
There are certain others which involve two unknowns and which can never 
be reduced to a single one ; these are the problems of loci. In the first 
problems we seek a unique point, in the latter a curve. But if the proposed 
problem involves three unknowns, one has to find, to satisfy the question, 
not only a point or a curve, but an entire surface. In this way surface loci 
arise, etc.' 
• Onwu, v. I, p. 279 ; v. III, p. 233. 
• See Coolidge, Hislory of G«nndri& Mellwds, p. 125. 
7 Onwes, v. I, p. 186-187 ;  v. III, p. 161-162. 
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What a pity it is that Fermat did not extend his analytic study to 
problems in the latter categories I The whole history of analytic geom­
etry might have been different, for developments in three-space later 
played an important role in revising the Cartesian geometry of two 
dimensions ; and the analytic geometry of more than three dimensions, 
at which Fermat seems to hint, was not developed until two centuries 
later. 

The contributions of Fermat to analytic geometry were not pub­
lished during his lifetime, and hence it is difficult to determine the ex­
tent of their influence.• His work on loci, as well as that on maxima 
and minima, was known to the Parisian circle of mathematicians even 
before the appearance of the GlomAtrie of Descartes. The Marima and 
Minima created quite a deep impression, especially as applied to the 
determination of tangents ; but the Introduction to Loci seems to have 
been overshadowed by the work of Descartes. Portions of the Marima 
and Minima promptly were included in books published by other 
mathematicians, but the Isagoge appeared in print for the first time in 
the Opera Varia of Fermat in 1679, fourteen years after the death of its 
author, forty-two years after the publication of the geometry of Des­
cartes, and a half century after the treatise had been composed. By this 
time developments in the field had far outstripped the simple steps taken 
by Fermat, and the publication was largely of historical interest. Even 
the notation of the original was abandoned for that of Descartes, so thor­
oughly had Cartesian influence dominated the age. Unaware of the 
early date of composition, readers of the lsagoge missed its significance 
as evidence of the independent invention by Fermat of analytic geom­
etry. The subject continued to be ascribed solely to Descartes, and it 
remained for later historical research to set forth the rightful claims of 
his rival. That the subject still is known as Cartesian geometry is un­
fortunate in the implications of the uniqueness of its invention, but the 
title does justice to the fact that it was predominantly under the in­
fluence of Descartes that the new branch of mathematics took root. 

The origin of analytic geometry in the mind of Descartes is indicated 
by a letter which he wrote to Isaac Beekmaon in October, 1628. Here 
he boasted that in the previous nine years he had made such strides in 
arithmetic and geometry that he had no more to wish for ; and he sub­
stantiated the claim by giving the rule for constructing all cubics and 
quartics by means of a parabola. This effort to give geometric meaning 
to the solution of algebraic equations would make his development of 

• The account by AbM Louis Genty, L'lnjlfleflU de Ferma# svr ion SW&le (Orleans and 
Paris, 1784), seems to overweigh this. 
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the subject a direct continuation of the work of Vi�te, and the further 
one traces his steps the more this view is confirmed. The geometric 
construction of the roots of determinate algebraic equations had been 
one of the chief concerns of Vi�te and his hnmediate successors, and 
Descartes made it the cornerstone of his own work. Like Fermat, he ap­
parently had discovered that the interrelationship of algebra and geom­
etry takes on added meaning through the use of coordinates in the 
study of equations in two unknown quantities, but the emphasis of th� . .  
two men differed. Fermat had placed first the algebraic study of loci, · 
but Descartes was concerned primarily with the construction of prob­
lems in geometry through the geometric solution of equations. The 
procedure was predominantly algebraic, but the significance was 
purely geometric. 1 The aim of Descartes was that of Vi�te and the 
geometers of classical antiquity ; the method was essentially novel in 
that it made use of the graphical representation of indeterminate equa­
tions. 

The power of the new technique was made apparent to Descartes 
when in 1631-1632 his attention was called by a classicist to the prob­
lem of Pappus on three and four lines. 10 Descartes indicated that he 
found the solution to this through calculation, and his success here, 
where he mistakenly thought the ancients had failed, made him aware 
of the importance-the universality-of his work. He became the 
prophet of the new geometry partly because in his own self-esteem he 
held a low opinion of the ancients which contrasted with the admiration 
which Fermat modestly felt toward the classical Greek geometers. 
Descartes took no part in the contemporary movement to restore the 
works of Apollonius.  Instead he wrote and published a work which led 
to the virtual abandonment of synthetic geometry for almost two cen­
turies. This important treatise, La Glomltrie, appeared in 1637 as an 
appendix to the longer and better-known philosophical work, Discours 
de la Mlthode pour Bien Conduire Sa Raison, et Chercher la V mu dans · 

ks Sciences. The whole was published without the author's name, al­
though the authorship was generally known. 

Cartesian geometry now is synonymous with analytic geometry, but 
the fundamental purpose of Descartes is far removed from that of 
modem textbooks. The theme of La GlomAtrie is set by the opening 
sentence : "Any problem in geometry can easily be reduced to such ' 
terms that a knowledge of the lengths of certain lines is sufficient for its 

• Cf. Boyce GibBOD, "La Geom.Etrie de Descartes au Point de Vue de Sa MEthode," Re­
._. 4e Mha/illysiqfu el 4e Mora.le, v. IV, ( 1896), p. 386-398. 

11 Gaston Milhaud, in Duca.rtu Sa.mnt (Paris, 1921 ), would place the invention of analytic 
geometry in 1631, the date on which he attacked this problem. Cf. also, J. ]. Milne, "Note 
on Cartesian Geometry," Matlema.tical Ga.reUe, v. XIV ( 1928-1929), p. 413-414. 
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_construction. ' '  11 Descartes in spite of his iconoclastic attitude, had not 
"transcended the classical emphasis upon constructibility. He first 
proceeds to do what mathematicians from Vi�te to Oughtred had done 
-furnish a geometrical basis for algebra. The five arithmetic opera­
tions are shown to correspond to simple constructions with straight­
edge and compasses, thus justifying the introduction of arithmetical 
terms into geometry. In this connection Descartes introduced his ex­
ponential notation for powers. This had been adumbrated in various 
forms, but it was through the Gl°""trie that it first secured a firm foot­
hold. In fact, one may say that this book is the earliest mathematical 
text that a present-day student of algebra can follow without encoun­
tering difficulties in notation. It represents the culmination of a cen­
tury of development in symbolic algebra, and virtually the only one of 
the symbols used by Descartes which has since become archaic is that 
for equality. The substitution of = for ::o is a matter of convention 
only and has no significance in the development of ideas. On the other 
hand, the contribution of Descartes in associating with geometry a 
purely symbolic algebra marks a decisive advance over earlier work, for 
it encouraged ·the development of algebraic techniques independently 
of geometric visualization. The unknown quantities in the algebra of 
Descartes, like those used by Fermat, were variables. They continued 
to represent lines, rather than numbers, but the author discouraged the 
interpretation of powers of these in terms of geometric dimensionality. 
He emphasized that by powers, such as a1 or b1, he means "only simple 
lines"-not areas or volumes, as the notation and names might imply. 
This is a very convenient, but by no means essential, point of view for 
analytic geometry. It obviates the necessity of maintaining, through 
the introduction of suitable powers for the parameters or coefficients, an 
apparent homogeneity in a given equation or expression. It permits 
one to write with impunity such an expression as a1b1 - b. Descartes 
cautiously adds, nevertheless, that if one wishes to extract the cube 
root of this, one "must consider the quantity a1b1  divided once by 
unity, and the quantity b multiplied twice by unity. ' '  If unity does not 
enter in an equation, the lines should be of the same dimension. That 
is, Descartes merely substituted homogeneity in thought for homogene­
ity in form. 11 This afforded greater operational freedom to algebraic 
technique, and it facilitated the implicit association of the real number 

n See TM Geometr, of !UM Descartes (transl. by D. B. Smith and M. L. Latham, Chic:aro 
and London, 1925), p. 2. 11 Coolidge, "The origin of Analytic Geometry," Osiris, v. I ( 1936), p.  242, evidently over­
looked this passage when he wrote "He [Descartes ] made an enormous step in advance by 
arithmetizing his geometry. The real objects with which he dealt were numbers. He freed 
himself completely from the superstition of homogeneity." Cf. Coolidge, Hislor1 of 
Geometric Methods, p. 126. 
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system with the points on a line ; but it did not seriously modify the 
early development of analytic geometry. Fermat saw that questions of 
notation were relatively unimportant as compared with ideas, and for 
this reason he opposed the changes by Descartes : 

I designate the unknown quantities by vowels, as did Vi�te, because I do 
not see why Descartes made a change in something which is without impor­
tance and which is purely a matter of convention. 1• 

But Fermat underestimated the practical advantage to be gained in 
mechanical facility by abandoning the homogeneous manner of expres­
sion and by making algebra thoroughly symbolic. Successors of the 
two men generally retained the formal homogeneity of Fermat, for an­
other century, but otherwise they followed the notations of Descartes. 

Returning to the theme of the opening paragraph, Descartes gives 
directions for solving a problem in geometry. One first supposes the 
solution effected, giving names to the lines, both known and unknown. 
Then, making no distinction between known and unknown lines, one 
proceeds until one finds it possible to express a single quantity in two 
ways-that is, until one obtains a single determinate equation. This 
statement differs only in unessentials from the definitions of the analy­
tic art given by Vi�te and Oughtred. It characterizes an analytic ap­
proach to geometry, but it does not represent coordinate geometry in 
the usual sense. Continuing further, Descartes states (without proof) 
that if the problem can be solved by ordinary geometry-that is, by 
straight-edge and compasses-the final equation will be a quadratic in 
one unknown, and "this root or unknown line can easily be found." 
If  the equation is s1 = as + b1, for example, Descartes constructs the 
required line s as follows : Draw a line segment LM of length b 

Fig. 8 

._._::::::;._ __ .;::.. ,, L 
(Fig. 8) ; at L erect segment NL == a/2 perpendicular to LM,· with 
center N construct a circle of radius 1 / ,p,; and draw the line through 
M and N intersecting the circle at 0 and P. Then s = OM is the line 
desired. Descartes ignored the root PM of the equation, because this 
is "false" [i e. ,  negative ) .  Such constructions, the goal of Descartes' 
geometry, now are a standard part, not of analytic geometry, but of the 
theory of equations. They illustrate the fact that his aim was two 

11 Oetmes tle Fermat, v. I, p. 120 ; v. Ill, p. 111 .  
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thousand years old-the search for geometric constructions of classical 
problems. 

Book I of La Geometrie is on "Problems, the construction of which 
requires only straight lines and circles"-the old Platonic limitation. 
It is in Book II that one finds the more modern aspect of the work, 
"The nature of curved lines" ; but Descartes expressly indicates that 
this book was written as a necessary preliminary to the third. And 
Book Ill, the last, is on "The construction of solid and supersolid prob­
lems." It is paradoxical to observe that it was largely through Des­
cartes that the world learned that equations in two unknown quanti­
ties represent plane curves, and yet neither he nor his immediate suc­
cessors showed much interest in this basic principle. Coordinates were 
not used by Descartes as they were by Oresme--to represent the prop­
erties of figures or functions. They were only an aid in the solution of 
problems of geometry. 14 His concern was not with the locus of points 
satisfying a given equation, but in the constructibility of these points. 
There is in the whole of La Geometrie not a single new curve plotted 
directly from its equation. So little interest did Descartes take in this 
problem that he never fully understood the significance of negative co­
ordinates. He knew in a general sort of way that negative lines are 
directed in a sense opposite to that taken as positive ; but he did not 
realize the applicability of the idea as a general principle in connection 
with coordinate systems. He occasionally made use of negative ordi­
nates but not of negative abscissae. Montucla has exaggerated the part 
Descartes played in the geometrical interpretation of negative quanti­
ties. The folium, proposed in 1638, was truly a leaf, for Descartes re­
garded it as defined for the first quadrant only. Moreover, he pro­
posed it not as an illustration of his own geometry but as a challenge to 

Fig. 9A Fig. 9B 

the method of maxima and minima and tangents of Fermat. At the 
time of his first reference to the curve, he was so little interested in it 
from the analytic point of view that he defined it synthetically as the 
curve BDN (Fig. 9A) such that the sum of the cubes of BC and CD is 
equal to the parallelepiped on BC, CD, and P; and he gave an incorrect 
rough sketch . Half a year later he graphed it more carefully as a leaf ; 1" 

H Loria, "Descartes G&>m�tre," &wks sar Ducarlu (Paris, 1937), p. 1 1�220. 
11 See Onvru (ed. by Adam and Tannery, 12 vols. and supp.,  Paris, 1897-1913), v. I, p. 

490 ; v. II, p. 274. Cf. Loria, "Da Descartes e Fermat a Monge e Lagrange," p. 790-791.  
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(Fig. 9B) and haH a dozen years after his death Fermat continued to 
draw the folium as Descartes had visualized it. 

Descartes had been much impressed by the power of his method in 
dealing with the three- and four-line locus of Pappus, and this problem, 
running like a thread of Ariadne through the three books, well illus­
trates where he placed the emphasis. It is in connection with this 
problem that, about midway in Book I, coordinates enter in La Geo­
metrie, and hence it is here that Cartesian geometry, in the strict sense 
of the word, appears. However, the essential principle that indeter­
minate equations in two unknowns correspond to loci is first clearly 
enunciated later in Book II. 

For the solution of any one of these problems of loci is nothing more than 
the finding of. a point for whose complete determination one condition is 
wanting. . . . In every such case an equation can be obtained containing two 
unknown quantities.1• 

Note here (as also in Fermat) the emphasis upon two unknowns for a 
plane locus, in contrast to the Apollonian use of several unknowns {all 
but one of which, however, were in reality dependent variables) . 

The problem of Pappus, in somewhat simplified form, is essentially 
this :  Given 2n (or 2n + 1) lines, find the locus of a point which moves 
so that the product of its distances to n of the lines is equal (or propor­
tional) to the product of the distances from the other n(or n + 1) lines. 
For three or four lines Descartes knew (as did also the ancients) that the 
locus is a conic section. For five lines the locus is a cubic curve, and 
one should have expected Descartes to consider the variety of shapes 
these curves afford. However, the question which was of immediate 
concern to him was not the shape of a given locus but its constructibil­
ity. For five lines, not all parallel, he remarked triumphantly that the 
locus is elementary in the sense that, given a value for one of the co-

Fig. 10 

, 
If 

a. o  a. c 

ordinates of a point on the curve, the line representing the other co­
ordinate is constructible by ruler and compasses alone. If, for ex­
ample, four of the lines are parallel and equal distances a apart and the 
fifth is perpendicular to the others (Fig. 10) , and the constant of pro­
portionality is taken as a, then the locus is a cubic which Newton called 

u Book II, p. 334-335. 
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the Cartesian parabola (or trident)-x1 - 2ax1 - alx + 2a1 = axy. 
This curve reappears frequently in La Geometrie, but Descartes at no 
point gives a complete sketch of it. His triple interest in the curve was 
limited to the following three aspects : (1) deriving its equation as that 
of a Pappus locus ; (2) showing its constructibility by kinematic means ; 
(3) using it in tum to construct the roots of equations of higher de­
grees. Descartes considers the Pappus problem or "question" con­
structible in the above case because one can assign successive values 
for the line x and in each case one is able to construct the corresponding 
value for the line y. Whereas Vi�te had been interested in the con­
structibility of determinate problems, Descartes went further and 
applied the criteria to loci as well. It was here that he found it neces­
sary to use a coordinate system. One may say that, in a general sense, 
the invention of analytic geometry by Descartes consisted in the ex­
tension of the analytic art of Vi�te to the construction of indeterminate 
equations, just as in the case of Fermat it was the study of loci, by the 
analytic art, which led to the same result. But Descartes continued to 
regard the construction of determinate equations as bis ultimate pur­
pose. 

The plotting of curves in the now customary manner was not a part 
of Cartesian analytic geometry. Even the Pappus loci are not sketched. 
Descartes knew that an equation in two unknowns determines a curve, 
but oddly enough, he seems not to have regarded such an equation as an 
adequate definition of the curve, and felt constrained to exhibit an 
actual mechanical construction in each case. It has been conjectured 
that the ancient Greeks stressed constructions because these served as 
existence theorems. One is tempted to apply this idea to Descartes 
and say that he doubted the existence of a curve corresponding to an 
equation unless he could supply a kinematic construction for it. Like 
the ancient Greeks, he felt that a locus had to be legitimized by associat­
ing it geometrically or kinematically with another known curve. Per­
haps it was the traditionally axiomatic form of geometry that led him 
in this direction. Vi�te had suggested adding new postulates which 
would make possible the systematic construction of the roots of cubic 
and biquadratic equations. Descartes wished to systematize geometry 
on a higher level so that there should be no limitation on the degree or 
dimensionality of a problem. He might have done this simply by ad­
mitting into geometry all curves given by algebraic equations, but be 
preferred a kinematic basis. Descartes would therefore add to Euclid's 
postulates one further assumption : ' 'Two or more curves can be moved 
one upon the other, determining by their intersection other curves. ' ' 17 

1' Book II, p. 316. 
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This represents, of course, a clear-cut break with the Platonic limitation 
of instruments to compasses and straight-edge, and Descartes makes 
free use of various linkages and mechanical devices. The concept of 
movement plays a far more prominent role in his work than in that of 
Fermat. In a sense Descartes had not freed himself from the ancient 
kinematic definition of curves, and he would therefore admit to geom­
etry only such curves as "can be conceived of as described by a con­
tinuous motion or by several successive motions, each motion being 
completely determined by those which precede ; for in this way an 
exact knowledge of the magnitude of each is always obtainable. ' '  18 To 
make clear the distinction between Descartes' idea of constructing a 
curve and the modern attitude toward the ploUing of a curve, the fol­
lowing passage is significant : 

It is worthy of note that there is a great difference between this method, 
in which the curve is traced by finding several points upon it, and that used 
for the spiral and similar [i. e., mechanical or transcendental] curves. In 
the latter case one does not find indifferently all of the points of the curve 
sought, but only those which can be determined by means of a more ele­
mentary construction. . . .  [The former] method of tracing a curve by de­
termining a number of its points taken at random applies only to curves that 
can be generated by a regular and continuous motion. 11 

Among the "regular and continuous motions" which are admissible in 
geometry, Descartes would include the "gardner's construction" of the 
ellipse and other similar loci determined kinematically by the lengths 
of strings or by moving straight lines. The ovals of Descartes, for ex­
ample, are handled exclusively as loci, and the equations of these curves 
are not given in analytic form. However, he would not include loci 
based upon the lengths of curved lines for the reason that he believed 
rectifications "cannot be discovered by human minds." Had he lived 
a decade longer than he did, he would have had to revise this opinion! 

The designation "Cartesian curve" still is applied to the members of 
a family used by Descartes as an illustration of the way in which one 

0 

Fig. 1 1  

builds up the "family tree" of an algebraic curve. Let OM be a curve 
previously constructed, let 0 be a point on it and Q a point not on it, 

JI Ibid. 
II Book ( (. p, 339-34(}, 
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both fixed with respect to the curve (Fig. 1 1 ) .  Let S be a fixed point on 
the line OQ and let T be a fixed point on the line perpendicular to OQ at 
S. Let P be a point of intersection of the curve with the line TQ. Then 
as the curve (and hence also Q) moves with a rigid motion of translation 
in a direction parallel to OS, the point P will describe a new curve PT 
which may be regarded as a successor of the original curve. If the 
given curve is a straight line, the new curve will be an hyperbola ; if it is 
a parabola, the derived curve will be the Cartesian parabola [or tri­
dent ] referred to above. This kinematic hierarchy of curves Descartes 
transformed into an algebraic classification through his principle that 
"all points of a geometric curve [as defined by motions ] must have a 
definite relation expressed by an equation." 20 That is, he found the 
equation of the locus of the point P above as follows : Let OQ = a and 
ST = b, and let the curve be given by s = f(x} , where s = OR and 
x = PR. Then if RS = y, we have 

.z - a  s - a + y  -x- = 
b · 

The equation of the locus of P is therefore 

f(x) = xy + ab - ax. b - x  
If s = f(x) is linear, the locus of P is of second degree. If the curve 
s == f(x) is of second degree, the locus of P is of third or fourth degree. 
If s = f(x) is a cubic or quartic curve, Descartes said that the locus of P 

. should be of fifth or sixth degree ; "and so on to infinity. ' ' 11 In this 
manner a hierarchy by pairs of degrees was established for the new loci. 
Fermat, however, pointed out21 that there were inconsistencies here, for 
if the sliding curve is y1 = b1x, then the curve generated is of fourth de� 

gree--i. e. ,  it belongs not to the next, but to the same, pair of degrees. 
Descartes' classification into orders of two degrees each nevertheless 

was generally adopted throughout the century. It was based on the 
fact that the algebraic solution of the quartic leads to a resolvent cubic 
from which Descartes rashly concluded-incorrectly, as Hudde later 
showed ta_that an equation of degree 2n would in all cases lead to a re­
solvent of degree 2n - 1 .  From Descartes' statements in La Glo­
m4trie, one sees that his classification was suggested also by other con­
siderations. �t arose naturally in the Cartesian curves and in the 

• Book II, p. 319. 1 1 Book II, p. 319-323. 11 OnweJ, v. I, p. 121-123 ; v. III, p. 1 12-1 13. 
II D1 rt:tluaitml �ionum, Book I, p. 488-489. 
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problem of Pappus, and it was confirmed by the goal of his work-the 
geometrical construction of the roots of polynomial equations through 
the use of intersecting curves. Cubics and quartics are both solvable by 
conics ; and quintics and sextics are solvable by cubics. Descartes adds 
the phrase, "and simUarly for others, " H  the definite implication being 
that cubics do not suffice for equations beyond sixth degree, whereas in 
reality they can be used for degrees up to nine. To conform to his 
ideas of constructibility Descartes might better have grouped curves by 
orders with degrees corresponding to the perfect squares rather than to 
the even numbers. 

Having indicated his classification of curves, Descartes returned to 
the l>roblem of Pappus. For three or four lines the equation which 
serves to determine [or construct ] the points of the locus is of second 
degree ; for not more than eight lines it is at most a biquadratic ; for 
not more than twelve lines it is of sixth degree or lower ; "and so on for 
other cases." Descartes now examined in some detail the locus for 
three or four lines, and his treatment is equivalent to a discussion of the 
general equation of second degree. Descartes took four lines in general 
position, EABG, TG, ES, and AR (Fig. 12) . From a variable point C 

Fig. 12 

D 
on the locus required, he di-ew lines CB, CH, CF, and CD to the given 
lines at the appropriate given angle. Taking AB as x and BC as y, he 
then expressed the distances CD, CF, and CH as linear expressions in 
x and y with coefficients determined by the fixed distances and by the 
fixed angles between the lines, both variable and fixed. In arriving at 
these expressions, Descartes used ratios equivalent to the trigonometric 
law of sines. Setting BC · CF = CD · CH and introducing some ab­
breviations, Descartes arrived• at an equation of the form y1 = ay ­
bxy + ex - dx1• This is the general equation of a conic passing through 
the origin of coordinates, but under the view of Descartes, the literal 
coefficients presumably were to be taken as positive. 

Solving for y, one obtains the f9rm 2y = a - bx + VKx1 + lx + a1, 
where K = b1 - 4d and l = 4c - 2ab. Descartes uses only a single 

H Book Ill, p. 389. 
11 See Book II, pp. 325f. The notation of Descartes has been !IODlewbat modified for pur­

poses of exposition. 
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sign before the radical, but he mentions that for various positions of the 
given lines, some of the terms may vanish or be reversed in sign. He 
now shows how, for arbitrarily selected points on the line of abscissae, 
the corresponding ordinates of the locus are to be constructed with 
straight-edge and compasses. Incidentally, however, he indicated the 
nature of the locus for the various cases . li, for example, the expression 
under the radical sign vanishes, or is a perfect square, the locus will be a 
line. This is the only reference in La Glomltrie to the fact that the 
equation of a straight line is of first degree. H the coefficient of x1 is 
zero, the locus is a parabola ; if it is "preceded by a plus sign, "  it is a 
hyperbola ; if it is "preceded by a minus sign, "  it is an ellipse-except 
for the special case b = 0, d = 1 ,  when, for rectangular axes, the curve 
is a circle. These conditions are equivalent to a recognition of what is 
now known as the "characteristic" of the equation of a conic. In this 
respect the work of Descartes is more general than that of Fermat, but 
it is less well adapted as an introduction to analytic geometry because 
of the omission of separate treatment of the simpler special cases of the 
straight line and conic sections. The equations x2 = y• and ry = k2, 
for example, had been given by Fermat, but

" 
they are missing in the 

geometry of Descartes for the reason that they did not arise specifi­
cally in his study of the problem of Pappus. Possibly it never oc­
curred to him to represent a line by an equation for the reason that 
equations served him as a means of referring a curve to a straight line­
"all the points of a geometric curve have the same exact measure or 
ratio to all the points of a straight line." Coordinates themselves were 
straight-line segments. Perhaps the omission of the equation of the 
straight line was the result of his emphasis upon generality, for he justi­
fied the omission of plane loci by the fact that ' 'they are included under 
solid loci. ' '  16 Descartes likewise was familiar with the general idea of 
the transformation of coordinates, n which Fermat had used ; but in 
this connection the Geometry includes only the remark that by a proper 
choice of origin and axis a simplest form of equation is obtained, and 
that the type-that is, the degree-of the equation will be the same for 
any other choice. Because of such elliptic remarks, the successors of 

18 Cf. Book II, p. 319. It should be remarked here that Descartes tacitly makes use of the 
Cantor-Dedekind axiom, i. e., he assumes that a one-to-one correspondence can be estab­
lished between the points on a line and the real numbers, and likewise that a perfect corre­
spondence can be set up between the points of a plane and pairs of line-segments (or real 
numbers. ) This tacit assumption was not a new idea at the time, for it had been broached 
over 2000 years earlier by the Pythagoreans who sought to associate number with all geo­
metric magnitudes. 

,. l - s 
" In 1638 Descartes proposed to Roberval the curve equivalent to ii - l + as' hoping to 

be able to laugh at him for not recognizing it as a foliwn rotated through an angle of 40°. 
See Loria, Karwn, v. 1 ,  p. 52-09. 
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Descartes found his work difficult to understand, and this fact later in­
vited men to compose texts and commentaries on a somewhat lower 
level. 

The discussion by Descartes of the equation of second degree includes 
also the determination of properties of the curves for various cases-­
centers, foci, vertices, and latera recta. The methods are given gener­
ally, and then are applied to the special case y1 = 2y - xy + 5x -x1• 
In contrast to textbooks of the present day, the consideration of such a 
specific numerical instance was quite unusual at that time. Descartes, 
however, seems to have had little interest in the analytic theory of 
conics. Apparently he felt that the future of geometrical study lay in 
higher plane curves rather than in the plane and solid problems of the 
ancients. 

Descartes concluded the discussion of the locus to three or four lines 
with the statement that all such loci lead to equations of second degree 
and are therefore plane or solid loci. If the equation is of higher degree, 
the curve may be called "a supersolid locus"-what would now be 
called a higher plane (algebraic) curve. Descartes then adds the 
cryptic remark that "If two conditions for the determination of a point 
are lacking, the locus of the point is a surface which may be plane or 
spherical or more complicated. " 28  This hint of an analytic geometry of 
three dimensions• reappears at the close of Book II where Descartes 
indicates that his remarks on plane curves "can easily be made to ap­
ply to all those curves which can be conceived of as generated by the 
regular movement of the points of a body in three-dimensional space. ' '  
Here also, as in two-space, the emphasis is on the kinematic point of 
view rather than on arbitrarily given equations. The method Descartes 
proposed for the study of the properties of a space curve is to project it 
upon two mutually perpendicular planes and to consider the two curves 
of projection. Unfortunately, the only illustrative property given 
here is erroneous, for one reads that the normal to a curve in three-space 
at a point P on the curve is the line of intersection of the two planes 
through P, determined by the normal lines to the curves of projection 
at the points corresponding to P. This would be true of the tangent 
line, but does not in general hold for a normal ; but even the captious 
Roberval did not notice this error, and it was repeated almost a century 
later by the commentator Rabuel. Descartes, in these casual remarks, 

• Book II,  p. 335. 
• Bell is not correct in the statement in Men of Malltemaliu (New York, 1937), p. 63, that 

"Fermat was the first to apply it [analytic geometry ) to space of three dimensions. Des­
cartes contented himself with two dimensions." Francisco Vera, Brew Hisloria de la Male­
mtUit:a (Buenos Aires, 1946), p. 82, makes the same mistake. If anything, the analytie re­
marks of Descartes with respect to three-space go further than those of Fermat, even though 
the latter did contribute a brief synthetic wort on surface loci. 
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seems not to have been aware of the fact that for space of more than two 
dimensions a normal is not uniquely determined for a point on a curve. 
Apparently he did not envision the difficulties which mount up on in­
creasing the number of degrees of freedom. 

Fermat's lsagoge was a brief but systematic exposition of the analytic 
geometry of second-degree equations, but the G"'1nltrie of Descartes is 
more especially concerned with higher plane curves. Having disposed 
easily, through the quadratic equation, of the problem of Pappus for 
three or four lines, the author proudly passed on to the case of five 
lines. In Book I he already had remarked that if the lines are all 
parallel, the locus is not in general constructible by ruler and compasses 
alone, even though the points lie on one or three straight lines. If four 
of the lines are parallel and the fifth is perpendicular to these, the Pap­
pus-locus {for variable lines drawn at right angles to the given lines) is a 
cubic curve generated by the motion of a parabola-the Cartesian parab­
ola or trident previously referred to. If the fifth given line is oblique 
to the other four, or if non-parallel lines are substituted for the other 
four given lines, the nature of the curve changes, but Descartes assures 
the reader that it can be handled by the methods he has presented. 

Descartes next digresses from the problem of Pappus to explain that 
"all other properties of curves depend only on the angles which these 
curves make with other lines"-that is, the properties are determined 
by the equation of the curve. This is equivalent to the implication in 
Fermat's use of the phrase "specific property" for the equation of a 
curve. To illustrate this point Descartes chose what he regarded as 
"not only the most useful and most general problem in geometry that 
I know, but even that I have ever desired to know. ' ' 10 This is the de­
termination of the normal to a given curve. In somewhat simplified 
form, the method of Descartes is as follows : 

Fig. 13 

Let the equation of the curve A CQ {Fig. 13) be given with respect to 
A as origin and AG as axis . Let the rectangular coordinates of C be 
AM = y and CM = x, and let CP be the desired line normal to the 
curve at C and intersecting the axis in the point P, where 
AP = " and CP = s. Then (from the Pythagorean theorem) 
PC1 = s• = x1 + v1 - 2fJ)' + y1, and the equation of 

• Book II, p. 342. 
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the circle through C with P as center is y = 11 + v s1 - x1• Eliminat­
ing either x or y in the equations of the curve and the circle, one obtains 
an equation in one "unknown quantity,"  x or y, and the quantity 11. If 
the circle cuts the curve in two points C and E, the final equation above 
will have two unequal roots. But "the nearer together the points C 
and E are taken, the less difference there is between the roots ; and 
when the points coincide, the roots are exactly equal, that is to say, the 
circle through C will touch the curve CE at the point C without cutting 
it."  That is, in modern terminology, one :finds the value of 11 by set­
ting the discriminant of the equation equal to zero, and 11 then deter­
mines the normal line PC, and hence also the tangent line. 

Descartes very laboriously applies his awkward method to the el­
lipse x1 = ry - (r / q)y1, :finally obtaining an elaborate equation for 11 in 
terms of known quantities. In view of the algebraic complications in­
volved, his concluding remark, "I see no reason why this solution should 
not apply to every curve to which the methods of geometry are ap-

- plicable,"  is more a theoretical boast than a practical reality. How­
ever, it should be home in mind that the method of tangents of Des­
cartes was the first such general method -i. e. ,  the first anticipation of 
the idea of a tangent as the limiting position of a secant-to appear in 
print. Fermat was at the time in possession of his unpublished and 
simpler linear method and hence was in a position to criticize Des­
cartes' circular device. The result was an unnecessarily acrimonious 
interchange of challenges and criticisms which served no very useful 
end but which did incidentally bring forth the folium of Descartes and 
which may have popularized the use of analytic methods. 

The study of tangency led Descartes to include a long section de. 
voted to the ovals which bear his name and to their use in optics. These 
served to relate La Glomltrie to La Dioptrique, and Les MIUores, the 
other appendices of the Discours de la Mlthode. The ovals again show 
the emphasis of Descartes on loci, for he takes pains to describe the 
ways in which they can be generated and used, but he nowhere gives 
their analytic form in terms of equations. 

Book III of the Geometry is the raison d' ltre of the work, to which the 
other books served as an introduction. The purpose of the work is the 
graphical solution of equations beyond the second degree, with par­
ticular emphasis on the cubic and quartic. The heading of the third 
book is "On the construction of solid and supersolid problems, "  and 
this title was used for somewhat over a century to designate what most 
writers regarded as the primary aim of Cartesian geometry. Descartes 
had abandoned the Platonic apotheosis of line and circle, but he sub­
stituted for it a fetishism which enslaved his successors for several gen-
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erations. Book III opens with the pronouncement, "While it is true 
that every curve which can be described by a continuous motion 
should be recognized in geometry, this does not mean that we should 
use at random the first one we meet in the construction of a given prob­
lem. We should always choose with care the simplest curve that can 
be used in the solution of a problem, but it should be noted that the 
simplest means not merely the one most easily described, nor the one 
that leads to the easiest demonstration or construction of the problem, 
but rather the one of the simplest class that can be used to determine 
the required quantity. ' '  

The Cartesian principle of simplicity of class is a natural consequence 
of the hierarchy of curves, which in turn is an extension of the ancient 
classification of loci. Pappus11 had objected to the "inappropriate" 
solution of plane problems through the use of solid loci, or of solid prob­
lems through linear loci. Descartes continued this important idea of 
the order of complication appropriate to a problem, but he did not 
state it clearly and did not investigate it carefully. He spoke of the use 
of curves of an unnecessarily high class as "a geometric error," supple­
menting this with the complementary warning that "It would be a 
blunder to try vainly to construct a problem by means of a class of lines 
simpler than its nature allows."12 Much of the book consequently is 
devoted to what now is contained in works on algebra, for, as Descartes 
observed, "the rules for the avoidance of both these errors" calls for a 
study of "the nature of equations." 

Book III is the most systematic of those in La G"'1n,trie, but it is not 
analytic geometry in the strict sense of the word. It is an elementary 
course in the theory of equations, written in a language and notation 
almost identical with that in modern textbooks. Beginning with a 
pseudodefinition of equation, rules are given for combining, factoring, 
transforming, and solving equations, illustrated by examples with 
specific numerical coefficients. "Descartes' rule of signs" is here pub­
lished for the first time in general form for positive and negative roots. 11 
Increasing and decreasing the roots, changing their sign, multiplying or 
dividing them by a constant, removing the second term of an equation, 
testing for rational roots by an abbreviated method of division, the 
algebraic solution of cubics and quartics, the notion of irreducible 
equation-all these are found in Book III of La G"'1n"rie. Because 
much of this material had been given earlier, Descartes was accused of 

11 La Collection mathhnalique (Book IV, prop. 30), v. II, p. 208-209. 11 Book III,  p. 371 .  1 1  Quite probably his discovery of the general rule was a consequence of the fact that he 
was among the first to make a systematic practice of bringing all terms of an equation to 
one side, equating these to zero. 
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plagiarism, especially from Viete and Harriot ; but Descartes here 
made no special claim to originality. Following this algebraic intro­
duction, Descartes proceeds to complete the problem begun in Book 
I-to construct geometrically the roots of algebraic equations. Having 
shown that linear and quadratic equations are constructible by ruler 
and straight-edge, he now demonstrates at length that the solution of 
cubics and quartics (i. e. , of "solid problems") can always be found "by 
any one of the three conic sections, or even by some part of one of them 
however small, together with only circles and straight lines."  

In this respect, Descartes did much to nourish the fetish of conics for 
another generation. He showed that the equations x8 = = ps = q and 
z' = = pz1 + qz = r can be solved, for real roots, through the intersec­
tions of a parabola with various lines and circles. For example, he 
solved z1 = ps + q graphically as follows : Draw the parabola FAG with 
axis ADKL and semiparameter A C = 1/1 and take CD = p/2 (Fig. 14.) 

Fig. 14 

Draw DE = q/2 perpendicular to AD. With E as center and with 
radius AE draw circle FG. Then the intersection point F on the left of 
the axis gives the "true" [i .  e. ,  positive ] root ;  any on the other side cor­
respond to "false" [i. e. ,  negative] roots. In modern symbolism, this 
method consists of :finding the intersections of the parabola x1 = y and 
the circle x1 + y1 = qx + (p + l)y. With slight modifications in pro­
cedure, Descartes applied the method to other cases of cubics and 
quartics with real roots. So pleased was he with these solutions by 
conics that he felt there was nothing more to be desired in this connec­
tion. The nature of the roots does not permit expression in simpler 
terms nor their determination by any construction which is both easier 
and more general." 

In going on to equations of degree more than four, it was clear to 
Descartes that, in general, the geometrical solution called for curves 
beyond the plane and solid loci. Even here, however, the conic-com­
plex was continued. Instead of solvin� the quintic and sextic through 

.. La G"'1nhrie, p. 334, 402. 
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a simple application of the parabola of second order defined by the 
equation y = x•, Descartes, true to the postulate of hierarchical con­
struction, made use of cubic curves defined through the intersections of 
moving conics and lines. These complicated geometric constructions of 
the roots of algebraic equations are on a level far above the simple 
P!'9blems of Fermat's elementary Isagoge. 

- ·-- The contemporaries and successors of Descartes spent much time and 
energy discussing the curves of lowest degree needed for the geomet­
rical solution of a given polynomial equation. Fermat, in articles sub­
sequent to the Isagoge, devoted much space to the same graphical 
schemes for solving polynomial equations as had Descartes. He pro­
posed solving x• + bx1 = c1b through finding the intersections of the 
parabola x1 + bx = by with the hyperbola c1 = xy, adding11 that "the 
method will be the same for all cubic equations. "  The geometrical 
solution suggested for the biquadratic x' + c1x1 + b1x = d' is to de­
termine the intersections of the parabola x1 = cy and the circle d' - b1x 
- c'x1 = cly1• Fermat saw that "the same procedure can serve to 
solve all biquadratic equations" ; but he added also solutions through 
the intersections of two parabolas, or of a parabola with a hyperbola. 
Echoing the judgment of Descartes on such procedures, Fermat 
boasted that "it is not possible, I believe, to imagine a solution more 
elegant.' '  

Fermat in 1660 composed a dissertation in three parts-De Solutione 
Problematum Geometricorum per Cunw Simplicissimas-pointing out 
that the Cartesian classification by pairs of degrees is not transferable 
from determinate to indeterminate equations. The equation x1 1 = b10d, 
for example, is solved by the intersection of the curves x•a = y' and 
xly = b10da, one a quartic, the other a cubic, whereas the rule of Des­
cartes would call for a curve of sixth degree.11 Similarly, the ninth de­
gree equation, x• = b8d, is solvable by means of two cubics ; and x167 = 
b .. d is solved by the intersections of x17 = dy11 and b11 = x16y. Fermat 
adds the general rule covering such problems : If the degree of the given 
equation is greater than n1, then a curve of degree greater than n is 
needed in the geometrical construction of the roots. In commenting on 
such graphical solutions, Fermat held with Descartes that "it is a fault 
in true geometry to take for the solution of any problem curves too 
complex or of too high a degree, leaving out the simpler which are suit­
able. "  At that time any curve whatsoever of degree n was regarded as 
geometrically "simpler" than one of higher degree. The folium of Des-

• Onwes tle Fermal, v. I, p. 103-1 10;  v. Ill , p. �101 .  
• Fermat misunderstood Descartes here to  require an equation of degree 9 or 10. See 

Onwes de Fermat, v. I, p. 1 18-131 ; v. Ill,  p. 109-120. This treatise appears to be almost a 
polemic against the work of Descartes. 
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cartes, for instance, was considered superior in simplicity to the curve 
y - x'. Thus the conic-section rule was generalized into an understand­
ing that curves used in the graphical solution of equations are to be of 
lowest possible degree, a view which Fermat seems to have shared. 17 

Book III of La Glom"rie is of less significance in the development of 
analytic geometry than it is in the history of the classical problems of 
antiquity. In the first place, it put undue emphasis upon the geo­
metric construction of roots of algebraic equations at the expense of the 
analytic study of curves. On the other hand, it marked a milestone in 
the attempts to duplicate the cube and to trisect the angle, for it 
boldly stated the impossibility of these problems. "Solid problems in 
particular cannot, as I have already said, be constructed without the 
use of a curve more complex than the circle. " 11  Viete had paved the 
way for this conclusion by showing that a solid problem is reducible 
either to the Delian problem or to an angle trisection. Fermat, too, 
had made an unpublished statement• similar to that of Descartes, but 
the influence of La Glomltrie was most effective. Unfortunately Des­
cartes was unable to give a satisfactory proof of his assertion, limiting 
himself to the weak inductive argument that if geometers will list all 
the ways of finding the roots, it will be easy to prove his method "the 
simplest and most general. ' '  

Estimates of the work of Descartes and Fermat differ widely. Bell 
.· has said'0 that "Descartes saw that an infinity of distinct curves can be 

ref erred to one system of coordinates. In this particular he was far 
ahead of Fermat, who, apparently, overlooked this crucial fact. Fermat 
may have taken it for granted, but nothing in his work shows une­
quivocally that he did ;" yet Bell adds later that, "With the exception 
already noticed . . .  , Fermat's analytic geometry appears to be as general 
as that of Descartes. It is also more complete and systematic. "  Loria 
points out that the fundamental idea of the equation of a curve is more 
clearly set forth by Fermat, and that his treatment of analytic geom­
etry is more systematic than that of Descartes, and nearer to ours. n 
Coolidge, on the other hand, holds0 that the work of Descartes "af­
fords a far broader base for future development than either the writings 
of the Greeks or those of Fermat. He had a far more workable algebra 

n See Fermat, Varia Ot>era Malltematica {Tolosae, 1679), p. 1 10-1 15. 
• Book III,  p. 401.  
• See Fermat, Oernres, v. III ,  p.  101.  
• E. T. Bell, Tlte Dt;f!elofmrenl of Maf/Nmatics {New York, 1940), p. 125-127. 
'1 "Sketch of the Origin and Development of Geometry Prior to 1850" (transl. by G. B. 

Halsted ), Monist, v. XIII ( 1902-1903), p. 80-102, 218-234 ;  also "Pour une Historie de la 
�&rie Analytique," Verllandlangen des III. [111ernalionakn Ktmgrusu in HfttUlb#i, 
1904, p. 562-574 . .. ]. L. Coolidge, A History of Geometrical Metlwds {Osford, 1940), p. 127-128. 
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and a far wider vision of the importance of what he had done and of 
himself the doer. . . .  Fermat recognized the relation between all sorts of 
equations and curves, but lacked the curiosity to go beyond the quad­
ratic case and the study of conics. [Coolidge here overlooks Fermat's 
analytic works beyond the Isagoge. ]  Descartes showed that if any 
curve were mechanically constructible, we could translate the me­
chanical process into algebraic language, and so find the equation of the 
curve. "  Wieleitner's judgment is expressed as follows : 

Descartes' work is so differently presented that there is little likelihood of 
dependence on Fennat. In one respect Descartes gave less than Fermat, in 
other respects much, much more. One does not find the collection of simple 
equations and their geometrical representations ;  but he gave much more of 
algebraic form and the relation between it and geometry. '1 

Even in the seventeenth century Cartesian geometry had been re­
ceived with varying reactions. Fermat seems not to have realized 
fully the significance of his own invention, and so he undervalued also 
the analytic geometry of his rival. At one point Fermat implies that 
the methods of Descartes are very nearly the same as those of Vi�te 
except for an unimportant change in notation. "  Such an estimate may 
have been due in part to the lack at the time of a clear distinction be­
tween algebraic geometry and the calculus. Fermat's own contribu­
tions to the former were largely in the nature of application to the lat­
ter ; but Descartes did not play an active role in the analytic transfor­
mation of infinitesimal geometry. The Cartesian method for tangents, 
for example, was definitely inferior to that of Fermat. It may have 
been such considerations that later led Leibniz also to view the work of 
Descartes somewhat coolly as but an application of equations to curves 
of higher degree which Vi�te and the ancients had neglected. 411 Leibniz 
spoke of Descartes' work as going back to the ancients, and this was 
the opinion of many contemporaries. The revolution which Comte and 
historians of the nineteenth century-especially Chasles-saw in La 
Glomltrie was largely an illusion, due possibly to the striking change in 
the subject during the closing years of the eighteenth century. 48 • 

Some of the more conservative mathematicians of the century re­
jected analytic geometry completely and continued to use the synthetic 
method and representation. Others who accepted the work of Des­
cartes emphasized the material in the third book, and so they looked 

41 Geschichte der Mathematik, v. II (2), p. 5. 
44 See Oeuwes de Fermat, v. I, p. l l&-131 ; v .  Ill, p. 109-120. 
41 Philosophische Schriften (ed. Gerhardt), v. IV, p. 347. 
• It is to Michel Cbasles, A/>ef'P' Historique sur L'origine et le Dhleloppemnt des MWwdes 

en Giometr" (new ed., Paris, 1875), p. 94, that we owe the unfortunate characterization of 
analytic geometry as "proles sine matre creata." 
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upon La Glomltrie as primarily a contribution to algebra, overlooking 
the essential similarity between the second book of Descartes' Geom­
etry and Fermat's Introduction to Loci. Even now surprise is often 
expressed that the third book of La Glomltrie comes so close to the tra­
ditional course, not in analytic geometry, but in advanced or college 
algebra. The answer to this paradoxical situation is easy to find. Des­
cartes was not interested in curves as such. He derived equations of 
curves with one purpose in mind-to use them in the construction of 
determinate geometrical problems which had been expressed by poly­
nomial equations in a single variable. 47 For this reason he had to con­
sider in detail the transformation of equations and their reducibility. 
The method of Descartes is that of coordinate geometry, but his aim ./ 
is now found in the theory of equations rather than in analytic geom­
etry. 

For about two centuries following 1637 analytic geometry was gen­
erally regarded as the invention of one man, but it is now quite clear 
that, years before the appearance of La Glomltrie, Fermat used essen­
tially the same methods. However, his work circulated largely through 
correspondence in manuscript form until its publication in 1679. By 
this time the geometry of Descartes had been popularized through the 
Latin editions of van Schooten. Had the Cartesian influence not pre­
dominated, certain aspects of analytic geometry might have developed 
more rapidly, for while Fermat's method was similar, his object was .,,; 
nearer to the modem one than was that of Descartes. It may well be 
that the absence of any priority controversy here-in contrast to the 
unpleasant episode in the calculus-was due to the difference in aim. 
Fermat proposed more clearly than Descartes the basic principle that 
an equation in two unknowns is an algebraic expression of the proper-
ties of a curve ;  and his work is devoted to the elaboration of this idea. 
Where Descartes had suggested classes of new curves generated by 
simple motions, Fermat introduced groups of curves given by alge­
braic equations. Unlike La Glomltrie, the Isagoge of Fermat had as its 
purpose to show that linear equations represent straight lines and 
quadratic equations correspond to conics. To a large extent one may 
say that where Descartes had begun with a locus problem and from 
this derived an equation of the locus, Fermat conversely was inclined to 
begin wi.th an equation from which he derived the properties of the curve. 
-Descartes repeatedly refers to the generation of curves "by a con­
tinuous and regular motion" ; in Fermat one finds more frequently the 

G As Enestrom has well said, an appreciation of the objective of La Ghnnitrie will make 
one less likely to see in it the infiuence of Oresme. See "Kleine Mitteilungen," Bibliolheca 
.Malllemaliea (3), v. XI ( 1911 ), p. 241-243. 
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phrase, "Let a curve be given having the equation . . . .  " 48  These are the 
two inverse aspects of the fundamental principle of analytic geometry, 
in much the same sense that differentiation and integration are inverse 
aspects of the calculus. It is now customary to speak of an ' 'integral 
in the sense of Leibniz" and of an "integral in the sense of Newton, "  
according as the emphasis is on the summation concept (associated with 
quadratures) or on the idea of rate of change (associated with tangent 
problems) . Similarly it would be appropriate to introduce phrases to 
mark the difference in emphasis indicated by the two inventors of co­
ordinate geometry : ' 'analytic geometry in the sense of Descartes' '  and 
"analytic geometry in the sense of Fermat. "  The one admitted curves 
into geometry if it was possible to find their equations, the other 
studied curves defined by equations. As an indication of this distinc­
tion, successors of the two men looked back to Descartes as the one who 
derived the equations of loci and to Fermat as the one who introduced 
the equations of the generalized hyperbolas, parabolas, and spirals. 
The distinction cannot, of course, be carried too far. It is essentially a 
matter of relative emphasis, for both men were aware of the dual as­
pect. Elementary analytic geometry as now taught usually covers four 
main topics in Cartesian plane coordinates : the derivation of formulae 
on points, lines, angles, and areas, together with the application of these 
to problems and theorems ; the sketching of curves ; the derivation of 
equations of loci ; and the study of the properties of curves, especially 
of linear and quadratic equations. Of these topics Descartes empha­
sized the third and considered briefly some aspects of the last ; Fermat 
emphasized the last and solved a few problems connected with the 
third. The second topic did not come into its own until the early years 
of the eighteenth century, and the first topic not until the very close of 
that century. Descartes and Fermat discovered the two aspects of the 
fundamental principle of analytic geometry, but they did not make the 
subject what it is today. 

411 Cf. Oeuvres, v. I, p. 255f ; v. III ,  p. 216fJ. 
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The Age of Commentaries 

Mathematical proofs, like diamonds, 
are hard as well as dear. 

-JoBN LocKE 

THERE is a widely held opinion, in large part due to Montucla, 
Chasles, and Comte, 1 that the analytic geometry of Descartes and 

Fermat brought about a rapid transformation of mathematics ; but a 
survey of the period immediately following their work does not sub­
stantiate such a view. 1  For one thing, the new geometry was not 
everywhere welcomed. The literary controversy of that time on 
"ancients vs. modems" had its mathematical counterpart in mis­
directed attacks on algebraic geometry (and later also on the calculus) 
by men who overvalued the classical methods of antiquity. Then, too, 
the inventors of analytic geometry were themselves largely responsible 
for the failure of the new subject to make rapid gains. Mathematics 
was for Fermat only a hobby, the satisfaction of which was not in­
creased through publication ; and hence his Isagoge appeared post­
humously, in 1679, after the stream of commentaries on analytic 
geometry was well under way. At that late date it was received with 
some indifference. Moreover, there is a strong presumption that 
Fermat did not fully realize, or was too modest to stress, the value of his 
method as a tool for professional mathematicians. Descartes realized 
all too well the significance of his contribution, but he was a poor ex­
positor. He did not arrange his work in the orderly and systematic 
manner to be expected in an introduction of novel methods ; nor did he 
go into detail to make the thread of his argument clear. One gets the 
impression that Descartes wrote La g,om,trie not to explain, but to 
boast about the power of his method. He built it about a difficult prob­
lem, and the most important part of his method is presented, all too 

1 See N. Saltykow, "La geometric de Descartes. 3()()e anniversaire de �etrie analy­
tique," Bulletin des sciences mafhbnaliques (2), LXII ( 1938), 83-96, 1 10-123. 

1 Cf. Gaston Milhaud, "Descartes et la geomHrie analytique," Nouwlles �tulles sur l'­
hislorie de la f>ms�e scientifique (Paris, 191 1 ), p. 155-176. 
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concisely, in the middle of the treatise for the reason that it was neces­
sary for the solution of this problem. In concluding the work, Descartes 
justifies the inadequacy of exposition by the incongruous remark that 
he has left much unsaid in order not to rob the reader of the joy of dis­
covery. Either this was sarcasm or else the author grossly misjudged 
the abilities of his readers to profit by what he had written. It is no 
wonder that the number of editions of his G'omltrie was relatively small 
during the seventeenth century and has been still smaller since then ; 
and it is not surprising that his early successors were in most cases pro­
fessional geometers of marked ability. 8 

One contemporary who did seize upon the meaning of the work of 
Descartes was Gilles Persone de Roberval (1602-1675) , a man who held 
his position at the College Royal through superiority demonstrated in 
competitive examinations every few years. He composed two 
memoirs on algebra and geometry which might have served as intro­
ductions to the work of Descartes. The De recognitione aequationum of 
Roberval is a theory of equations along the lines of Viete and Descartes 
in which the vowel-and-consonant convention of the former is com­
bined with the small letters and operational signs of the latter. The 
De geometrica planarum et cubicarum aequationum resolutione is an ex­
cellent example of analytic geometry in the sense of Descartes. It is 
concerned with two problems : the representation of loci by means of 
equations and the use of intersecting loci to solve equations. It omits 
the Fermatian study of the graphical representation of equations. 
Roberval well expressed the crux of Cartesian geometry when he 
wrote : "It is said that any geometrical locus can be reduced to an 
analytic equation, since from one or more of the specific properties can 
be derived an analytic equation in which one or two or three at most of 
the quantities are unknown. ' '  Instead of applying this idea to difficult 
cases of the Pappus problem, as Descartes had done, he derived the 
equations of simple familiar curves. He began with the equation of a 
circle, with respect to a diameter as axis and with an end-point of this 
as origin. Let A be the center of a circle with diameter BC = 2b, and 
let EG be a line perpendicular to BC cutting the circle in D. (Fig. 15) . 
Then if DE is a and BE is e, "the rectangle BEC" [i. e. , BE · EC] 
will be 2be - e1• Hence the equation of the circle is 2bc - e1 = a1 
[since BE ·EC = DE1 ] .  Roberval, like Descartes, made use of a single 

1 One gets a very unfavorable impression of Descartes from a letter which he wrote to 
Mersenne in 1648. Here he says that his geometry is what it should be to keep people like 
Roberval from slandering it without ending in confusion because they can not understand it. 
He says he intentionally omitted what was easiest because of malicious spirits, and were it 
not for them, he would have written quite otherwise. Descartes added that he might clarify 
it further himself some day, but he died two years later without having done this. See 
Uon Brunschwicg, Les itapes tle la philosophie mathemalique (Paris, 1912), p. 125 f. 
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axis. He also adopted the symbol of Descartes for equality, but this 
was not widely used by other mathematicians. 

Roberval next derived the equations of the parabola, ellipse, and 
hyperbola with respect to an axis and a vertex, and also equations (one 
for each branch) of the conchoid. The form ae = b1 he recognized (as 
had Fermat) as that of an hyperbola with respect to its asymptotes ; 
but there is, strangely, no reference to the straight line. The equation of 
the circle is equivalent to a distance formula, but such preliminary 
formula-work as is given in modern textbooks did not appear in any of 
the early commentaries on Cartesian geometry. As an appendix 
Roberval added the familiar Cartesian solution of solid problems (cubic 
equations) through intersecting loci. In other works, notably his 
Traill des indiwsibles, he contributed to analytic geometry indirectly 
through the development of the calculus. In this connection he seems 
to have had an analytic method for finding tangents, but he abandoned 
it for one based upon the composition of motions, possibly because of 
his interest in the cycloid and other transcendental curves. The period 
of Roberval's work, however, is uncertain and its influence is doubtful 
inasmuch as it was published posthumously in volume VI of the 
Mlmoi,res de l'Acadhnie des Sciences for 1666-1699, long after Cartesian 
geometry had been popularized by others. The substance may, how­
ever, have been given at an early period in his lectures at the Coll�ge de 
France. 
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Descartes must have realized soon after the appearance of his 
Geometry that readers were experiencing difficulties with it, for he took 
the trouble to announce in his correspondence that a friend of his, a 
" Dutch gentleman, " had written an "Introduction" to it. This Intro­
duction, composed in 1638 but not published at the time, '  opens with a 
simple exposition of the rules of elementary algebra, making use of the 
Cartesian notations. At that time the work of Descartes was looked 
upon as contributing as much to algebra as to geometry, a fact which 
shows how closely related to each other developments in the two fields 
were. The commentator then repeats the argument of Descartes that 
non-homogeneous expressions are justified by the assumption of 
suitable powers of unity. The expression a1b1 - b, for example, is 
eall a'b' - bca 
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avoidance of more than three dimensions. The author then explains 
that in applying the Cartesian method to geometrical problems, one 
must find as many equations as unknowns. If this cannot be done, 
then there are numerous points satisfying the conditions and these make 
up a plane, solid, or linear locus if only one equation is lacking ; and 
surface loci if two are lacking, "and similarly for others. " The last 
phrase seems to envision the possibility (which Roberval specifically 
had rejected) of an analytic geometry of more than three dimensions ; 
but, as in the case of Oresme, this important suggestion is not carried 
further. In fact, it is significant that, of the four examples given by 
this anonymous commentator as illustrations of the Cartesian method, 
three are determinate geometrical problems and only one is a locus. 
This confirms the impression one gets that Cartesian geometry at that 
time did not mean so much the study of loci as the solution of geo­
metrical problems by algebraic means. The one locus problem (Prob­
lem 3) is that of finding a point such that the sum of the squares of its 
distances from four given points is equal to a given square-a problem 
solved by Fermat in his restoration of the plane loci of Apollonius. The 
distance formula was not then known--or, at least, was not specifically 
expressed-so the problem was handled geometrically in the following 
manner : 

Let the four given points be A,  D, E, and F, and let C be the point to 
be determined (Fig. 16) .  Draw the line AD, then draw EK, CB, and 
FG perpendicular to AD, and draw EH parallel to AD. Let AB = x 

' See Ren� Descartes, Oewres (ed. by Charles Adam and Paul Tannery, 12 vols. and 
supplement, Paris, 1897-1913), X, 659-680. Presumably this is described in Wieleitner, 
"Uber zwei algebraische Einleitungen zu Descartes' GOOmHrie," Bl. f. tl. Gymn.-Sc'/sulw. 
'/srsg. 11. bayr. Gymn.-Leluwrein, XLIX ( 1913), 299-313 ; but I have not had access to Wieleit­
uer's article. 
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and BC = y. Then BD = c - x, GF = b, GB = x - a, CH = y - g, 
BK = f - x = HE, where a, b, c, f, and g are constants. From these 
values and the Pythagorean theorem the locus is easily seen to be a 
circle. This illustration by the anonymous commentator' is a fair ex-
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Fig. 16 

ample of Cartesian geometry at that time and shows how greatly it 
di11ered from modem analytic geometry. 

About a year later Descartes received and approved a more extensive 
commentary on La g'omltrie composed by Florimond Debeaune 
(1601-1652) under the title Notae breves. This work opens with the. 
statement that algebra speciosa includes not only the algebra of num­
bers and the geometric analysis of the ancients, but also the study of all 
quantities which have interrelationships or proportions, as Descartes 
asserted. It therefore includes the consideration of the ratios of lines, 
i. e. ,  analytic geometry.• The early sections of the Notae breves do not 
depart from the Cartesian rationale. They represent a paraphrase 
of Book I of La g'omltrie (the construction of algebraic quantities, in­
cluding the roots of quadratic equations) . The commentary on Book 
ll,  however, is especially noteworthy for its emphasis upon the Ferma­
tian aspect of analytic geometry, the systematic consideration of cases 

1 Loria has suggested that he may have been Godefroy de Haestrecht. 
• For the Nolae breves see the 1659-1661 edition of the Geometria of Descartes, v. I, p. 

107 ff. 
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of second degree equations in two variables in which various terms are 
missing. With respect to an arbitrary coordinate angle, he showed that 
the cases y2 == xy + bx, y2 == - Uy + bx, and y2 == bx - x2 represent 
hyperbolas, parabolas, and ellipses respectively. In connection with 
the hyperbolas xy + bx + cy - df = 0, he considered separately seven­
teen cases according as the various coefficients are positive, negative, 
or zero. This tedious multiplication of cases shows how far his century 
was from a realization that one of the great values of analysis lies in the 
possibility of sweeping generalities. The only consideration given by 
Debeaune to equations of first degree is the comment that if for the 
general equation of second degree the terms in x2, y2, and xy vanish, 
then the figure is a straight line. This fact, here explicitly stated for the 
first time, had been known to Descartes, but neither he nor Debeaune 
regarded the analytic study of the straight line as of any importance. 
The N otae breves in general follows Descartes with respect to construc­
tibility, loci, tangents, and the interpretation of coordinates. Like 
Descartes, he did not adopt any conventional direction for the axis or 
axes, and he used x and y interchangeably as dependent or independent 
variable. The interchangeability of the axes or variables is not, in the 
strict sense, to be ascribed to any one individual. Often it was tacitly 
assumed, even by those who made use of a single axis, but it did not be­
come a clearly recognized principle until almost a century after the 
time of Debeaune. 

The historian Montucla referred to Debeaune as "the first to pene­
trate the mystery of analytic geometry."7 This reference undoubtedly 
is an oversimplification of the situation, but it does indicate that 
Debeaune was one of the leading Cartesian commentators. Neverthe­
less, the Notae breves is typical of the seventeenth century in its failure 
to demonstrate the power of algebraic geometry as an instrument of 
"discovery. Men of the time were too easily satisfied to work over again 
much of the same old material found in Apollonius, Descartes, and 
Fermat ; and Descartes is said8 to have felt, not without some justifica­
tion, that there had been no great progress in mathematics. 

The work of Debeaune was given wide publicity through its inclusion 
in the Latin translation of the Cartesian Geometry issued by Frans van 
Schooten (1615-1660} in 1649, 1659-1661,  1683, and 1695. It is 
probably not too much to say that it was these Latin editions which 
established the place of Cartesian geometry in the seventeenth century, 

T Etienne Montucla, Hutorie tlu matWmaliquu (new ed., 4 vols.,  Paris, 1799-1802), II, 
103, 147. 

• See A. E. Bell, Cl&rislian Huygens and Ille Dntlo/nflenl of &ienu in Ille Snenteenlh 
Cnlury (New York and London, 1947), p. 18. Lagrange, a century and a half later, ex­
pressed pessimism about the future, rather than the past, of mathematics. 
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for they not only made the vernacular work of Descartes available in 
the universal language of the time, but included also a tremendous 
amount of additional material clarifying the original cryptic account 
and building up a spirit of enthusiasm for the new subject. The 1649 
edition included, besides Debeaune's Notae, the still more extensive 
Commentarii by the editor. Van Schoo ten's Commentaries is purely Car­
tesian in inspiration and served to popularize La glomltrie through the 
inclusion of additional proofs, algebraic-geometrical problems and 
constructions, and new loci. The straight line enters only in connec­
tion with the construction of the Pappus "locus to two lines," and the 
only equation given for the circle is that with respect to the center as 
origin. However, where Descartes had given his ovals only as kine­
matic loci, van Schooten studied them analytically in terms of their equa­
tions. As in Debeaune, there is much more consideration given to 
various cases of quadratics in two variables. An important part of 
van Schooten's commentary is on the Cartesian graphical solution of 
cubic and quartic equations. 

In 1651 Erasmus Bartholinus (162�1698) , literary heir of Debeaune 
and student of van Schooten, arranged and published-under the title 
Princif>'ia mafheseos universalis seu introductio ad geometriae methodum 
Renati Des Cartes-some lecturesvan Schooten had delivered. These deal 
with the "logistic" of quantities-that is, with algebra in the notation 
of Descartes. They do not include any analytic geometry, but the work 
closes with the statement that it suffices as an introduction to the ge­
ometry of Descartes. For this reason the Princif>'ia matheseos was in­
cluded by van Schooten in his subsequent Latin editions of Descartes. 
It shows again that commentators of the time were more attracted by 
the algebra of La glomltrie than by the geometry. 

What van Schooten and his associates did for Cartesian geometry on 
the Continent was effectively accomplished in England by John W allis9 
(1616-1703) , one of the most important figures in the early history of 
analytic geometry. Wallis did not publish either new editions of La 
glomltrie or commentaries on it, but in his own works he seized upon 
the methods and aims of Cartesian geometry with as great an under­
standing and forceful originality as any other figure of his century. It 
is sometimes claimed that Descartes arithmetized geometry ; but it 
would be nearer to the truth to say that whereas Descartes made such 
an arithmetization a possibility, Wallis made it a fact. Descartes had 
justified his disregard of homogeneity geometrically rather than 

1 A summary of his work by J. F. Scott, The M atllematical Wark of J olan W aUis {London, 
1938), is available, but this does not give an adequate account of his analytic geometry. 
Historians seem to be attracted more by anticipations of the calculus in the work of Wallis 
than his analytic geometry. 
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arithmetically, pointing out that powers of the unit line segment could 
always be introduced where desired ; his coordinates were not numbers 
but lines. The aim of his geometry was not to express properties of 
curves by algebra, but to use algebra to facilitate geometrical con­
structions ;  and so he had used conics to solve algebraic equations, but 
not algebraic equations to study conics. Wallis, on the other hand, 
boldly replaced geometrical concepts by numerical wherever possible, 10 

maintaining that proofs by algebraic calculation were as valid as deduc­
tions using geometric lines. Proportions, he held, are not to be in­
terpreted geometrically but as purely arithmetic concepts. In line 
with such views, his Tractatus de sectianibus conicis of 1655 presented 
the earliest systematic algebraic treatment of the conic sections to ap­
pear in print. Descartes and Debeaune had shown that certain quad­
ratics are conic sections, inasmuch as they possess the properties 
given by Apollonius ; but Wallis first did in algebraic symbols what 
Apollonius had done in words. Beginning with a brief stereometric 
consideration of the sections of a cone and substituting letters for 
geometric lines, he deduced the well-known properties (symptomae) ex-

ld2 ld2 
pressed by e2 = ld - t' p2 = 'ld, and h2 = ld + t' where e, p and h are 

ordinates of the ellipse, parabola, and hyperbola, respectively, cor­
responding to abscissas d measured from a vertex, and where l is the 
latus rectum and t is the "diameter" or axis. This is the first time that 
these important equations of conics (known in essence to Apollonius 
and possibly to Menaechmus) appeared in algebraic form ; but it is 
interesting to note that Wallis did not adopt a standard convention in 
designating the ordinates. Wallis then considered the conics "abso­
lutely"-i. e . ,  "as though having nothing whatsoever to do with the 
cone. " 1 1  For example, he defined the ellipse purely analytically as fol­
lows : "I therefore call the ellipse the plane figure characterized by the 

property e2 = 'ld - f d2. " This appears to be the first time that the 

conic sections were defined, neither stereometrically nor kinematically, 
but simply as instances of equations of second degree. Wallis then 
took these equations, as given, and proved conversely that the curves 
defined by them were the conics of the ancients. From these equations 
and "without the embranglings of the cone" Wallis then deduced other 
properties, such as tangents and conjugate diameters. If analytic 
geometry were simply the translation of Apollonius into the language 

11 For example, he showed how all the theorems of Euclid II and V c0uld without dif­
ficulty be derived arithmetically. See A. Prag, "John Wallis," Quellen und Studien 1ur 
Guclliilue tler Matlmnalik, Astronornie und Playsik, Part B, Studien, I ( 1931), 381-412. 

u O/IUMm matlmnalieorum (2 vols., Oxonii, 1600-1657), II, 28. 
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of algebra, Wallis would have a strong claim as the inventor. Descartes 
and Fermat had invented the methods, but Wallis gave the first sys­
tematic application of them to the study of the conic sections. This 
represents a striking exception to the English predilection at that time 
for synthetic methods. Wallis had a fine appreciation of the generality 
afforded by algebraic forms, and so he realized well the power of the new 
analysis. He said that from the coefficients of an equation of second 
order one could calculate all the magnitudes, such as center and axes, 
connected with the conic thus determined. Had he pursued this idea 
further, he would have been led to the "characteristic" of the second de­
gree equation. 

Wallis contributed further to the advance of Cartesian geometry 
through its association with infinitesimal analysis in his Arithmetica 
infinitorum of the same year. This work expressed the method of in­
divisibles of Cavalieri in terms of arithmetic and algebra, and so popular 
did it become that the arithmetization of the calculus overshadowed 
that of geometry. It may be for this reason that an important ad­
vance made by Wallis in analytic geometry went largely unnoticed. In 
an appendix to his Contes Wallis had considered the cubic parabola p• 
= l1d, a curve which he mistakenly took to have line symmetry with 
respect to an axis, as does the ordinary or Apollonian parabola. By 
the end of 1656, however, he had discovered the correct form of the 
curve through an algebraic study of the intersections with it of a 
family of parallel lines. 11 It is interesting to note that in the early 
days the correct interpretation of negative coordinates was derived from 
the known shape or algebraic properties of a curve or equation, a 
situation which is now reversed. Wallis then generalized his dis­
covery to parabolas of higher orders and showed that for even orders the 
two halves lie on the same side of the tangent at the origin ·and for odd 
orders on opposite sides. Fermat's earlier consideration of the parab­
olas (and hyperbolas) of higher orders had been concerned primarily 
with tangents and quadratures and so was limited to the first quadrant. 
It had been known in a general way by Descartes and his early suc­
cessors that negative ordinate lines were plotted in a direction opposite 
to that taken as positive, but Wallis seems to have been the first one 
consciously to introduce negative abscissas and to associate them 
correctly with positive and negative ordinates. The significance of 
this step was not appreciated by his contemporaries, many of whom 
contiiiued throughout the century to make mistakes through over­
looking or misinterpreting negative coordinates. This work of Wallis 

11 Wallis, Of1era. (3 vols. , Oxonii, 1693-1699), I, 229-290, especia11y p. 249-250. Loria 
( 1923-1924) refers to the error of Wallis but not to its later correction. Progress in curve 
tracing was slow in the seventeenth century. 
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may well have been influential in the later use of negative coordinates 
by Newton, just as Wallis' method of interpolation inspired Newton's 
discovery of the binomial theorem. In England, however, Wallis' 
arithmetization of geometry did not achieve great popularity. Hobbes 
and Barrow disapproved of it very strongly, the former calling the 
Conics a scab of symbols ; and British mathematicians continued for a 
century and a half to prefer synthetic methods. On the Continent 
Wallis became persona non grata through his chauvinism in attributing 
to English mathematicians most of what Descartes had written. La 
glomltrie he characterized, most unfairly, as practically a transcription 
from the work of Harriot. Moreover, Wallis and Fermat engaged in a 
sharp controversy over the former's method of induction or interpola­
tion. As a consequence, Continental developments in analytic geome­
try were bound up with the more conservative views of van Schooten 
than with the arithmetization of Wallis. 

In 1656-1657 van Schooten published his Exercitationes mathematicae, 
in which algebraic calculations are applied to geometric problems and 
the method of Descartes is used in an attempted reconstruction of the 
lost Loci of Apollonius. One of the loci leads to a linear equation, and 
van Schooten indicates that this represents a straight line. There are 
other applications of analytic methods, but no distinctly new point of 
view. The folium of Descartes appears as a leaf only, 11 indicating that 
the author did not know of the contemporary work of Wallis on nega­
tive coordinates. The Exercitationes contains an interesting book de­
voted to various organic descriptions of the conic sections, a topic which 
played a large part in the geometry of that day. Although "organic 
descriptions" of curves go back to the ancients and were found also in 
synthetic treatises of Ubaldo, Stevin, Mydorge, and others, such de­
scriptions of conics were, in a sense, a natural addition to the work of 
Descartes who had emphasized the kinematic construction of higher 
plane curves. 

One of the outstanding events in the development of analytic geom­
etry was the appearance in 1659-1661 of van Schooten's second Latin 
edition of the Geometria of Descartes. The work of Descartes occupies 
but the first hundred or so pages in volume I ;  the remainder of the two­
volume work, including almost a thousand pages in all, is made up of 
supplementary treatises. The Commentarii of van Schooten is well 
over twice as long as the Geometria itself. It contains additional locus 
problems--one of which led to the linear equation y = a  - x-derivations 
of the equations of conics, and the study of quadratic equations. Van 
Schooten's adherence to geometrical tradition is shown in his directions 

11 E:t.C'ilalion•m maOlemtUican1m (Lugduni Batavorum, 1557), p. 498. 
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for carrying out the converse problem of finding a cone containing a 
given parabola, ellipse, or hyperbola. However, a definite advance is 
indicated by his use of a transformation of coordinates as follows : If (x, y) are the rectangular coordinates of a point C with respect to A as 
origin and DAB as axis of abscissas, then the rectangular coordinates of 

C with respect to D as origin and DFGH as axis are DG = al� ax - by a1 + bl 
ab + bx + ay . 

and CG = v' , where AD = a and A F  = b. (Fig. 17) .  a1 + bl 
This is equivalent to the translation {;: : ; + a} followed by the . { x• = x' cos 8 + y' sin 8 } . • • • 
rotation , , . 8 + , 

'
8 where 8 1s measured p0S1tively in 

y = -x sm y cos 
a counterclockwise direction. He used such transformations to remove 
linear terms and also to associate the asymptotic equation of an hyper­
bola with that with respect to the axes. It is important to note, how­
ever, that such transformations were not formalized and generalized, 
but were, in each instance, carried out de noTJO in connection with appro­
priate geometrical diagrams. 

D 

Fig. 17 

Van Schooten's 1659-1661 Geometria of Descartes contained also a 
work of Johann Hudde (ca. 1633-1704) ,De reductione aequationum, which 
contributed more to Cartesian algebra than to anal}rtic geometry ; but 
it was of some importance as the first instance of the systematic recog­
nition of literal coefficients as either positive or negative, regardless of 
the sign attached. Newton seems to have been the first one to extend 
Hudde's view to letters used as exponents. This advance made possi­
ble the elimination of numerous special cases through the consideration 
of general forms, and encouraged the use of universally applicable 
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formulas, a tendency which developed gradually throughout the follow­
ing century. Hudde's work on maxima and minima and Heuraet's on 
rectification of curves also form part of this Geometrica, but they are of 
significance only for the application of analytic methods to the early 
stages of the calculus. A further algebraic treatise by Debeaune, De 
aequationum natura, constitutione, et limitibus, and an old-fashioned qua­
si-analytic work by van Schooten, Tractatus de concinnandis demonstra­
tionibus geometricis ex calculo algebraico, undoubtedly served to help 
bridge the gap between the older and newer points of view ; but un­
doubtedly the most significant addition to Descartes made by the 
second van Schooten edition was the Elementa curoarum linearum of de 
Witt. 

Jan de Witt {1623-1672) , the well-known Burgomaster of Amster­
dam, composed the Elementa curoarum when he was but twenty-three 
years of age ; but the delay in its publication led Wallis to claim that it 
was an imitation of his own Conics. The two works are, indeed, com­
parable in some respects ; but they open quite differently. Where 
Wallis had begun with stereometric and analytic considerations of the 
conic sections, de Witt began kinematically with the Keplerian con­
structions of the curves. The whole first book is devoted to these and 
other organic descriptions in pl,ano, and it is written in the language of 
synthetic geometry. Among the alternative loci defining the ellipse, 
he gave the construction {known in essence to Mydorge and probably to 
Stevin and Archimedes) in terms of two concentric circles with the 
eccentric angle as parameter. He also extended the theorem of 
Proclus (known as well to Ubaldo and Stevin) on the description of an 
ellipse by the points on a line segment, the ends of which move along 
two intersecting lines, to the case where the two lines are not necessar­
ily perpendicular. De Witt was familiar also with the ratio definitions 
of the conics, and to him is due the name "directrix." 

The second book of de Witt's Elementa, by contrast, is so systematic 
a treatment of analytic geometry that it has been described as the first 
textbook on the subject. 14 His application of analysis resembled 
Fermat's more than it did that of Wallis and Descartes, for he began 
with equations, rather than with curves or loci. Going beyond Fermat, 
he explicitly stated that an equation of first degree represents a 

straight line, 16 and as examples he gave the equations y == c, y == bx
, 

a 
bx bx bx y == - + c, y == - - c, and y == - - + c. The omission of y == 
a a a 

1 1 See Wieleitner, Gesclaicltk der Madlemalill, II (2), 26. 
•• See Geometria of Descartes ( 16:>9-1661 ed. ), I I ,  243. 
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-
bx - c is significant as showing that de Witt, like many of his con-
a 

temporaries, had not mastered the meaning of negative coordinates. His 
diagrams are line segments or rays limited to the first quadrant. De 
Witt does little with the linear equation from the analytic point of view, 
and the persistence of the geometric tradition is apparent in the fact 
that he gave instructions for the construction of lines corresponding to 
given equations. For example, he constructed the equation 'Y = 

bx + c by laying off the segment AB = a  along the axis (with A as the 
a 

"fixed initial point") , constructing parallel line segments CB = b and 
FA = c at any desired angle (the angle of obliquity for the coordinate 
system) , connecting points A and C (Fig. 18) ,  and finally drawing from 
F a  half-line FG parallel to the directed segment A C  and in the same 
sense. (The phrases half-line and directed segment are not used by de 
Witt, but these ideas are implied by his constructions.) 

G 

B 
Fig. 18 

De Witt's treatment of the second-degree equation is similar in that 
he did not begin with the most general form, but with numerous 
special cases. He reconciled the equations y1 = ax, y1 = ax ::1:: b1, and 
y1 · = - ax  + b1 with the properties of parabolas already established 
synthetically in book I. He regarded these equations as correspon�g 
only to segments of the parabola defined for positive values of x and 
y, and he failed to consider the forms y1 = - ax and y1 = - ax - b 
inasmuch as these are not real for positive abscissas. Because he con­
tinued the Cartesian-Fermatian use of a single axis, he felt it necessary 
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to give a separate treatment of those forms obtained by interchanging 
ly2 lx1 

the variables x and y. Equations of the form - = r - x2 or - = 
g g 

I' - y1 he showed to be ellipses. For hyperbolas he gave the asymptotic 

equation xy = r. and again not one, but two axial forms, 
lyl 

= x2 - r 
g 

and 
lxl = y1 - r. It should be borne in mind that these equations 
g 

refer to general Cartesian coordinates, oblique as well as rectangular, so 
that y2 = r - x1 was not necessarily a circle. By means of transforma-

tions of the form {" 
= x 

+ :x + } de Witt was able to reduce other 
s = y - c 

a 

equations of second degree to his canonical forms. Such transforma­
tions, however, were particularized with respect to specific cases and 
diagrams. 

De Witt seems to have come very close to the idea of the "character­
istic" of a general quadratic equation, for he gives rules for reducing 

parabolas given by yy + 2bxy + 
2cy = bx -

bbxx 
- cc to his standard 

a aa 

forms by a rotation of axis. It is apparent from his general forms that, 
for a parabola, the square of the xy coefficient must equal four times the 
product of the coefficients of the other terms of second degree (if all 
terms are brought to one side of the equation) . For the corresponding 
general forms of the ellipse and hyperbola, he gave a rule on inequalities 
equivalent to the modem B2 - 4A C S 0, but his form of statement is 
considerably more awk:ward. 18 The Elementa curoarum closes with the 
claim that all loci of less than "three dimensions" [third degree] have 
been covered-an aspect of algebraic geometry which had been wanting 
in the work of Descartes. 

The Elements of de Witt is in a sense complementary to the Conics of 
Wallis. W a1lis first expressed the conic sections in analytic form and 
from these equations derived the properties of the curves ; but de Witt 
first derived the properties of the conics geometrically and then 
showed analytically that second-degree equations represent curves 
with these properties. Were one to combine the analytic portions of 
these two works, the result would be a fair approximation to the ma­
terial in modem textbooks. One would even find the familiar locus of 
points for which the sum (or difference) of the distances to two fixed 

11 GeOflldria (1609-1661 ), 11, 283. 
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points is constant, for this proposition was given by de Witt in analytic, 
as well as kinematic, form. However, the political fame of de Witt 
overshadowed that which he might have gained in mathematics, and 
his Elementa curvarum was not much better known than Wallis' Conic 
Sections. 

There is in the early works of Wallis and de Witt a significant omis­
sion, that of the Cartesian emphasis on geometrical constructibility by 
the use of conics. This situation, however, was not representative of 
the period. The year 1659 saw the publication not only of de Witt's 
treatise, but also of the Mesolabum of Rene de Sluse {1622-1685) . The 
title17 and theme of the latter book was suggested by the ancient solu­
tion of the Delian problem by the construction of mean proportionals in 
the manner of Eratosthenes, or through the use of intersecting curves, 
as adopted by Menaechmus. Sluse's "book of means" furnished a new 
stimulus to the Cartesian theory of geometrical constructibility. 
Adopting the e and a of Fermat as the unknowns and using the com­
position of proportions, he reduced "solid" problems to the determina­
tion of intersections of circles and conic sections. He proved that 
for any {determinate) cubic or quartic equation and any given 
conic, he could determine a circle which would, through its inter­
sections with the conic, solve the equation. This is a direct con­
tinuation of the Cartesian tradition ; but whereas Descartes had not 
given the key to the method by which he determined the equation 
used in his constructions, Sluse gave a systematic procedure. Beginning 
with the equation to be solved and with the equation of the given conic, 
he simply manipulated these-by means of substitution and the ra­
tional algebraic operations- until he arrived in the end at the equation 
of a circle. 

The Mesolabum of Sluse achieved wide popularity, in spite of its un­
usual notations, and it appeared in a second enlarged edition in 1668. 
A review of this in the Philosophical Transactions for the following year 
praises the book as "the most excellent Advancement made in this 
kind of Geometry, since the famous Mathematician and Philosopher 
Des Cartes." 18  It had been praised highly by Blaise Pascal {1623-1662) 
and it influenced James Gregory {1638-1675) and Christiaan Huygens 
(1629-1695) in their search for intersecting conics which might solve 
the problem of Alhazen. 11 But if on the one hand analytic geometry in 

17 The full title is M esolabum sea duae meditu l'rof>orlionales inter eztremas dalas iJer cir­
cwlum el iJer infinilas h'Y(Jerbolas wl ellif'ses el f'er quamlibel edibitM, ac 11roblemalonl• 
omnium solidorum ejf ectio f'er eastlem cwnras. I have used the edition of 1668, Leodil Ebur­
onum. 

11 PMlosof>hieal Transactions (1669), p. 003-909, esp. p. 009. 11 See H. W. Turnbull, James Gregory Tercenlenary Memorial Volume (London, 1939), 
p. 435-440. 
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the sense of Descartes received a new stimulus through the Mesolabum, 
on the other hand analytic geometry in the sense of Fermat was ad­
vanced also to some extent by the correspondence of Sluse with 
Huygens on a new class of curves. The so-called "pearls of Sluse," de­
fined as curves given by the equivalent of the equations , .. = u•(a -x)', are interesting as illustrations of the mistakes of the time with re­
spect to negative coordinates. The first pearl-curve suggested by Sluse 
in 1657 was the cubic bly = x1(a - x) . This is a simple cubic poly­
nomial curve but Sluse's knowledge of its shape was limited to the por­
tion lying in the first quadrant, and he mistakenly assumed the ex­
istence of a branch symmetric to it with respect to the axis of abscissas. 
Similarly Sluse did not recognize ay + y2 = ax - x1 as a circle, for he 
drew instead the arc in the first quadrant and then sketched its image in 
the axis of abscissas, giving the curve a special name. In 1658 he sug­
gested such further cases as ay - y1 = x2, ay - y1 = a1x, ay• - y1 = 
ax•, and ay• - y4 = alx1, again under the impression that they were 
pearl-shaped . ., It may be that the widespread use of oblique co­
ordinates at that time obscured the now customary tests for symmetry 
with respect to the axes. Upon finding the point of inflection and the 
critical points in the case of the cubic polynomial curve ax1 - x1 = aly, 
however, Huygens (who had acquired the reputation of being van Schoo­
ten's best pupi121) saw the error into which they were falling and was able 
to draw the correct form. Like de Witt, Sluse was not aware of the 
fact that interchanging the variables x and y results, for rectangular 
coordinates, in the mirror image of a curve with respect to the line y = 
x, and so he gave independent treatments of the two cases. That the 
two coordinates are essentially on the same footing had been implied by 
Descartes and Debeaune. This principle, overlooked by Sluse, was 
more specifically recognized by Philippe de Lahire (1640-1718) ,  one 
of the important contributors of the century to synthetic and analytic 
geometry. 

De Lahire's father was a close friend of G&ard Desargues (1593-
1662) , and so the son undoubtedly came in contact with the new work 
in synthetic geometry. It is true that in general during the seventeenth 
century the projective and analytic schools, although they sprang up 
almost simultaneously, had little in common. Gregory of St. Vincent 
(1584-1667) , for example, in 1647 published a voluminous work, Opus 

• For Sluse's correspondence on these curves see Christiaan Huygens, Oeuwu coml>IAlu 
(22 vols., La Haye, 1888-1950), II ,  47, 76, 88 ff., 93, 106, 121 .  For a general account of 
the pearls see Gino Loria, Spnielle algebraische uftd lranscendente ebene Kurwn. Theoru 
uftd Guchidle (Leipzig, 1902). The early days of analytic geometry and curve sketching 
were marked by surprisingly wide-spread error and misconception. 

II See A. E. Bell, of>. cil., p. 19. 
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geometricum, in which a multitude of properties of the conics are 
derived by a method of perspective. 22 This work anticipated relation­
ships between the circle and the hyperbola which later were developed 
analytically by Riccati, and it gave the quadrature of the hyperbola, an 
important contribution to the calculus. But the Opus geometricum, 
composed in the older language of proportions, had little influence on 
coordinate geometry. Similarly the Brouillon projet21 of Desargues 
in 1639 blazed a new trail in the study of conics ; but his work, too, 
written in a bizarre language, seemed to have little to offer to con­
temporary analytic geometry and it was soon virtually lost and for­
gotten. 

Lahire was one of the very exceptional geometers who were able 
to appreciate both the analytic and synthetic developments in the 
theory of conic sections. Evidence of the inspiration of Desargues ap­
pears in two works by Lahire : Nouvelle m4thode en g'om4trie pour ks 
sections des superficies coniques et cylindriques of 1673 and Sectiones 
conicae of 1685. H These highly valuable and original treatises, both 
synthetic in method, have led to the impression that Lahire opposed 
the new geometry of Descartes ; but a trilogy of 1679 shows him as an 
important link in the continuation of Cartesian traditions. The first 
of the three book:; bound together in this latter work carries the title 
Nouveaux e'lemens des sections coniques. It is a planimetric, but non­
analytic, treatment such as was found in the first book of de Witt's 
Elements. Beginning with the plane definitions in terms of the sum 
and difference of focal radii, Lahire deduced the properties of the ellipse 
and hyperbola. The theorems on the parabola are derived from the 
equality of distances to focus and directrix. The second of the three 
books is called Les lieux g'om4triques, a work which corresponds in a 
sense to the second book of de Witt's Elements, with less emphasis on 
the graphical interpretation of equations and more upon the representa­
tion of indeterminate problems by means of coordinates. In the latter 
connection he hinted (as had Oresme and the anonymous author of the 
Cartesian Introductum of 1638) at a generalization of analytic geometry 
for spaces of more than three dimensions, for he defined a geometrical 

11 See Karl Bopp, " Die Kegelschnitte des Gregorius a St. Vincentio in vergleichender 
Bearbeitung," Abhandlungen 1ur Gescliichte der matlsemalisclim Wissenschaflen, XX ( 1907), 
87-314. A long general account of his work is given in the "Discours preliminaire" in the 
French translation by Rondet of Edmund Stone's Integral calculus--Analise des infiniment 
petits, comf>renant le t.alcul integral (Paris, 1735). A shorter biography is given in the 
paper by H. Bosmans, "Gr�goire de Saint-Vincent," Mat/Jesis, XX.XVIII (1924), 250-256. 11 See Desargues, Oeuwes, ed. by Poudra, 2 vols. ,  Paris, 1864. 

H For a summary of this work see Ernst Lehmann, "De La Hire und seine Sectiones 
Conicae," Jaliresbericht tles Konigliclim Gymnasiums 1u Leipsig, 1887-1888, pp. 1-28 ; or 
refer to Coolidge's history of the Conic Sections and Quadric Surfaces, p. 40-44. 
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locus as a straight line, or a curve, or a surface, etc. , the points of which 
bear the same relationship to the points of a given line. For two dimen­
sions this is a clear expression of the Cartesian view of coordinates with 
respect to a single axis, although Lahire's terminology stems from 
Desargues and the architectural tradition to which he at first belonged. 
The given line he calls the "trunk" and on it he takes a fixed point 0 
known as the "origin."  He calls the points on the trunk "knots" and 
the distances of these from 0 the "parts of the trunk. "  The lines drawn 
at a given fixed angle to the trunk he designates as "branches,"  and 
the ends of these are the loci. This was the first systematic application 
to a coordinate system of a conventional terminology. Previous 
writers had largely extemporized, and although at various times since 
Apollonius certain phrases-including the words abscissa and or­
dinate-had been used, especially in Latin translations of the Conics,• 
in connection with conic sections and coordinates, such terms were not 
recognized as names necessarily corresponding to their present applica­
tion. Frequently .terms like "segment" or "portion" or "intercepted 
diameter" were used instead of "abscissa" ; and throughout the 
eighteenth century the phrase ordinatis applicata, used by Descartes 
and Fermat, appeared and was abbreviated in French either as ap­
pliqule or as ordinle, the latter finally winning out at the end of the 
century. It is not the purpose here to indicate the variety and sources 
of terms used with reference to coordinate systems, 16 but it is well to 

L 

A 

B 
Fig. 19 

11 Borelli's translation of 1661, for example, regularly used the word "abscissa." 
" The reader who is curious about these details should consult Johannes Tropfke, Gesclii­

cllU tler Elementar-M�ile, v. VI (2nd ed., Berlin and Leipzig, 1924) ;  or cf. F. Dingel­
dey, "Coniques" (translated by E. Fabry), Encyclopltlie des sciences mallthnaliqvu, III (3), 
1-256, especially p. 1-15. 
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remark that by 1679 analytic geometry had reached the point where an 
appropriate technical language was felt necessary. Of Lahire's nota­
tions, only the word "origin" was retained by his successors ; but by 
the end of the century the terms axis, abscissa, coordinates, and ordinate 
(or appliqutt) had come to be used generally in the present sense. 
Lahire himself, in a memoir composed thirty years later, adopted the 
words ordinate and abscissa. rr 

Descartes and Fermat both had indicated that an equation in three 
unknowns is represented by a surface, without giving further details. 
Lahire went further in this connection and showed that an indetermi­
nate problem lacking two conditions could be represented as follows : 

Let the problem be to find the point L in space such that if a perpen­
dicular LB is dropped from L to a fixed line OB in a given plane, the 
line LB shall exceed the line OB by a fixed distance a. To illustrate 
this geometrically, Lahire dropped a perpendicular LA from the point 
L to the given plane, and then drew AB perpendicular to OB (Fig. 19) .  
Then with LA = v, OB = x, and AB = y, he was led to the equation 
a1 + 2ax + x1 = y1 + 111 as that satisfied by the coordinates of the point 
L. This is important as the first example of a surface given analyti­
cally by means of an equation ; but Lahire unfortunately did not con­
tinue the problem further. He was chiefly concerned with pointing out 
the degree of indeterminacy of the problem, and so did not bother to 
describe or sketch the locus of L. It is to be presumed that he recog­
nized this as a surf ace, for later he expressly said that the points L of a 
surface are related to the points of a given line OB by passing a plane 
through OB, drawing lines LA , parallel to each other, from the points 
of the surface to the points of the plane, and then from the points A in 
the plane drawing lines AB parallel to each other. This reference to a 
single axis and to oblique coordinates in space resembles the cor­
responding treatment at the time in the plane. When, in the following 
century, interest in three-dimensional analytic geometry was resumed, 
the convention of a single axis was retained, but the developments were 
then limited largely to the case of rectangular systems. 

The twenty-year interval between de Witt's Elementa curvarum and 
Labire's Lieux glomltriques seems to have brought little improvement 
in the matter of negative coordinates. Lahire referred to the fact that 
in determining the intersection of a line with a parabola a root of the 
resulting equation may be false (negative) , but this had been described 
by Descartes long before. Wallis claimed, without adequate justifica­
tion, that the Lieux glomltriques was an imitation of his Conics; but 

n "Remarques sur la construction des lieux geom�triques &: des equations," Mlmoiru tie 
r Acadhnie ties Scienas, 1710, p. 7-45. 
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one wishes indeed that Lahire had followed Wallis' later work in the 
correct use of signed coordinates. It is often asserted that Lahire was 
the first one to recognize that the two axes in a plane Cartesian system 
are on the same footing and that hence the variables are interchange­
able, but such a claim is too strong. Lahire made use of only a single 
axis, as shown above ; and his reference to the interchanging of x and y 
is nothing more than what was implied by Descartes• and appeared 
more clearly in Debeaune long before-that either unknown can be 
measured along the reference line or axis. Lahire repeated the ques­
tion raised by Wallis of determining the form of a curve from an inspec­
tion of the coefficients of the equation, but he did not attempt a general 
solution. 

The third book of Lahire's work of 1679 is La construction des lqua­
tions analytiques. This covers the graphical solution of equations by 
means of intersecting curves in the manner of Descartes. Lahire re­
tained the Cartesian dyadic classification of equations, but he pointed 
out, as had Fermat and Huygens, the error Descartes had made in 
assuming that the construction of equations of degree 2n and 2n - 1 
requires curves of degree n. He laboriously listed correctly the curves 
of minimum order which sufficed to construct equations the degrees of 
which are not greater than 64. Lahire's Construction breaks with the 
Cartesian tradition in another respect, for in solving quintic and sextic 
polynomial equations the construction is not traced back to a moving 
conic but is effected by a direct application of "the parabola of the 
second kind," x1 = aay. It is possible that this change was inspired 
by Wallis who had given the correct form of the cubic parabola more 
than a score of years before. 

The contributions of Wallis to analytic geometry were continued in 
1685 through the publication of his well-known Treatise on Algebra. 
This is interesting for a twenty-chapter account of the algebra of Har­
riot ; but a more relevant portion of the book is the section on the 
customary geometrical construction of polynomial equations beyond 
the second degree. 211 For the solution of the cubic and quartic by 
conics, one is referred to a work published the preceding year by 
Thomas Baker, Tiie Geometrical Key: or tlle Gate of Equations Unlock'd, 
in which only parabolas and circles are used. Wallis, however, sug­
gested an alternative non-conical construction as follows : Let the equa-

11 See La. glomMru, p. 385, for the statement that, given an equation in the two un­
knowns z and y, one can take either of these as the independent variable and determine the 
other in terms of it. 

11 For the continuing importance of this topic in the seventeenth and eighteenth cen­
turies see the works of Favaro and Matthiessen cited in chapter I. In this sense algebra 
and geometry were more closely related then than they are now. 
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tion be a cubic ; or, if it be a quartic, let it be reduced to the resolvent 
cubic. Then transform to remove the second term. Let the final 
equation be R1 - mR = = n or R1 + mR = = n. Now draw the 
"Two Cubick Paraboloeids" y = x1 and y = -x• {Fig. 20) . Let P be 
any point on the y-axis and let the horizontal line through P cut one of 
the curves in the point a. Let F be the point in which the tangent at a 

intersects the y-axis. Now take points H so that fa== = aF: FH, 

Fig. 20 

where H is to the right of F for +n and to the left for - n. Draw the 
ordinates for the points H and let the feet of these be T. Then 
through the points T draw lines parallel to Fa, cutting the cubic 
parabolas in points 0 and Ci> and the axis in G. Then the segments GO 
of these parallels are roots of R1 - mR = = n, and the segments GCi> 
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are roots of R1 + mR - = n. Moreover, the root is positive when 0 
or c..> falls below the x-axis and negative when it falls above this axis. 

The present-day objection to this graphical method would be that it 
is unnecessarily intricate. One might more easily have solved these 
cubics by finding the intersections of y - x1 :1:: mx :1:: n with the x­
axis, or the intersections of y = x1 with the lines y - :1:: mx :1:: n. But 
W a11is in his day anticipated criticisms of a different nature : 

It may be objected against this Construction, that I here make use of a 
Line more compounded for a Problem which may be constructed by a 
Conick Section. 

But this Objection, I take to be (in this case) of no great weight ; because 
it is compensated by cutting this with a Straight line, instead of a Circle. 
Which makes the Construction no more compounded than when a Circle 
cuts a Parabola.111 

Fig. 21 

To compute the extent of this "compounding," Wallis takes a 
straight line to be of weight one, a circle of weight two, a conic section 
of weight three, a cubic "paraboloeid" of weight four, and so on further 
according to the degree of the equation of the curve used. Hence the 
weight of the compounding in the construction of Wallis is four plus 
one, or five, whereas that of canonical solutions making use of a conic 
and a circle is three plus two, or five also. Hence the methods are on 
the same footing in this respect. 

11 Trealise on algebra (London, 1685), p. 275. 
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The Algelwa of Wallis included in an appendix a short treatise he had 
published the year before on a solid figure which he called the cono­
cuneus. It is described somewhat as follows : Given a rectangle ABCD 
(Fig. 21)  and a circle with diameter AB drawn in the plane perpendicular 
to ABCD. Let a third plane, perpendicular to the other two, move so 
as to intersect the line segment CD in point P and the circle in points Q · 

and R. The cono-cuneus is then the figure bounded by the totality of 
lines PQ and PR, continued indefinitely in both directions. This is 
significant as probably the first curvilinear figure other than solids of 
revolution, to be studied in the geometry of three dimensions. It 
would now be called a conoid, but at the time of Wallis this name still 
was applied in the Archimedean manner to the figures obtained by 
revolving a segment of a parabola or hyperbola about its axis. One 
must be cautious about the anachronistic use of terminology. Wallis 
in his Conics had used the words elliptoid, paraboloid, and hyperboloid 
to designate segments of the three types of conic sections, but some his­
torians11 have misread these as referring to general quadric surfaces. 
Wallis may indeed have recognized quadric surfaces, but he did not 
refer to them by the modern names. The lines on the hyperboloid of 
one sheet had been described u by Sir Christopher Wren (1632-1 723) in 
1669, and Wallis again pointed them out in his Mechanica of 1670.11 
Wallis noted the parabolic sections also, but the name given to the solid 
figure was not "hyperboloid" but "hyperbolic cylindroid. " Wallis 
suggested that conic sections be substituted for the circular base of his 
cono-cuneus ; and he proposed alsoH various "pyramidoids" or "con­
oids" in which the sections are similar conics with the ordinates being 
altered in a given ratio. (Here one finds a departure from the 
Archimedean use of the word conoid.) In this work Wallis was led to 
general quadrics, an important step beyond the surfaces of revolution 
with which geometers had been largely preoccupied ;16 but it should 
be noted that neither he nor his predecessors studied three-dimensional 

11 See Heinrich Wieleitner, Gesclliehu tier Matlsematik (new ed., Berlin, 1939), I, 121 :  B. 
Kotter, "Bntwickelung der synthetischen Geometry von Monge bis auf Staudt ( 1847)," 
Jaliresberic1" der Deutsche Mathemaliker- Vereinigung, V ( 1896), part 2, Leipzig, 1901, 65 f ;  
Coolidge , "The Beginnings of Analytic Geometry in Three Dimensions, " Tiie A merican  
MatllemaJical Monthly, L V  ( 1948), 76-86. Kotter points out that in Kepler's Stereometria 
there is a figure which seems to indicate an hyperboloid of one sheet. Cavalieri also may 
have known of this surface. Kotter's article includes considerable material on the early 
history of surfaces. 

n Philosophical Transadions ( 1669), p. 961-962. 
11 See vol. I of his Opera mathemalica (3 vols. ,  Oxonii, 1693-1695). 
M Opera matlsematica, II ,  23-42, 101-1 12. 
• Roberval, for example, had classified loci as either plane or surface, saying that the 

latter are obtained from the former by revolution. Developments in the recognition and 
sketching of surfaces were at first extraordinarily halting. 
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figures analytically in terms of the equations of surf aces. In fact, 
mathematicians of the time were more interested in surfaces as the 
boundaries of solids, the volumes of which are to be determined, than 
as two-dimensional entities with analytic properties of their own. 

Two years after the publication of Wallis' Algebra there appeared at 
Paris an unoriginal work by Jacques Ozanam (1640-1 717) which con­
tinued the Continental tendencies in analytic geometry. This work of 
1687 appeared in the same three parts as Lahire's, with titles as fol­
lows : Traill des lignes du premier genre; Traill des lieux glomltriques; 
Traill de la construction des lquations. This triple division of the new 
geometry-made up of first a general theory of conics ; then a study of 
equations, especially of second degree ; and finally the application of in­
tersecting curves to the solution of equations-had become a tradition 
which persisted well into the following century. Ozanam's work 
helped to establish this tradition, but it added little to the material of 
analytic geometry. It served rather to strengthen the unfortunate im­
pression left by Descartes that the study of curves had no intrinsic 
value but served only to facilitate the geometrical construction of the 
roots of algebraic equations. In fact, the author states in the introduc­
tory "Au Lecteur" of the Traill des lignes that this treatise "was com­
posed chiefly in favor of those who wish to know how to solve equations 
of more than two dimensions by means of conic sections. "  However, 
Ozanam followed Wallis and Lahire in supplying also non-Cartesian 
solutions of cubics and quartics through the use of the familiar cubic 
parabola. 18  

Ozanam's treatment of linear and quadratic equations is unexcep­
tional in its lack of generality. He did not show that an equation of 
first degree in all cases represents a straight line, nor did he consider the 
general equation of second degree. There is, however, an original 
touch where the author derives the standard equation of the parabola 
y1 == px from the corresponding forms of the ellipse and hyperbola y1 = 

px ::1: P;1 by allowing the axis d to become infinite. In such suggestive 

but uncritical language one may see the influence of contemporary 
work in the calculus. In general, however, it is surprising that the two 
fields of analytic geometry and infinitesimal geometry remained so dis­
tinctly separate at that time. Even the Newtonian and Leibnizian 
infinitesimal methods of determining tangent lines seem frequently to 
have been neglected by Cartesian geometers who continued to use the 
awkward circular construction given in La glomltrie. Perhaps one 

• Loria, "Da Descartes e Fermat a Monge e Lagrange," p. 806-807, incorrectly implies 
that Ozanam was first to give this. 
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reason for this is to be found in the surprising fact that neither field had 
yet developed a general theory of curves beyond the conics. 

The uninspired work of Ozanam. was one of the last systematic com­
mentaries of the century,17 and the next dozen years or so leave the 
definite impression that enthusiasm for the calculus was responsible for 
a neglect of other branches of mathematics. The scientific journals of 
the time carried numerous articles on infinitesimal methods and prob­
lems, but few on either analytic or synthetic geometry. The formula 
for radius of curvature, for example, appeared frequently in L'Hospi­
tal's calculus of 1696,18 but the distance formula did not appear in his 
analytic geometry of 1707. The indefatigable Bemoullis shared this 
tendency, but they found time nevertheless to add in a significant way 
to the history of analytic geometry. Polar coordinates had been im­
plicit in a number of earlier works, such as that of Archimedes on the 
spiral. The comparison of spiral curves and parabolas was a favorite 
topic of the seventeenth century-especially for Cavalieri, Torricelli, 
Gregory of St. Vincent, Fermat, Roberval, Pascal, and Sluze-and 
this work bears definite resemblance to the use of polar methods. 
Jacques Bernoulli (1654-1705) in 1694 seems to have glimpsed the 
possibility of vectors in a general coordinate system, for he derived a 
formula for radius of curvature in polar coordinates. 19 He took the 
"applicata," y, as a radius measured from a fixed pole or "umbilic, " and 
as abscissa, x, the arc of a circle of radius a, and center at the pole, 
intercepted by the radius and a given fixed line [polar axis] .  To put 
his coordinates in modem form, one needs simply to replace the symbol 
y by r and x by a8. He applied his new theorem (which is easily con­
verted to the modem formula of the calculus) only to the spiral of 
Archimedes, y = ax :  c. In the Acta Eruditorum a few years earlier'° (in 
1691) Bernoulli had suggested a somewhat different scheme related to 
polar coordinates. He took the equation of the parabola yy = lx and 
inquired what the curve would be like if one were to measure the 
abscissas along the circumference of a fixed circle, the ordinates being 
taken along the corresponding normals to the circle. The resulting 
curve, obtained by bending the axis of the parabola around the circle, 

" However, Paul Tannery, "Notes sur les manuscrits fran�is de Munich 247 a 252," 
An1UJles intemationales d'histoire (Congres de Paris, 1900), 5th section, Histoire des sciences, 
pp. 297-310, has described a large unpublished work of 1982 pages, composed about 1700, 
with the title "Application de l 'a1gebre et des lieux geometriques pour la solution des 
probl&nes de geometrie." This manuscript is attributed to Ozanam, and the theme of it is 
similar to that of his published work. 

• It was, of course, known earlier to Huygens, Leibniz, Newton, and the Bernoullis. See 
]. L. Coolidge, "The unsatisfactory story of curvature," A m. Math. Monthly, LIX ( l952) , 
375-379. 

n See Jacques Bernoulli, Opera (2 vols. ,  Genevae, 1744), p. 578-580 ; or Aclo Erllllilorum, 
1694, p. 264-265; or Bibliotheca Mathematica (3), XIII ( 1912-1913), 76-77. 

• See Opera, I, 431 f. 
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he called a parabolic spiral or helicoidal parabola. Its equation in 
modern polar coordinates would be (a - r} 1 = la8, where a is the radius 
of the circle. The work of Bernoulli seems to be the earliest published 
application of the idea of polar coordinates in analytic geometry, n but 
the new system went largely unnoticed. 

In 1695 Jacques Bernoulli saw to the publication of the fourth Latin 
edition of van Schooten's translation of Descartes, and with this he in­
cluded extensive comments on a favorite Cartesian topic-on the 
graphical solution of polynomial equations. 42 In this connection he 
added his name to the long list of those who, like Fermat, had corrected 
Descartes' inference that a curve of order n is necessary for the construc­
tion of an equation of degree 2n. In his treatment of the topic Ber­
noulli took exception also, as had W a1lis before him, to the Cartesian 
insistence on solutions by curves of lowest possible degree, as well as to 
the system of classification of Descartes. He preferred to arrange 
curves by degree, and he said that geometers had given no reasons to 
support the authority of Descartes on the matter of simplicity. Ber­
noulli pointed out that if one were to attempt the construction of a 
ninth-degree equation such as x9 + mx7 + nx8 + px5 + qx' + rx• + 
sx1 + tx + v = 0 in terms of cubics, the usual procedure of substituting 
a2y = x• in the first five or six terms results in a cubic non-polynomial 
curve of the form a8y1 + a'mxy2 + a'ny1 + a1px'y + a1qry + a"ry + 
sx1 + tx + v = 0 which would be exceedingly difficult to draw. He 
therefore proposed an alternative method of solution as follows : 
Let the equation to be solved be x6 = ax' + b2%1 - c1x1 - d4x + fl'. 

· . . • • . b1 c• d' e6 
Divide this by x', obtaining x = a + x -

x
i -

x• + 
x' . Now con-

b2 c• 
struct [for positive abscissas] the points of the curve y = a + - - I -

x x 

� + � , a  simple quartic polynomial in the reciprocal of x (Fig. 22} . 
x x 

This construction can easily be made by means of proportions of various 
orders, inasmuch as only rational operations are involved. Then the 
ordinates of the points of intersection of this curve with the line y = x 
are lines representing the positive roots of the original quintic equation. 
Bernoulli indicated that this procedure can be applied to polynomial 

41 An earlier hint of somewhat the same idea is found in the work of James Gregory who 
suggested that a curve be bent in such a way that all the ordinates become concurrent 
radii through a point, while the length remains unchanged. See James Gregory Tercenten­
ary memorial volume (ed. by H. W. Turnbull, London, 1939), p. 493 f. (Cf. J. L. Coolidge, 
"The Origin of Polar Coordinates," Proceedings of the Interna,ional COflgress of Mathema­
ticians, 1950, V. I, p. 749 • 

., Notae et animadfle1'sitme.s '"multuariae in unifle1'sum otnu geome,riam Cartesii, p. 423-
4�. Cf. also Acta ENlllilorum for 1688. 
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Fie. 22 

equations of any degree."  The attitude of the time on the shibboleth 
of constructibility is seen in Bernoulli's assertion that he "is not ashamed 
to use this method."  

Two years later, in a letter to Leibniz of April 3, 1697, Jean Bernoulli 
{1667-1748) likewise broke with the Cartesian tradition by suggesting 
an alternative construction of equations. 44 In this letter he drew a 
curve, presumably of a quartic polynomial, and indicated that the in­
tersections of this with the axis {of abscissas) gave the roots of the 
equation. Here one sees the modem graphical solution of polynomial 
equations ; but the graphical representation here was incidental and 
not specifically for the purpose of solving the equation. Moreover, 
this work was not published at the time ; but it is quite possible that it 
was known to L'Hospital, an eager student of Jean Bernoulli, who 
published a somewhat similar method in the following century. 

The correspondence of Jean Bernoulli with Gottfried Wilhelm von 
Leibniz (1646-1716) tells of a general development in mathematics 
which in the end was found to influence analytic geometry. The 
seventeenth century saw the old language of proportions give way to 
the symbolism of equations in two unknowns, so that in 1693 Leibniz 
expressed the definitive opinion : "I have always disapproved of the 
fact that special signs are used in ratio and proportion, on the ground 
that for ratio the sign of division suffices and likewise for proportion the 

" See Jacques Bernoulli, Opera, II, 689-691. Cf. I, 343-351. 
" See Leilmisem mathnnalische Sclvsflen (ed. by C. I.  Gerhardt), III {part I ), Halle, 

1855, p. 390-391 and Fig. 5. 



130 HISTORY OF ANALYTIC GEOMETRY 

sign of equality suffices. "  Equations had become the recognized form 
of representation for functional relationships, and the particular sym­
bolism of equality which was finally adopted was the familiar two 
parallel lines of Recorde which Viete, Newton, and Leibniz popular­
ized. At first Leibniz and Bernoulli used the word function with 
various connotations tending toward the modern meaning. Originally 
it designated certain variable geometrical quantities-such as or­
dinates, tangents, and radii of curvature--connected with a given 
curve ; sometimes the term indicated powers of algebraic variables. 
By 1718 Bernoulli had come to apply the expression generally to 
"quantities formed in any manner whatever of an independent variable 
and constants. ' '  Leibniz already had rechristened the "geometric" 
and "mechanical" curves of Descartes, using instead the names "alge­
braic" and "transcendental, " and Bernoulli carried this terminology 
over into the now familiar classification of functions. The notation 
f(x) was not used at the time but entered about 1734 with Clairaut and 
Euler, two men who were to play decisive roles in the next period in the 
history of analytic geometry. 

While Leibniz and the Bemoullis were spreading the new calculus on 
the Continent, there appeared in Scotland a little-noticed writer who 
published works important in both analytic and infinitesimal geometry. 
John Craig ( t1731) is said to have been one of the first two Qacques 
Bernoulli being the other) to take up the study of the calculus, and in 
1685 and 1693 he published two treatises on the subject. The first, 
M ethodus figurarum lineis rectis et curois compre'hensarum quadraturas 
determinandi, is devoted especially to the calculus (only a year after the 
cryptic paper of Leibniz had appeared !) , but it is of some interest also 
in analytic geometry. In finding the areas of parabolas of varying de­
gree, Craig uses the figure of an Apollonian parabola in all cases, in­
cluding the cubical and semicubical. The author apparently was not 
familiar with the correct use of negative coordinates made by Wallis 
almost thirty years before. However, the second work by Craig, 
Tractatus mathematicus de figuraritm curvilinearum quadraturis et locis 
geometricis, made an important . positive contribution to analytic 
geometry. It contained a section, entitled "Nova methodus deter­
minandi loca geometrica, " 46  in which a new method is proposed for 
determining the nature and properties of the conic section represented 
by any equation of second degree with respect to Cartesian axes, rec­
tangular or oblique, without the reduction of the equation by means of 
the geometrical transformations emphasized by de Witt and van 
Schooten, to whom Craig refers in complimentary terms. The method 

41 Tractatus malhemalicw, p. 62-76. 
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depends upon the derivation of four standard forms-one for the 
ellipse, one for the parabola, and two for the hyperbola-and inasmuch 
as the approach is similar in all four cases, it will suffice to illustrate it 
here for the parabola. Let A be a "certain and immutable fixed point" 
(i. e. , the origin) and AE a "straight line in any given position extended 
indefinitely" (i. e. ,  the axis of abscissas) . Let G be the vertex of a 
parabola GD {Fig. 23) with diameter GH and latus rectum r. Let AED 
be the given or assumed angle which the coordinates make with each 
other. Through A draw A F  parallel to GH and AK parallel to ED. 
Let BC be a fixed line drawn parallel to ED and let AB = m and BC = 
n. Then if AE = x, ED = y, A C  = e, AK = k, KG = l, the equation 
of the parabola is found to be 

,1 + 2nxy _ 
2ky 

+ nnxx _ 2nkx + kk _ 
rex + rl = O. 

m mm m m 

This is, of course, the general equation of a parabola with vertex (l, k) 

and axis inclined to the x-axis at arctan ( - ; ). If one compares it 

with the usual modern form, Ax1 + 
Bxy + Cy1 + 

Dx + Ey + F = O, 

___ .., o  

K 
H 

A B E 
c F 

Fig. 23 

it is apparent that, for any parabola, B1 - 4A C must be zero. Craig, 
like de Witt, did not specifically refer to this quantity, now known as 
the characteristic, but it seems likely that he was aware of its signifi-
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cance. From Craig's general form it is also clear that the angle of in­

clination of the axis is given by tan 28 = 
A 

� 
C

' a fact which again he 

undoubtedly recognized. 
After repeating the above procedure with the x and y coordinates in­

terchanged, Craig then used the method of equating coefficients to com­
pare the equation of a given parabola with one or the other of his two 
standard forms in order to determine analytically the properties of the 

curve. Given the equation y1 -
b"; + : - bx - dd = 0, for ex-

2n b 
ample, he noted that - = - -, indicating that the tangent of the angle 

m a 

between the axis of the curve and the axis of abscissas is�- Moreover, 

it is clear from the comparison of coefficients that k = 0, that r csc 8 = 
- d1 csc (J 

b or r = b sin 8, and that rl = -d1 or l = 
b 

, so that the orien-

tation, vertex, and latus rectum of the parabola are known without re­
course to geometrical diagrams." 

Craig similarly derived standard forms for the ellipse and hyperbola, 
first with respect to the x-axis and then with respect to the y-axis. In 
order to avoid a division by zero, he treated separately the case of the 
hyperbola in which the coefficients of x1 and y1 (but not of :icy) are zero. 
Through a comparison of the coefficients of the equation of a given 
conic with those of his canonical forms, Craig was able to derive ex­
peditiously the properties of the curve. His work thus represents the 
most thoroughly analytic treatment of the general equation of second 
degree to appear in the seventeenth century. His forms may strike a 
modern reader as unduly awkward, but part of this impression is due to 
the fact that he lacked the trigonometric symbols and formulas which 
today make the rotation of axes a simpler procedure. The method he 
proposed compared favorably with those of his contemporaries and was 
adopted by L'Hospital, the most successful textbook writer of the 
eighteenth century. '7 

t1 The language and notation of Craig have been slightly modified, for purposes of ex­
position. He did not use the modern trigonometric symbols, but made use instead of the 
sides of an auxiliary triangle, as was customary in his day. The more modern approach to 
trigonometry entered about half a century later through the work of Euler. 

a Yet the work of Craig has been almost completely overlooked by historians, and much 
of the credit he deserves has gone instead to L'Hospital. Craig is not mentioned by Cool­
idge, Loria, or Tropfke, three of the outstanding historians of analytic geometry. Wieleit­
ner, however, gives a fair account of his work in Geschiclde tler Malhematile, Vol. I I ;  part II 
(Berlin and Leipzig, 1921 ). 
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In spite of Craig's error with respect to negative coordinates, in con­
nection with the higher parabolas, mathematical correspondence and 
articles of the last part of the seventeenth century show that ideas on 
this point where becoming clearer.• The folium of Descartes had be­
trayed the erroneous views of geometers with respect to negative co­
ordinates. In 1663 Huygens considered only the portion in the first 
quadrant, but his letters to L'Hospital in 1692 and 1693 show the com­
plete curve sketched correctly."' The correct graph of the lemniscate, 
given by Jacques Bernoulli in Acta Eruditorum of 1694, shows skill in · 

the plotting of curves. Both of the Bernoulli brothers ref erred to the 
radius vector in the sense of a coordinate, anticipating the use of polar 
coordinates, and Jean suggested a scheme of plane coordinates making · 

use of the radius vector and the ordinate-an interesting compromise 
between the rectangular and polar systems-but such ideas were de­
veloped more particularly in the following century. Jean Bernoulli in 
1692 used the name "Cartesian" for geometry based on a coordinate 
system, and it is interesting to note that he interprets . this as the de­
termination of the equation of any curve given by an assigned property. 
The converse Fermatian aspect, the graphical representation of equa­
tions, had not achieved a prominent place during the age of commen­
taries, but it was, at least for algebraic curves, to be a focal point in the 
development of analytic geometry throughout the first half of the 
eighteenth century. Jean Bernoulli'° and Leibniz encouraged the 
study of transcendental · curves, especially of the form r = y, x' + y 
� r + x, etc. Leibniz emphasized that his calculus, unlike that of 
ViMe and Descartes, was applicable alike to algebraic and transcen­
dental curves, and Jacques Bernoulli said that geometry should study 
curves "which nature herself can produce by simple and expeditious 
motion" ; but non-algebraic curves were not well-adapted to the 
methods of Cartesian geometry and so generally were not incorporated 
into the subject. Leibniz in letters of 1694 first used the word "co­
ordinates" in the strictly modern sense and recognized the two co­
ordinates as on the same footing. Correspondence in 1697 and 1698 of 

• Carlo Renaldini, Opera matllemat11m (3 vols. ,  Patavii and Venetiis 1684) seems to indi­
cate a lack of progress along these lines in Italy as compared with that in other countries of 
Europe. Numerous equations of "Medicean curves" are proposed, but they are not plotted. 
In Spain also there seem to have been few contributors to coordinate geometry. P. A. 
Berenguer in "Un g�etra espanol del siglo XVII," El Progreso Matemdlico, V ( 1895), 
1 16-121 ,  cites Antonio Hugo de Omerique as a precursor of modern analytic geometry ; but 
the second half of his A nalysis geometrica (Cadiz, 1698) was not published, making an esti­
mate of his work impossible. 

•• See Huygens, Oe11r11-es com/i/Mu, X, 351 f., 378-417. Cf. IV, 238, 246, 312, 316. 
• See Jean Bernoulli, Opera omnia (4 vols. , Laussanae and Genevae, 1744), I, 179. He 

sometimes is referred to as the inventor of "the exponential calculus." Transcendental 
curves consistently have played a larger role in the calculus than in analytic geometry. 
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Jean Bernoulli with Leibniz and L'Hospital on geodetic lines shows 
that he was undoubtedly familiar with the use of space coordinates, 
another aspect of analytic geometry to be developed during the follow­
ing century. 

It is surprising to note that the development of a general theory of 
curves also was a contribution of the eighteenth century. The inven­
tion of analytic geometry had opened the door to the easy definition 
and classification of an indefinitely great variety of curves, but the age 
of commentaries did not exploit this possibility. Coordinate methods 
at first were used largely to study old curves, the conics especially, 
rather than to invent new ones. In fact, the new curves which did ap­
pear in the interval between Fermat and Newton frequently were de­
fined by other than analytic means, and these did not become a part of 
coordinate geometry until Euler later developed a general theory of 
functions. When in the crucial decade from 1634 to 1644 the simple 
logarithmic and sine curves had made their appearance, they were not 
plotted as the graphs of the equations y = sin x and y = log x, for the 
function concept had not been introduced in these situations. The 
definition was in terms of superimposed motions and of geometrical 
transformations, ideas developed especially by Roberval and Evangel­
ista Torricelli (1608-1647) , the men to whom it appears we owe the 
first graphs of these curves. 

The method of the composition of movements frequently is ascribed 
to Galileo, but in physics it goes back at least to the time of Aristotle, 
and in mathematics it is found still earlier in the quadratrix of Hippias. 
At about the time that Galileo was applying the method to projectile 
motion, the study of the cycloid again brought it into prominence in 
mathematics as a means of defining curves. It may well have been the 
cycloid which suggested in turn the new logarithm and sine curves. 61  
Logarithms had been defined by Napier in terms of velocities of moving 
points-a line representing the number (or sine) decreased with a 
speed diminishing in geometrical progression while another line repre­
senting the logarithms of the number increased with uniform speed. 
Torricelli seems to have been the first one to modify this idea by im­
posing these two types of motion upon a single moving point : that is, 
he took abscissas at equal distances and drew the corresponding 
ordinates, beginning from a fixed initial ordinate, in continued geo­
metric progression, with ratio less than one. This gave him a mono­
tonically decreasing curve which, because of its form and generation, 

11 See Gino Loria, "Le ricerche inedite di Evangelista Torricelli sopra. la curva logarit­
mica," Bibliotlleca MaU&emalica (3), I ( 1900), 75--89 ;  and Evelyn Walker, A Stud.7 of the 
Traill des intlmsiblu of Roberval (New York, 1932). 



AGE OF COMMENTARIES 135 

Torricelli called the hemhy/>ef'bola logaritmica. He showed that the 
subtangent of this curve is of constant length, and he found also the 
area between the curve, its asymptote, and a given ordinate. 

The composition of motions had been one of the foremost means of 
defining new curves, but Roberval and others extended it to all the 
higher plane curves then known, as well as to the conic sections. The 
kinematic tangent methods of Descartes, Roberval, and Torricelli 
were so widely and effectively applied that they rivaled the analytic 
methods of Descartes and Fermat. It may well be that the two points 
of view in the early development of the calculus resulted directly from 
this rivalry between two methods of curve definition, with the com­
position of motions leading through Barrow to the fluxions of Newton, 
and with the analytic view culminating in the differentials of Leibniz. 

During the seventeenth century the kinematic and analytic ap­
proaches were rivaled, in the discovery of new curves, by a method at 
once new and old-that of geometric transformation. The Ptolemaic 
and Mercator projections in the construction of maps, and the methods 
used by artists (especially Leonardo da Vinci and Diirer) in enlarging or 

D - - _ ,  _ _ _ _ _  - -
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reducing the scale of a design, represented simple examples of such 
transformations. The work of Desargues and Pascal in transforming 
conics projectively was but one instance among numerous types of 
curve transformation widely used at the time. In determining the 
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quadrature of the cycloid, for example, Roberval had occasion to make 
use of a new curve defined by the following transformation : Let the 
ciccle OCF roll along the line OA and generate the cycloid OPB (Fig. 
24) . For any point P on the cycloid draw the line DP F parallel to OA , 
and on this line take PQ = D F. The locus of Q is a sine curve which 
divides the rectangle OCBA into two parts, each equal in area to the 
generating circle. Since the area OPBQ is equal to the semicircle OCF, 
the area of OPBA is 3/2 the area of the generating circle. Roberval 
did not call the curve OQB a sine curve, but merely the "companion of 
the cycloid." However, it is probable that he was aware of its connec­
tion with the trigonometric functions, for in another connection he 
constructed part of the same curve by plotting the sine lines of a 
quadrant of a circle as functions of the corresponding arc lengths. 
That the first consciously constructed graphs of a trigonometric func­
tion were motivated by the geometrical transformation of sine lines 
rather than by the analytical function concept probably explains the 
surprising fact that the notion of periodicity entered so slowly into the 
theory of goniometric functions. Wallis in the Meduinica of 1670 de­
scribed the periodicity of the sine and cosine curves, drawing two full 
cycles of the sine curve ;62 and De Lagny in 1705 and Cotes in 1722 indi­
cated the periodic nature of the tangent and secant curves ; but only 
after 1748, when Euler's Introductio in a.nalysin infinit<wum emphasU.ed 
the multiple angle formulas, was the periodicity of all the trigonometric 
curves generally recognized. 

Several of the new curves discovered in the seventeenth century were 
found to have striking tangential properties. For the "parabolas of 
Fermat," y = kx•, the ratio of subtangent to abscissa was found to be 
1/n; and the subtangent of the exponential curve was constant. Such 
discoveries suggested to geometers the possibility of reversing the 
question-of seeking new curves the tangents of which should possess 
certain properties specified a. priori. Debeaune in 1637 sought, in this 
connection, a curve for which the ratio of the ordinate to the subtangent 
should for every point be proportional to the difference between the 
coordinates of the point. This deliberate search for curves exhibiting 
preassigned tangential properties may be looked upon as a further step 
in the systematic definition of curves.11 Moreover, the merging of in-

•• Opera, I, fig. 201 opposite p. 542. Cf. p. 504-005. 
11 The following supply a wealth of information on curves in general : Gino Loria, St>esWJU 

al,.,,,aiscb und lranszendente ebena Ku"1m (2 ed. 2 vols. ,  Leipzig and Berlin, 1911 ) ; F. 
Gomes Teixeira, TraiU des courbes spkiales remarquables planes et gauches (transl. from the 
Spanish, 2 vols. , Coimbre, 1908-1909);  H. Brocard, Notes de Mbliograpllie du courba ilo­� (Bar-le-du�, 1�7) ; D. Joaquin d� Vargas Y .Aguirre. "Catilogo general de cur­
vas, R. Acatl. de csncttU aaclas de Madrid, Memorsas, XXVI ( 1908) ; R. C. Yates, A. 
Han4booll on Cu"1U and TMir Pro(Jernu (Ann Arbor, 1947). 
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verse tangent problems with the kinematic definition of curves did 
much to inspire Newton's invention of the calculus. The calculus then 
reciprocally Served as a still further means of curve determination, for 
every differential (or :fluxionary) equation in one function of a single 
independent variable (subject to given boundary conditions) implies a 
distinctive plane curve. During the following century algebraic geome­
try and the calculus grew to maturity together, but their close associa­
tion was not entirely advantageous to the older of the two. That the 
development of analytic geometry from Newton to Monge was so sur­
prisingly halting appears to have been due in part to the fact that this 
subject was overshadowed by the more novel and powerful-and 
hence more attractive-methods of infinitesimal analysis. 



C H A P T E R  V I I  

From Newton to Euler 
There uw far more imagination in the head of Archimedes than 
in that of Homer. -VOLTADtB 

THE eighteenth century was in some respects a prosy period in the 
history of science and mathematics. The preceding age had run 
off with the honors in the form of the great law of the universe 

and the mathematical means of exploiting it. To the eighteenth cen­
tury was bequeathed the task of sharpening the new analytical instru­
ments ; but in pursuing this assignment there appears to have been, 
until the very close of the century, far more enthusiasm for the calculus 
than for algebraic geometry. The work of Sir Isaac Newton (1642-
1727) in the calculus belongs properly in the seventeenth century, with 
the publication in 1687 of the Principia; but his chief contribution to 
analytic geometry appeared in the eighteenth, with the publication in 
1704 of the Opticks. As the rules of the calculus were given unobtru­
sively as a lemma in the middle of the former book, so the work in 
analytic geometry was relegated to an inconspicuous place as one of 
two appendices in the latter volume. This appendix, the Enumeratio 
linearum tertii ordinis, had been composed at least by 1676 and had 
been revised in 1695, but publication was delayed by Newton's aver­
sion to putting things into print. In the Enumef'atio analytic geome­
try in the sense of Fermat may be said to have come into its own. 

Newton is reported to have mastered the Glomltrie without any 
preliminary study, but he also extended it in a new direction. In the 
geometry of Descartes curves were defined (except in the case of those 
of first and second order) as loci of moving points, and they were con­
sidered exclusively as auxiliaries in the solution of determinate alge­
braic equations. Newton, on the . other hand, was more concerned 
with the converse or Fermatian aspect of the subject. The Enumera­
tio opens with a brief description of the meaning of coordinates and of 
their use in determining curves by means of equations. 1  Then, for 

1 An extensive account of this work is given by W. W. R. Ball, "On Newton's Classifica­
tion of Cubic Curves," Proceedings of Use London Malhematical Societ1, XXII ( 1890), p. 
104-143. A summary of this appears in Bibliotlteca Ma.fhemalka, new series, V ( 1891), p. 
36-40. The Enameralio was given in an English translation by Talbot, but I have not seen 
this. I have med the Latin edition of 1787. 

138 
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the first time since Fermat, a whole class of new curves defined by cubic 
equations in two unknowns are plotted as a matter of intrinsic in­
terest. It is, in fact, the first instance of a work devoted solely to the 
theory of curves as such. Newton noted 72 species of cubics (half a 
dozen are omitted) , and a curve of each species is carefully drawn. 
In this respect the work opened up an essentially new field, that of 
higher plane curves. Moreover, one finds for the first time the sys­
tematic construction of two axes. The second line is not called an 
axis, but only the principal ordinate, and it is not used in quite the 
same sense as the axis of abscissas. The origin is looked upon as the 
initial point for abscissas only, inasmuch as ordinates are not measured 
along the principal ordinate line. There is no hesitation, however, 
with respect to negative coordinates, and the curves are plotted com­
pletely and correctly for all four quadrants. Newton is sometimes 
given sole credit for the correct use of negative coordinates, but he 
had been anticipated to some extent by others, notably Wallis and 
La.hire. Such use seems to have developed but gradually in the period 
following Descartes. In 1692 Christiaan Huygens (1629-1695) in a 
letter to L'Hospital correctly sketched the folium of Descartes, to­
gether with its asymptote, showing familiarity with negative co­
ordinates. 1  Men of the eighteenth century continued in many cases to 
use a single axis, but the sketching of curves and the use of negative 
values of the coordinates were fairly well established before the middle 
of the century. Coordinate axes in the Enumeratio, as in many other 
works of t)ie period, generally are assumed to be oblique. Trans­
formations of axes are not specifically given, but Newton was ob­
viously familiar with them inasmuch as they are necessary for the re­
duction of equations to his canonical forms. He noted, as had Des­
cartes, the invariance of the degree of an equation under the usual 
transformations, and he interpreted the degree as the number of pos­
sible intersections of the curve with a straight line. He abandoned 
the Cartesian classification for the modem designation according to 
degree, thus making way for the idea of order of a curve. This work 
also provided for a new distinction between algebraic and transcenden­
tal curves. Descartes had thought of curves as "geometrical" or 
"mechanical" according as the motions were algebraically determined 
or not-that is, according as :� = : + : is algebraic or not. Ne wton 
described a curve as transcendental or algebraic according as it does or 
does not intersect some straight line in an infinity of points, real or 
imaginary. 

1 Oeimu comfiUtes (22 vols. , La Haye, 1888-1950), X, p. 351, 378. 
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Newton did not discuss the conics except as a guide in finding analo­
gous properties for the cubics. Thus, he defined a diameter of a cubic 
as the locus of points on a set of parallel chords such that from these 
points the sum of the two segments of the chord intercepted by the 
curve on one side is equal to the segment on the other side. If the diam­
eters go through a single point, this is known as the center. Other 
properties of conics related to vertices, axes, latus rectum are modified 
suitably so as to apply to cubics. As the hyperbola has two asymp­
totes, so Newton pointed out that a curve can have only as many asymp­
to_tes as is indicated by the order ; and as all conics are projections of 
the circle, so all plane cubics can be obtained by projection from the 
five divergent parabolas given by y2 = ax8 + bx2 + ex + d. (Newton 
was one of the few early figures generally to abandon the homogeneous 
form of expression for equations, although Descartes had suggested 
this.) In general, Newton saw that the order of a curve under projec­
tion is invariant, and he went further to define two curves to be of the 
same genus if one can be obtained from the other under projective 
transformation. He accordingly classified curves of third order into 
five genera including 72 species. 

Newton's interest lay especially in the Fermatian graphical study of 
given equations, but he contributed also to the kinematic generation of 
curves in a manner strongly reminiscent of Descartes' hierarchy of 
"Cartesian curves."  Book I of the Principi,a contains dozens of prob­
lems on the determination of conic sections satisfying given conditions 
-having given foci, passing through given points, and tangent to given 
lines. Among them one runs again into the Pappus problem which 
loomed so large in La glomltrie of Descartes ; but Newton's solution of 
1 1that famous Problem of the ancients concerning four lines, begun by 
Euclid and carried on by Apollonius, " is synthetic rather than ana­
lytic.• Of greater interest is the Newtonian 1 1organic description of 
curves, "  a topic likewise reminding one of the Cartesian construction 
of loci. Newton had two angles of fixed magnitude and with fixed 
vertices 0 and O' rotate about 0 and O' so that the intersection P' of 
one side P'O of the one angle with one side P'O' of the other should 
lie on a given curve P'C' (Fig. 25) . Then as P' moves along P'C', the 
point of intersection P of the other two sides of the angles will de­
scribe a curve C. Newton pointed out that if P'C' is a line, then PC 
is a conic ; if P'C' is a conic passing through O', then PC is a cubic 
passing through 0 with a double point at O'. If P'C' is an arbitrary 
conic, then PC is either a cubic or a quartic. 

• Sir  Isaac Newton's Matlsemalical Principlu (Cajori's revision of the Motte translation, 
Berkeley, California, 1946), p. �l. Cf. p. 76-80. 
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Newton's contribution to the theory of curves was not limited to the 
Enumeration of Cubics and the Princi.pia, for he had composed still 
earlier a work which Horsley published in the Opera of 1779 as A rlis 
analyticae spedmina vel geometria analytica. The title of this treatise 
includes the phrase which later was to become the standard designation 

c ·  

Fig. 25 

of Cartesian or algebraic geometry, but here it designated a Newtonian 
work collated from three manuscripts essentially the same as that 
published by Colson in 1736 as the Method. of Flwcions.' It is pri­
marily on the calculus, but it includes material in other fields as well,• 
and considerable of it touches upon coordinate geometry. The open­
ing sections are on the algebraic solution of equations, after which 
Newton describes a "diagram" which later came to be known as 
Newton's parallelogram. This well-known diagrammatic representa­
tion of polynomial equations of the form f{x, y) = 0 was used by New-

• Tise Mdltotl of Fluions and Infinite Seriu; flliUJ Its Af>plialliofl lo IM Geomelry of CtUW­
Li'"'5 trans. with commentary by John Colson (London, 1736).  

• See Opera q146e ezstant omnia (5 vols., Londini, 1779-1785), I, 391 f. A brief description 
is found in H. W. Turnbull, MatMmaiia» DisC'10fWiu of NevJltnl (London and Glasgow, 
1945). The Mdhotlusflmonum will also be found in Newton's Ot>tu"'1a (3 vols., Lm••nnee 
and Genevae, 1744), I, p. 29-200. 
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ton to get successive approximations for one variable ex.pressed as a 
function of the other through a power series · convergent for small 
values of the latter ; but in the early eighteenth century it became 
popular in the theory of curves as a quick method of obtaining graphi­
cal approximations for the curve about the origin. 

The Geometria ana/.ytica includes maxima and minima, tangents, 
radii of curvature, and quadratures, all treated in an analytic manner 
which is in marked contrast to the synthetic form of the Principia. 
The term analytic geometry is applied, apparently, to "the applica­
tion of algebra to geometry,"  especially "through the equations of 
curves. "  The work is full of locus problems and of curves sketched 
from equations. In some cases the curves are given kinematically or 
by differential equations, but generally they are sketched for all 
quadrants. Among the graphs one finds the Cartesian parabola and 
the parabolas and hyperbolas of Fermat. Newton derived also the 
equation y = a1/(a1 + s2) for a locus which he described as "con­
choidal, "  but which later was known as the witch of Agnesi ; but in 
studying and sketching this he had been anticipated by Fermat and 
Huygens.• 

The contributions of Newton to coordinate geometry are not well 
known, and one aspect in particular has been completely overlooked 
by historians-his use, in the Geometria analytica, of polar coordinates . 
Having shown how to apply the method of fluxions in finding tan­
gents to curves given analytically in Cartesian coordinates--oblique 
as well as rectangular-Newton added : 

However, it may not be foreign from the purpose, if I also shew how the 
problem may be perform'd, when the curves are refer'd to right lines, 
after any other manner whatever : so that having the choice of several 
methods, the easiest and most simple may always be used . 

A little later he indicated that 
The problem is not otherwise perform'd, when the curves are refer'd, not 

to right lines, but to other curve-lines, as is usual in mechanick curves.' 

To illustrate this point, he suggested eight further types of coordinate 
system. One of these, the ' 'Third Manner' '  of determining a curve 
analytically, is what would now be called bipolar coordinates. In 
this connection Newton considered the "ellipses of the second order"­
i. e.,  the ovals of Descartes. In La Glomltru Descartes had proposed 
these curves in problems on refraction, but he handled them, as New­
ton says, "in a very prolix manner, " without the use of coordinates. 

• Fermat gave no diagram, but Huygens (Oeuvres compUlu, X, 370 ff) gave enough of the 
paph in the first quadrant to show clearly the point of in11ection. 

' OfJera, I, p. 435, 441 ; .Met'llotl of Flmons, p. 51, 57. 
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Newton therefore seems to have been the originator of bipolar co­
ordinates in the strict sense of the word. Representing by x and y the 
"subtenses" (or distances) of a variable point from two fixed points 
(or poles) , Newton wrote "their Relation" for the ovals as a +  (ex/cf) -

y = O. For a - (ex/cf) - y = 0, Newton observed that a contrary 
sense is indicated in the construction ; and if d = e, he noted that the 
curve becomes a conic section. He closes this topic with the remark 
that ' 'it would be easy . . .  to give more Examples of it. ' '  

Newton suggested also other combinations of pairs of distances 
measured radially from given fixed points or obliquely to given fixed 
lines, or along arcs of circles. If, for example, x is the distance to a 
fixed point and y is the oblique distance to a given axis, then the 
equation aa + bx = ay represents a conic section, and xy = cy + be 
a conchoid. If, on the other hand, x is an arc measured along a unit 
circle and y is the abscissa of the point, then x = y is the equation of 
the quadratrix. No more general point of view with respect to co­
ordinates is found in the history of analytic geometry before the nine­
teenth century. 

B 

Fig. 26 

Newton used polar coordinates in three distinct portions of his book 
on fiuxions : first in connection with tangents, again for curvature, 
and finally in the rectification of curves. On the first two occasions 
the system he used was as follows : Let A be the center and AB a radius 
of the fixed circle BG, and let D be any point on the curve Ad.D (Fig. 
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26} . Then, designating BG by x and AD by y, the curve AdD is de­
termined by a relationship between x and y. Newton suggests x• -
ax' + ary - y• = 0 as an illustration, and then determines, from the 
proportion jr : x : : AD : At, the polar subtangent A T  for any point D 
of this curve. Similarly Newton found the polar subtangents of y = 

(ax/b) , "which is the equation to the spiral of Archimedes, " and of 
by = xx ;  and, he concluded, "thus tangents may be easily drawn to 
any spirals whatever. " 8  

Following the calculation of the radius of curvature for rectangular 

'°' - �  • dina d 
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h 
, 

'\,,iU'Lestan coor tes x an y--r = • , w ere s = y s 
and fiuxions of independent variables are taken as unity-Newton 
again turned to the corresponding problem in polar coordinates. 
Using a diagram and a notation similar to those applied in connec­
tion with tangent problems-but with the radius AB of the reference 

circle taken as unity-he derived the result r sin lfl = 1 :r + yn . ,  where 
a - s  

s = y/y and l/I is the angle between the tangent and the radius vector 
(flux.ions of independent variables again being taken as unity) . New­
ton applied this formula, virtually the same as the modern equivalent, 
to the spiral of Archimedes and to the curves ax' = y• and ax' - bxy = y1• 11 In conclusion he added, 1 1And thus you will easily determine the 
curvature of any other spirals ; or invent rules for any other kinds of 
curves.' '  That he realized the significance of his introduction of polar 
coordinates seems to be implied by his comment that he had "made 
use of a method which is pretty different from the common ways of 
operation. "  In fact, Newton gave the equivalent of the transforma­
tion from rectangular to polar coordinate� + yy = tt and tfJ = y, 
where t is the radius vector and " is a line representing the sine of the 
vectorial angle associated with the point (x, y) . 

The comparison of the parabola with the spiral had been a favorite 
topic throughout the seventeenth century, and in his treatment of 
this question Newton made use of a polar coordinate system yet a 
third time. Here, however, his scheme differed from that previously 
presented. The notation, too, was modified, but this may have been 
done in order to avoid confusion in the simultaneous use of polar and 
Cartesian coordinates. If D is any point on a curve ADd, he took the 
coordinates of D as s and fJ, where s is the radius vector AD (Fig. 27) 
and fJ is the circular arc DB. That is, his co0rdinates were, in modern 

• Of>era, I, p. 440 ;  Metltotl of Fluxions, p. 56. 
1 Otwa. I, p. 452-453 ; Method of Fluions, p. 68-70. 
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notation, (r, rfJ) instead of (r, 8) or {r, alJ) . Then if the relation be­
tween s and 11 is given "by means of any equation" ;  and if a new 
curve AHh, given in rectangular coordinates AB == s and BH = y, is 
so determined that, for all corresponding positions of D and H, the arc 
AD is equal to the arc AH; then Newton showed that jr = iJ - ('1Js/s) , 

A B 
Fig. 27 

or, if s  is taken as unity, y == iJ - (fJ/s) . In particular, "if u/a = " is 
given as the spiral of Archimedes, "  then ii = fs/ a and hence s/ a == y 
and u/!a = y. The lengths of the spirals s3 = a'IJ1 and sV a + s == 
rl"Vc are shown similarly to correspond, respectively, to lengths meas­
ured along the semi-cubical parabola s'1• = 3a'1'y and the curve10 

(z - 2a)Vac + cs =  3cy. 
Evidence indicates11  that the Method of Fluxions was composed by 

1671 , when Jacques Bernoulli was in his teens ; and there seems to be 
no reason for suspecting the sections on polar coordinates of being a 
later interpolation. The three pertinent passages would appear to be a 
natural part of the whole, and Horsley, after his editorial examination 
of three different manuscript copies of the work, apparently saw no 
reason to question the date or authenticity of this material. It is 
therefore strange that this contribution to coordinate geometry should 

11 Opera, I, p. 511-512 ; MelluNl of Fluitms, p. 132-134. 
n See, e. g., H. G. Zeuthen, GuclaicllU tier Mathematill im X VI t1n4 X VII Jalvlaufllkrt 

(Leipzig, 1903), p. 374. See also the opening page of the preface of the French edition of 
IA ""'1lade du Jluitms, d des 1t1itu infinw (Paris, 17 40). 
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have been so completely overlooked that the use of polar coordinates 
invariably is attributed to others of later periods. Newton is not en­
titled to priority of publication, but he probably does deserve to be 
known as the first one to develop a system of polar coordinates in 
strictly analytic form. Moreover, his work in this connection is 
superior, in generality and flexibility, to any that appeared during his 
lifetime. The earliest publication of polar coordinates seems to be 
that of Jacques Bernoulli in 1691,  mentioned above. It is of some 
interest to recall that Bernoulli's second use of polar coordinates, in 
1694, was identical, both in conception and notation, with the first 
system of Newton. This same scheme and symbolism appeared again 
in 1704 in a memoire by Pierre Varignon (1654-1722) on "Nouvelle 
formation de spirales." 1 1  Fontenelle, the secretary of the Acad&nie, 
gives a glowing account13 of this work of Varignon, apparently unaware 
of the anticipations by Newton. 

Beginning with the equation of a curve given in Cartesian coordi­
nates, Varignon raised the question as to what the curve would be if 
one took y to be the radius vector and x to be the arc of a fixed circle. 
The higher parabolas, for example, became spirals of Fermat. Varig­
non gave an elaborate classification of other spirals obtained in the 
same way, but his treatise is tedious and unimaginative in comparison 
with the then unpublished work of Newton. 

The Geometria analytica or Method of Fluxions remained unpub­
lished until 1736, and hence it exerted but a limited influence on the 
course of the history of analytic geometry. The Enumeratio linearum 
tertii ordeni.s meanwhile reappeared in 1706 in the Latin Optice of 
Newton and also in 171 1 in the Analysis per quantitatum series of Wm. ] ones. 1' At first it did not attract much attention, but after about a 
dozen years it became the basis for a new trend in analytic geometry 
in the development of a general theory of algebraic curves by Stirling, 
Maclaurin, Nicole, De Gua, and Cramer. In England this was almost 
the only aspect of algebraic geometry which attracted attention dur­
ing the eighteenth century, for the Cartesian tradition had failed to 
take effective hold there. This may be due in part to Newton's at-

. titude toward the geometrical constructions of Descartes. In the 
Enumeratio there is a section on the application of intersecting cubics 

11 A.cadbnie tlu Scincu, M�moiru, 1704, p. 69-131.  
•1 Jbid.,  p. 47-57. It is interesting to note that Varignon, in referring to the work pub­

lished by Jacques Bernoulli in 1691,  ascribes the idea of polar coordinates to the younger 
brother, Jean Bernoulli. 

u The work appeared also in the Oi'fUcula of 17 44, in the Of>era of 1779, in a Latin edition 
of 1797, and in an English translation of 1861, as well as in the edition of 1717 with commen­
tary by Stirling. 
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and quartics to the solution of polynomial equations of degree not 
greater than twelve, which would almost seem to indicate that Newton 
followed Descartes in feeling that curves had to be used for something. 
The equation a + cx2 + dx1 + ex4 + fx6 + (g + m)x8 + hx7 + kx' + 
lx8 = 0, for example, is solved by the pair of cubic curves .x2y = 1 and 
ay8 + cy1 + dxy2 + ey + fry + g + m + hx + kx2 + lx1 = 0. Pos­
sibly here Newton was influenced by Fermat's later work, as well as 
by Descartes. But if Newton at one time embraced the Cartesian view 
on geometric constructions, it is clear that he renounced it in his Arith­
metica universalis. 

The Glom"rie of Descartes contained an extensive treatment of 
algebra necessary in the solution of problems involving geometrical 
constructions, and so, conversely, the Arithmetica universalis of Newton 
devoted much space to geometrical questions and the "linear con­
struction [graphical solution ) of equations. "  This work was written 
in lecture form in the period 1673-1683, but it did not appear until 
1707. In it there is a discussion of the plane, solid, and linear loci of 
the Greeks, in connection with which Newton gave a clear-cut state­
ment of the aims of Cartesian geometry : 

But the Moderns advancing yet much farther, have received into Ge­
ometry all Lines that can be expressed by Equations . . • ; and have made it a 
Law, that you are not to construct a Problem by a Line, i. e., a curve of a 
superior Kind, that may be constructed by one of an inferior one. . . . In 
Constructions that are equally Geometrical, the most simple are always to 
be pref erred. This Law is beyond all Exception. u 

Newton went on to show, as had Wallis, that the contemporary 
notions of relative simplicity had not been clearly defined. The 
equation of the parabola (with reference to vertex and axis) is alge­
braically simpler than that of the circle and of the same degree ; yet 
the circle was universally accepted as exceeding the parabola in 
geometrical simplicity and in ease of construction. In the geometric 
solution of equations Newton preferred-because of the ease with which 
they are constructed-the ellipse to the parabola, and the conchoid to 
the conics. Newton consequently proposed abandoning the ancient 
emphasis on conics and the then current insistence on curves of mini­
mum degree. He would substitute for the rules of simplicity of Des­
cartes and Wallis the policy that, "We are always to aim at Simplicity 
in the Equation, and Ease in the Construction."  But where Wallis 
had eagerly accepted the Cartesian association of algebra and geom­
etry, Newton expressed a point of view which would contradict the 

11 Sir Isaac Newton, Uniflersal arilhmetick (transl. by Raphaon and revised by CUDn, 
London, 1769), p. 468-469 of the appendix. Cf. O(lera., I, 200 ff. 



148 HISTORY OF ANALYTIC GEOMETRY 

whole purpose of La glometrie, and which would, moreover, exclude 
also the Fermatian conception of analytic geometry. In the Arith­
metica universalis one reads : 

Equations are Expressions of Arithmetical Computation, and properly 
have no place in Geometry. . . .  Therefore these two Sciences ought not to 
be confounded. The Ancients did so industriously distinguish them from 
one another, that they never introduced Arithmetical Terms into Geometry. 
And the Moderns, by confounding both, have lost the Simplicity in which 
all the Elegancy of Geometry consists. 11 

In this very same work Newton made expeditious use17 of undeter­
mined coefficients in determining the values of e, j, g, and h so that the 
parabola y = e + fx = vi gg + hx should pass through four given 
points ; yet he went on to express the opinion that "The modern Geom­
eters are too fond of the Speculation of Equations." He asserted 
that 

Therefore the conic Sections and all other Figures must be cast out of 
plane Geometry, except the right Line and the Circle, and those which hap­
pen to be given in the State of the Problems. Therefore all these descrip­
tions of the Conicks in piano, which the Moderns are so fond of, are foreign 
to Geometry . 18 

This reminds one of the attitude toward algebraic geometry of New­
ton's teacher Barrow ; and it recalls the sharp criticism by Hobbes of 
"the whole herd of them who apply their algebra to geometry."  The 
sentiments Newton expressed in the Arithmetica would indicate that he 
was here further from analytic geometry in the modern sense than 
either Descartes or Fermat ; and yet it is clear from the Enumeratio 
and the Geometria analytica that he realized fully the value and power 
of coordinate methods. This paradox perhaps is resolved by the fact 
that Newton apparently would deny the validity of algebraic methods 
in elementary, but not higher, geometry. In this respect his attitude 
would not be greatly different from that of his contemporaries. Un­
fortunately, however, it was the Aritkmetica which most influenced his 
countrymen, for it appeared during the century in at least three 
English editions (1720, 1728, 1769} and five Latin editions (1707, 
1722, 1732, 1752, 1761} ,  as well as a French edition of 1802. Perhaps it 
was for this reason that the next steps in the development of Cartesian 
geometry were taken on the Continent. 

11 Uniflersal arUhmdick, p. 470 ; Opera, I, p. 202. 
17 See Coolidge, HistQry of Conic Sections, p. 75. 
11 Uniwrsal arUhmdik, p. 494-496. 
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The state of analytic geometry in Europe at that time is well typified 
by two popular French works of 1705 and 1707. The first of these was 
the Application de l'algebre cl la glometrie of N. Guisnee ( tl 718) .  The 
title of this book was adopted throughout the eighteenth century as 
the customary name for what Jean Bernoulli had called "Cartesian 
geometry." The work is a direct continuation of the tradition set in 
the preceding century by Descartes, de Witt, Lahire, and Ozanam. 
It follows the Cartesian classification of curves as geometric or me­
chanical (the relations between the coordinates of which are not ex­
pressible geometrically) . Guisnee, like Descartes, usually begins the dis­
cussion of a given curve, not with its Cartesian equation, but with a 
kinematic or geometric definition or property from which the equa­
tion is subsequently derived. The author recognizes two main prob­
lems in analytic geometry : (1) to construct the roots of determinate 
equations through intersecting curves ; (2) to construct indeterminate 
equations (or loci) . The word construct is here used in the narrow 
sense of Descartes and does not refer to plotting or sketching in the 
modern manner. Thus Guisnee suggests the following description of 
the curve x' - ay%% + l>'Y'J% + cy• = 0 :  Let as = x1, and substitute 
as for x1 in the first two terms of the given equation, obtaining sz -

yy + [(byyx + cy•)/aa]  = 0. This last equation is, for a given value 
of y, a parabola in s and x. The intersection of this parabola with the 
parabola as = x1 will determine the value of x corresponding to the 
given value of y ;  or, if one prefers, he can combine the equations of 
the parabolas to get a circle, after which the intersection of the circle 
with either parabola can be used. Repeating this for other values of 
y, corresponding values of x can be found, and hence the indeterminate 
equation or locus is constructed. Determinate equations are solved in 
an analogous manner. The equation a• = x6 + a'x1, for example, is 
constructed by the intersections1' of alz = x• and a1 = .11 + x1• Guis­
nee did not stop, as did Descartes, with the geometric construction. 
He then demonstrated synthetically, in the manner of the ancients, 
that this satisfies the given problem. The treatment of conics is ex­
tensive, but as in earlier works it is not entirely analytic. Incidentally, 
Guisnee was perhaps the first one to use the letters a and b for the semi­
axes of the ellipse, the equations of which (with respect to center and 
vertex) he wrote as (aa - =) = aayy/bb and (2ax - %%) = aayy/bb. 
Variants of these have remained as standard forms ever since. Guis­
nee's work illustrates the gradual advance made in the use of co­
ordinates in that he (like Leibniz) used two axes and that he dis-

11 See Application de l'algMre tl la g�omAtrie, p. 228 ff. 
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cussed the circle y2 = a2 - x2 for both positive and negative values of 
the coordinates. Moreover, this book seems to be the first one in 
which both the x and y coordinates in a rectangular Cartesian system 
are interpreted as the segments cut off on the two axes by perpendicu­
lars from a given point. However, in Guisnee and other books of the 
first half of the century, linear equations such as ay = bx are regarded 
as determining half-lines in the first quadrant only. By the use of a 
variety of transformations, 20 the author reduced equations of the 
form ax - by = aa or ax = be + by to the canonical form ax = bs. 

The year in which Newton published the anti-Cartesian Arithmetica 
there appeared in France a conspicuously successful textbook on Carte­
sian geometry along the lines of that of Guisnee. This was the 
Traitl analytique des sections coniques of the Marquis de !'Hospital 
(1661-1704) , a book which contains less original material than that of 
Guisnee, but which is more extensive and closer to the modem manner 
of treatment. The work had been intended for publication at the time 
the author's famous calculus textbook appeared in 1696, but L'Hos­
pital's illness apparently led to delay and it appeared posthumously in 
1707. It is Cartesian in emphasis and although it consists of but one 
volume, it follows generally the tripartite plan of La.hire and Omnam : 
first an algebraic quasi-analytic treatment of the conic sections along 
the lines of the Apollonian theory ; then an analytical study of loci � 
and finally a long section on the customary construction by conics of 
the roots of cubic and quartic polynomial equations. The last was 
still the goal of the analytic geometry of that time. L'Hospital some­
times used two axes and seems to have recognized the interchange­
ability of these, but he betrays some hesitation. He did not measure 
coordinates along the axis of ordinates (appliquees) , and he sought to 
confine himself to the first quadrant. Likewise he knew that a locus 
must pass through the end-points of all the lines representing both 
true (positive) and false (negative) values of y corresponding to the 
true and false values of x; but he listed only the usual four cases of 
linear equations, y = bx/a, y = (bx/a) ::1:: c, and y == c - (bx/a) . The 
form y = - (bx/a) - c is omitted, presumably because the line contains 
no points in the first quadrant. The line y == bx/a and the circle 
y2 == a2 - x2 are correctly given, but in other cases the figures are 
limited to portions corresponding to positive coordinates. L'Hospital 
expressly says that if ordinates are "supposed tending toward one side" 
of the axis, they are to be taken as negative on the other ; and if one 
has supposed the abscissas "to fall on one side of the initial point, " 

11 lbitl., p. 141 ff. 
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they become negative on the other ; but he then adds an avertissement: 

When, in what follows, one deals with the construction of the locus of a 
given equation, one always supposes that the x's and y's are positive, that 
is, that all the points fall in the same quadrantal angle. And one takes as 
the locus of the given equation the portion of the locus which is included 
within this angle. 1 1  

He refers to the two branches of the hyperbolic curve as "opposed 
hyperbolas," possibly because of his timidity in the use of negative 
coordinates. 

L'Hospital opens his treatment of the conics with a plane definition 
and kinematic construction for each type. Only later (in book VI) 
does he consider them briefly from the stereometric point of view. 
The ellipse is defined by the familiar string construction, and the para­
bola by the well-known string-and-square generation. The hyperbola 
is defined by a mechanical adaptation of the property that the dif­
ference of the focal radii is constant. From these defining properties, 
the equations of the curves are derived analytically. For the parabola 
the forms yy = px and yy = 4mx are given. For the central conics 
L'Hospital gives the standard equations with respect to the center. 
In this connection he used the semiaxes, as is now the common prac­
tice, but he wrote the equations in less symmetrical form as y1 = 
c' - (ctx2/t2) = 1/2 pt - (px1/2t) and y2 = (c2x2/t2) ""' c1 = (px1/2t) = 
1/t pt, where t is the semimajor axis, c the semiminor axis, and p the 
parameter. The principal properties of the conic sections are derived 
in part from these equations and in part from numerous geometrical 
diagrams. Later the conics are generat�d in various ways as loci, 
the Newtonian organic description being included. 

An appropriate illustration of the hesitancy of L'Hospital with re­
spect to negative coordinates--as well as the operation of the Pythago­
rean theorem as a distance formula-is found in his derivation 
(without the present customary use of radicals) of the equation of the 
ellipse with respect to its axes, starting from the gardner's construc­
tion. 21 Let M be a point on the ellipse (Fig. 28) with center C and ver­
tices A ,  a, B, and b. Let the lengths of the major axis Aa and the 
minor axis Bb be denoted by 2t and 2c, respectively, and let the dis­
tance Ff between the foci be 2m. Setting MF = t - z and Mf = 
t + s (so that 2s is the difference between the focal radii) ,  L'Hospital 
wrote M F2 = t2 - 2ts + s2 = y1 + mt - 2mx + xt, and Mj2 = et + 
2ts + zt = y1 + mt +  2mx + x2, using the Pythagorean theorem for 

11 TraiU analytique tla sections coniques (Paris, 1707), p. 208. , 
11 TraiU analytiqru, p. 22-25. Cf. Coolidge, History of Conic Sections, p. 77. 
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the distances. Subtracting these equations, he found s = mx/t, and 
on eliminating s in either of the above equations, he obtained y1 ::o 
c1 - (c'x1/t1) ,  which "expresses perfectly the nature of the ellipse." 
It is of interest to note that for positions of  M on ' 'the other side of 
the center" (L'Hospital thus avoids reference to an axis of ordinates), 
he wrote MF = t + s and Mf = t - s, thus implying that values of x 

are to be taken as positive, whether measured to the right or to the left 
of the center. Moreover, it is to be noted that here, and throughout 
the book, line segments are designated both in the synthetic manner 
(in terms of letters denoting the end-points) and in the notation of 
analysis (using variables and parameters) . 

The eclectic nature of L'Hospital's textbooks is apparent, but the 
author fails to give credit for his sources. His treatment of the 
general quadratic equation in two unknowns, for example, leans so 
heavily upon the work of Craig as to risk charges of plagiarism. There 
is a pronounced similarity, both in figures and in notation, between 
Craig's T'l'actatus mafhematicus and the corresponding treatment in 
L'Hospital's Conics.11 Beginning with one of each of the three types of 
conic sections, chosen in arbitrary position with respect to a coordi­
nate axis, a general standard equation is derived ; and then this stand­
ard equation is used as a basis with which to compare the coefficients of 

u Traile at1Gl1'ifu, p. 213 ff. 
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given special cases of quadratic equations in order to determine the 
position and shape of the conic in question. As was the case with 
Craig, so also L'Hospital considered it necessary to give two separate 
treatments of each curve according as it was referred to the x-axis or 
the y-axis, showing how slowly the idea of interchangeability of axes 
developed. However, L'Hospital did state explicitly the property of 
the characteristic which had been implicit in the work of Craig and de 
Witt. That is, if, in the general quadratic equation in x and y, the 
coefficient of y1 is unity, it is stated as a general ruteH that the curve is 
an ellipse, a parabola, or an hyperbola according as the square of 
half the :cy coefficient is less than, equal to, or greater than, the coef­
ficient of x1• 

L'Hospital, like Guisntt, recognized two uses for the conics, as the 
full title indicates : Traill analytique des sections coniquu et de leur 
usage pour la resolution dans les probUmes tant tUtermines qu'indlter­
mina. Having first treated of loci or indeterminate problems leading 
to conics, he then devoted a fifty-page section to the second aspect, 
the then customary "construction of equalities" by means of conics. 
For equations of degree greater than four, L'Hospital proposed a rule 
for the simplicity of the construction similar to that of Fermat, Lahlre, 
and Bernoulli, depending upon the square root of the degree of the 
equation.•  However, in a couple of pages at the very end of the 
work, L'Hospital proposed the following significant modification : 
"To construct any equality of whatsoever degree by means of a 
straight line and a locus of the same degree."  This may have been sug­
gested by the work of his teacher, Jean Bernoulli. It is illustrated by 
the solution of x6 - bx' + a.ex• - aadx1 + a8x - a'f = 0 through the 
determination of the points of intersection of the polynomial curve 

x6 bx' ex• dx1 x 
y = - - - + - - - + - with the straight line )' = f. Here one 

a' a' a• a1 a 
sees essentially the modern graphical representation of polynomials 
and the resultant solution of polynomial equations, for it difters from 
the present usual procedure only in a simple translation of axes. It is 
interesting to notice, however, that the method is not emphasized by 
the author. He appears to have been less interested in graphical rep­
resentation as a means of solving equations than as a device for deter­
mining the range of values of the constant term for which some of the 
roots of the equation became imaginary. In general, L'Hospital 

M 1"4., p. 247. Tropfke, Guchit;hU, VI, 164 ff., incorrectly ascribes this statement to 
Euler and Lacroix. 

• Trai/J analyUque, p. 346. 
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(like Descartes) was more interested in analytic geometry as a means of 
expressing loci algebraically than as a method of deriving the proper­
ties of a curve from its equation. 211 This latter aspect he seems to have 
felt belonged more properly to the work in the calculus. His popular 
Analyse des infiniment petits of 1696, the first textbook on the subject, 
included much material on the properties and singularities of plane 
curves, using the differential method of Leibniz. 

In 1708 there appeared the Analyse dhnontrle of Charles Rene Rey­
neau, a work in part closely resembling the far more popular treatises of 
L'Hospital. The first volume of the Analyse dhnontrle is a complete 
treatment of algebra in the Cartesian manner. Volume two is on 
analytic geometry and the calculus, and in this one finds the use of a 
single axis ; a clear statement on negative ordinates and abscissas (but 
the interpretation nevertheless of y = bx/a and -y = -bx/a as sup­
plementary rays) ; and second degree equations handled in the manner 
of Craig, together with a statement of the property of the characteris­
tic. Reyneau uses curves not only to construct equations, but also 
to solve many physico-mathematical problems. The preface (of the 
second volume) contains an element of novelty in its insistence on 
. .  The perfect accord of analysis [algebra] with geometry. . . .  If two 
solutions are indicated by the solution of an equation, then two lines 
are represented in the geometric construction. When analysis dis­
closes that the values are impossible, one finds a contradiction in the 
geometric solution. "  Polar coordinates are used, in the manner of 
V arignon, in connection with the spiral ex = ry and also with those of 
higher order ; and a system of mixed coordinates is used in studying the 
cycloid. 

The Analyse dhrwntrle appeared in a second edition in 1736-1738, 
but it seems not to have been well known. Meanwhile, the texts of 
Guisnee and L'Hospital appeared in numerous editions (1705, 1733, 
1753 for the former ; 1707, 1720, 1740, 1770 for the latter) and they 
may be regarded as generally representative of analytic geometry 
during the first half of the eighteenth century. 17 An English transla­
tion by Edmund Stone ( fl 768) of the Treatise on Conics appeared in 
1723, and it is of interest to note the influence of L'Hospital in Stone's 
A New Mathematical Dictionary three years later. Under articles on 

• In unpublished work of 1672, Gregory illustrated graphically the roots of a sixth degree 
equation by sketching the corresponding polynomial curve ;  but this was not specifically for 
purposes of solution. See James Gregory, Tercenlenar1 11olume (ed. by Turnbull, London, 
1939), p. 213-216. 

" A summary of the literature of this period is given by Felix Millier, "Zur Literatur der 
analytischen Geometrie und lnfinitesimalrechnung vor Euler," Jalsruberichl, DeutscM 
M"'1wma4iier- Vernniftlni. XIII ( 1904), p. 247-253. 
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"Biquadratic Equation" and "Cubic Parabola,"  the Dictionary not 
only includes graphs of cubic and quartic polynomials, but also a 
lengthy article on the traditional problem of the "Construction of 
Equations." 

The irrepressible Michel Rolle (1632-1719) , in the Mhnoi.res of the 
Academie des Sciences for 1708-1709, raised doubts about the correct­
ness of the Cartesian graphical solution of equations, as he had about 
the validity of the calculus of L'Hospital. He pointed out that to 
solvef(x) = 0, one arbitrarily chooses a curve g(x, y) = 0, and, on com­
bining it with f(x) = 0, one obtains new curves, h(x, y) = 0, the inter­
sections of which with g(x, y) = 0 furnish the solutions of f(x) = O ;  
and he realized that in this way extraneous solutions may be intro­
duced. Imaginary branches further complicated the problem, and 
although Rolle saw the difficulties, he was unable to solve them. 
Moreover, his criticism failed to influence general opinion and so did not 
undermine seriously the prevailing interest in graphical constructions. 
Incidentally, in Rolle's discussion of this problem the term "analytic 
geometry" appeared in print, perhaps for the first time, in a sense 
analogous to that of today. •  By analytic geometry Rolle understood 
research of one or the other of two types : in the one, geometric ques­
tions are transformed into problems of algebra, and in the other, one is 
occupied only with the graphical solution of these problems. 11 That is, 
his view was thoroughly Cartesian . His name for the subject, how­
ever, did not meet with favor. The designations used by Guisntt 
and L'Hospital were preferred, and through the books of these men 
the subject continued, at least as presented in textbooks, to be largely 
under the influence of Descartes. This situation is confirmed by the 
fact that more French editions of La glomltrie were published from 
1705 to 1730 than had appeared before or have been seen since.'° 
Moreover, it was during this period that coordinate geometry entered 
the didactic mathematical Sammelwerke. One of the earliest collec­
tions to take this step was the Elementa matheseos universae of Christian 
von Wolil (1679-1754) . This work includes a long section on the ap­
plication of algebra to "more sublime geometry"-i. e . ,  "that part of it 

• Several years before, however, there appeared in 1698 at Cadiz a work by Antonio Hugo 
de Omerique with the title AMl;ysis geometrica, sin ftOll(J et fH!f'a methotlw resolflendi lam 
IJ1roblemata geometrica quam aruhmeticas quaestioxes. See P. A. Berenguer, "Un geometra 
espaftol del siglo XVII , ' '  El Progreso MatemcUico, V ( 1895), p. 1 16-121.  The word analysis 
here seems to have been used, however, in the old Platonic sense. On analysis and syn­
thesis in Greek thought see J . -M . -C . Duhamel, Du methotles daxs lu sdmus de raisoxJU­
me11t (part I, 3rd ed., Paris, 1885), p. 39-68. 

• Rolle, " De l'evanofiissement des quantitez inconnues dans la �m�trie analytique, "  
Acadhnie tles Sciences, Memoires , 1709, p .  419-450. • See Gustav EnestrOm, "Uber die venchiedenen Auflagen und Ubersetzungen von 
Descartes' 'Geom�trie,'" BiblioUl.eca Ma.tMmatica (3), IV ( 1903), p. 211.  
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which treats of curve-lines and solids generated from them."3 1  This 
portion of the Elementa is virtually a textbook on plane analytic 
geometry, in the sense both of Descartes and Fermat. As in Fermat, 
curves are defined by means of equations. For example, "a parabola 
is a curve in which ax = y1" ; and "circles of higher kind" are given by 
y• + 1 = ax• - x"' + 1• Numerous algebraic higher plane curves are 
introduced through Cartesian equations ; and there is some treatment 
of transcendental curves.12 The quadratrix is given, in the manner of 
Newton, by the mixed polar and rectangular equation ay = bx. The 
treatment of the general quadratic equation is in the manner of De Witt, 
Craig, and L'Hospital. The section on coordinate geometry closes 
with the traditional Cartesian "construction of the higher equations, "  
an art which Wolff ascribes, however, to Sluse.13 In the matter of 
classifying degrees of simplicity, Wolff places the parabola in second 
place, the circle third, the equilateral hyperbola fourth, the ellipse 
fifth, and the "hyperbola within its asymptotes" sixth. The works of 
Wolff enjoyed quite a vogue in the first half of the eighteenth century 
and appeared in several languages. However, in contrast to the text­
books and A nfangsgrltnde, original memoirs of the time tend to follow 
Fermat and Newton in placing greater emphasis on the sketching of 
curves other than conics, and also to make some contribution to the 
much neglected field of solid analytic geometry. In the latter connec­
tion one is tempted to recall the complaint in Plato's Republic" of the 
"ludicrous state of solid geometry" , in contrast to that in the plane. 

In 1705 Antoine Parent (1666-1716) published in his &sais et re­
cherches de mathhnatique et physique a memoir on Cartesian geometry 
in three dimensions which he had presented to the Academie des 
Sciences five years before. Since the time of Fermat and Descartes it 
had been known that for space three coordinates are required, and that 
an equation in three unknowns represents a surface locus. La.hire had 
even found the equation of such a locus, but he did not sketch or study 
it as a surface. Other work of the seventeenth century on surfaces, 
such as that of Wren and Wallis on the lines of the single-sheeted 
hyperboloid, was carried out without the use of coordinate geometry. 
Consequently, Parent's paper of 1700 on Des affections des super­
(icies represents essentially the first analytic study of a curved surface. 
It is an awkward treatment of the surface of a sphere, but it shows a 

11 Christian Wolff, A Trmlise of Algebra; "1il1' t1" Applkalitm of ii to a Varid,, of Prob­
kms in Aritlimelie, to Geomelr,r, Trigonomelr,,, and Conic Seaitms (transl. from the Latin, 
London, 1739), p. m. 

• JIM., p. 268 ff. " Ibid., p. 300-340. 
N Jowett translation, section 628. 
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full knowledge of space coordinates. He took a base plane HQ and in 
it a fixed line IMQ as axis, with Q the origin of abscissas (Fig. 29) . 
Assuming a point 0 above the plane to be the center of a sphere of 
radius r, he dropped a perpendicular OH = a to the plane, drew HI -
c perpendicular to IQ, and let IQ = b. The quantities a, b, and c are  

I M 
Fig. 29 

then the rectangular Cartesian coordinates of the center of the sphere 
with respect to the given plane and axis and origin. Now he chose 
any point B on the surface of the sphere and designated the coordinate 
lines BL, LM, and MQ as s, y, and x, respectively. Lacking a specific 
formula for the distance, Parent was compelled to make further geo­
metrical constructions in order to find the equation of the spherical 
surface. He passed through 0 a plane parallel to HIQ cutting LB in 
G; and through 0 and G he drew lines parallel to HI and IQ, inter­
secting in F. Then OB is the diagonal of a rectangular parallelepiped 
of sides a - s, b - x, and c - y, and setting the square of OB equal to 
r1, Parent obtained c1 + y1 - 2cy + b2 + x2 - 2bx + a1 + s1 -
2a.s == r1 as the equation of the sphere. This shows that Cartesian 
geometry had not yet been sufficiently formalized to dispense with fre­
quent reference to geometrical figures, even in the most elementary 
situations. 

Parent next showed how to determine a tangent plane to the sphere 
at a PQint, but one notes here a wide divergence from the modem 
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point of view. As in plane geometry one never asked at that time for 
the equation of a line, but only for its construction, so Parent did not 
feel it necessary to give the equation of the plane, but only to deter­
mine it by means of two intersecting lines. He therefore took through 
the point in question two planes perpendicular to the coordinate plane 
and parallel to the ordinates and the axis of abscissas. The directions 
of the two lines going through the point and tangent to the circular 
sections thus determined were found through partial differentiation 
rather than through coordinate methods alone. The desired tangent 
plane was then uniquely determined by these two tangent lines. 

The three-dimensional work of Parent includes not only the deter­
mination of the equation of a given locus, but also the converse study 
of a surface determined by a given equation. That 

·
is, he made use of 

both the Cartesian and the Fermatian aspect of algebraic geometry. 

Beginning with the "equations superficielles" y = (b + x) V(s - x)/s 
and y = s1/{x2 + as) , he considered curves on these surfaces. 
However, his discussion was more concerned with problems of the 
calculus than with analytic geometry, and included the determination 
of the points of inflection of sections by planes parallel to the coordinate 
plane or perpendicular to either the ordinates (tiges) or the line of 
abscissas (neuds) . He did not give in either case a diagram of the 
surface as a whole. In a memoir read two years later, Parent dis­
cussed the one-sheeted hyperboloid of revolution along the lines given 
by Wren and Wallis. He described the lines on it, and later also the 
elliptical, hyperbolic, and parabolic sections, and the asymptotic cone ; 
but his treatment here was not analytic and no equations are given in 
connection with .the surface and curves.16 

The Essais et Recherches of Parent appeared in a second edition in 
1713, but his work on solid analytic geometry seems nevertheless to 
have left little impression. Jean Bernoulli, too, in correspondence 
with Leibniz in 1715, showed familiarity with space coordinates, 18 
using perpendiculars dropped from a point to three mutually perpendic­
ular planes ; but this first use of three coordinate planes long went un­
published and unnoticed, so that later writers reverted to the use of a 
single coordinate plane. 

While contributions to solid analytic geometry were sporadic and 
aimless, new research in plane coordinate geometry of the time was de-

11 For Parent's work on solid analytic geometry see his Essais et recherches de matW­
matique et de �liysique (2nd ed., 3 vols. ,  Paris, 1713), II , p. 181-200, 640-002 ;  III, p. 470-
528. An account of this will be found in Cantor, Gescliiclite, II I , p. 417 f. 

• An excellent account of the early history of solid analytic geometry is found in Coolidge, 
"The Beginnings of Analytic Geometry in Three Dimensions," The A merican MatlNmatical 
Jlontllly, LV ( 1948), p. 76-86. 
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voted largely to a single topic-the study of higher plane curves along 
the lines suggested by Newton. In the Enumeratio linearum tertii 
ordinis Newton had not proved the results he gave, and so in 1717 
James Stirling (1692-1770) published the Lineae tertii ordinis Neu­
lonianae in which the material in the Enumeratio is demonstrated and 
considerably amplified. The Stirling edition is, in fact, virtually a 
new work, for the original Newtonian treatise makes up only the first 
thirty-six pages in a volume of close to two hundred pages. Stirling 
showed, among other things, that a curve of order n cannot have more 
than n - 1 difierently directed asymptotes, and that an asymptote of 
the curve cannot cut the curve in more than n - 2 points. Moreover, 
if the y-axis is an asymptote, then the equation of the curve cannot 
contain a term in y•. Stirling added four new cubics to Newton's 
list of 72, and he showed that a curve of order n is in general deter-

mined by n 
(n � a) points. There is a noticeable lacuna in that Stir­

ling failed to prove possibly the most difficult theorem in the Enumera­
tio--that on the projective generation of cubic curves from five primi­
tive types. 

One of the important additions in Stirling's work is the formal 
analytic treatment of general second-degree equations. Ever since 
the time of Descartes geometers had given indications of how to trans­
form the equations of conics to normal forms, and Wallis had asserted 
that from the coefficients of the equations alone one could determine 
the characteristics of the curves. De Witt, Craig, L'Hospital, and 
Wolff had shown how to determine the shape and position of a conic 
from its equation ; but Stirling was perhaps the first one to complete 
in analytic detail the program of reducing the general quadratic to 
canonical forms. Beginning with the equation y' + Axy + By + 
Cx' + Dx + E == 0 in general oblique coordinates, he showed this is 
reducible to y' == Ax' + Bx + C where A is less than, equal to, or 
greater than zero according as the figure is an ellipse, parabola, or 
hyperbola. Then by a translation of the origin on the axis of abscissas 
he reduced the first and last cases to the forms y1 == B - Ax• and y1 -
Ax1 + B. This was not really new, for similar work along these lines 
had been given frequently in the seventeenth century ; but Stirling 
went further and calculated analytically from these forms the char­
acteristic properties of the conics with respect to axes, vertices, asymp­
totes, and parameter-aspects which previous writers had derived geo­
metrically or had taken over from Apollonius. For rectangular coordi­
nates such calculations are a simple matter, but the program of Stirling 
for oblique coordinates called for ingenuity. In the case of the ellipse, 
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for example, he proceeded as follows : First find the x-intercept CL ... 
VB/A (F'ig. 30) . For oblique coordinates L is not a vertex of the 
ellipse. Stirling found the vertices by taking a circle with center C and 
radius CL and finding the other intersection E of the circle with the 
ellipse. Then the bisector of the angle EGL intersects the ellipse in a 
vertex H, the coordinates of which Stirling calculated in terms of A and 
B. Similarly the extremities of the minor axis can be determined. 
For the parabola y1 = Ax + B Stirling substituted for the auxiliary 
circle a line through L perpendicular to the axis and intersecting the 

C L 
Fig. 30 

curve in E. Then the perpendicular bisector of EL intersects the para­
bola in the vertex H. For the hyperbola y1 = Ax1 + B he found the 
asymptotes y1 = Ax1 and bisected the angle between the axis and an 
asymptote to get a vertex.17 

This calculation by Stirling is significant for the analytic nature of 
the treatment, anticipating somewhat similar work later by Euler; 
but it is noteworthy also for its concern with those arithmetic aspects 
of the conics which play such a prominent role in modern textbooks. 
At the time of Stirling, equations were still largely decorative, as far 
as the conic sections were concerned, and the central problem was to 
recognize or construct the conic. Today one seldom asks for the con­
struction of a conic section but rather for the calculation of important 

rr For an excellent account of this work and its significance, see Heinrich Wieleitner, 
"Zwei Bemerku.ngen zu Stirlings 'Linea tertii ordinis Neutonianae,"' Bibliot'll«a AlaUN­
mlUiea (3), XIV ( 1914), p. 5'HJ2. 
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magnitudes, such as the lengths of certain lines or the coordinates of 

points. 
Stirling said that through such calculations as he gave for second­

degree equations the analogies between the conics and curves of higher 
order are more apparent. Thus his commentary on the Enumerali.o 
served also as a good introduction to curve tracing in general, for 
numerous and varied graphs are given. For graphs of rational func­
tions y = f(x)/t/l(x) he found the vertical asymptotes by setting f/l(x) 
equal to zero.18 Newton necessarily had included cubic polynomials 

Fig. 31 

in his Enumeratio, but he had illustrated these only for the special 
case y = ax•. Here Stirling went further and gave what appears to be 
the first really systematic exposition of the modern graphical repre­
sentation and solution of polynomial equations. He drew a series of 
graphs of general quadratic, cubic, and biquadratic polynomial func­
tions, both with and without imaginary roots. In connection with 

• For a summary of this work and a biography of the author, see C. T. Tweedy, Jama 
S#irlinf, a Sllekh of His Life and Works, Aloni wilh Seienlifie Corra"""""'" (Ozford, 1922). 
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these Stirling pointed out that the roots of x' + bx1 + ext + dx + 
e = 0, for example, are given by the intersections A ,  B, C, and D of 
y = x' + bx1 + at + dx + e with the x-axis ; and similarly for 
quadratic and cubic polynomial equations. 11 It will be noticed that, 
as in many other works of that day, the y-axis is not drawn ; but this is 
not essential to the method, and its omission does, in fact, emphasize 
the functional relationship more effectively than would the use of two 
axes. The abandonment of homogeneity in his equations is a modern 
step. However, Stirling did not indicate clearly on his axis either the 
zero-point for x or the scale used. In fact, one looks in vain for the 
application of his method to numerical examples. Apparently graphs 
here, as in L'Hospital, were not used to determine the values of the 
roots but only to indicate whether they were real or imaginary. 
Graphical solutions were not regarded as a practical method for the 
approximate solution of specific polynomial equations, an attitude 
which seems to have persisted throughout much of the eighteenth cen­
tury. In the physical and social sciences the situation was much the 
same. Huygens in 1669 had plotted graphically the mortality statistics 
of Graunt, Plot in 1684 had sketched a sequence of barometric read­
ings, and Halley in 1686 had drawn a curve illustrating Boyle's law ; 
but such examples were isolated cases until Watt and Playfair, just 
about a century later, began the systematic practice of graphical repre­
sentation. '° One is indeed amazed at the failure of Stirling's contem­
poraries to make effective practical use of graphical methods. Perhaps 
this failure was the result of too thoroughgoing a separation at the time 
of algebra and geometry, in line with the advice of Newton in the 
A rithmetica. 

The work of Newton and Stirling on the theory of plane curves was 
continued in England, especially by Colin Maclaurin (1698-1746) who 
in 1720 published the Geometria organica si.ve descriptio linearum cur­
varum universali.s. In this book, completed at the age of twenty-one, 41 
he varied the Newtonian organic construction in various ways. For 
example, he kept the vertex 0 of the one rotating angle fixed, but al-

• In the Norn Commenlarii Academitu Pelro1Jolilanu for 1758-1759 ( 1761 ), Segner simpli­
fied this construction of polynomial curves by using the addition of ordinates, a method used 
earlier by Newton in the Enumeratio. Still later Rowning in Pl&ilosopl&Ka.l Transadionl fm: 
1770 gave a mechanical construction for such curves. 

40 See M. C. Shields, "The Early History of Graphs in Physical Literature," Tu American 
JOflrnal of Physics, V ( 1937) ,  p. 68-71 ; VI ( 1938), p. 162. Cf. also C. B. Boyer, "Note on 
an Early Graph of Statistical Data," Isis, XXXVII ( 1947), p. 148-149 ; and " Early graphical 
solutions of polynomial equations, " Scripta Matl&ematw, XI ( 1945), p. 5-19. 

" For a brief summary of his life and wm:k see H. W. Turnbull, "Colin Maclaurin," 
Amerwn Matumaliea.l Montl&ly, LIV ( 1947), p. 318-322. This is based upon a longer 
account appearing in Maclaurin's posthumous AccOflnl of Sir lstJIJI: Nnton's Pl&ilosopl&ical 
DisUINfies (London, 1748). 
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lowed the vertex 0' of the second angle to slide along a straight line 
0' S' while the one side of the angle passed through a fixed point Q (Fig. 
31) . Then if the intersection point P' of the free side of the second 
angle with one side of the first angle moves along a straight line, P'R', 
then the intersection point P of this free side with the other side of the 
first angle will describe a cubic. Later Maclaurin generalized this 
construction by substituting a curve for one or both of the lines along 
which 0' and P' move. He proved, for example, that if O' moves 
along a line while P' moves along a curve of order n, then P will de­
scribe a curve of order 3n; but if O' moves along a curve of order m 
while P' moves along one of order n, then P will describe a curve of 
order 3mn. 

Maclaurin's proofs generally are in geometrical form, although he 
did incidentally give the equations of curves in special cases. 41 Of 
particular importance in analytic geometry, however, is a theorem 
which he stated on the number of points in which curves intersect. 
Newton had interpreted the degree of the equation of a curve in terms 
of the number of possible intersections of the curve with a straight 
line, and presumably the generalization for intersections of the given 
curve with curves of higher order was known to him and his successors. 
It is implied, for special cases, by the early graphical constructions of 
polynomial equations. The tedious listing of curves of mfojmum 
degree needed in these solutioll9-SUch as that of Lahire--is tanta­
mount to a recognition of the general rule given by Jacques B�oulli41 
and L'Hospital in terms of the square root of the degree of the equa­
tion. Maclaurin, however, gave a clear-cut statement of the theorem 
that a curve of order m in general intersects a curve of order n in mn 
points. This often is known as the theorem of B�ut, in recognition 
of the man who later first gave a satisfactory proof. In this connec­
tion Maclaurin came across the difficulty which usually is known as 
Cramer's paradox. A curve of order n generally is determined (as 
Hermann in 1716 and Stirling in 1717 had indicated) by [n(n + S) ]/2 
points, which for a cubic is nine ; but two curves of order n intersect 
each other in general in n1 points, and for two cubics this is also nine. 
The one theorem implies that a cubic is uniquely determined by nine 
points, the other implies that it is not uniquely determined. The 
answer to this paradox was not given until almost precisely a century 
later. 

The work of Newton, Stirling, and Maclaurin was continued in Eng­
land by William Braikenridge (c. 1700-1759) , but it seems finally to 

a Chasles, A.flerp1 l&ulorique, p. 162-170, lives a aood account of the geometry of Mac­
laurin. 

" Ofwa, I, p. 343 ;  II, p. 677-679. 
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have influenced Continental Europe only toward the close of the third 
decade of the century. Beginning with 1729, papers dealing with 
higher plane curves began to appear regularly not only in the Philo­
sophical Transactions of London, but also in the Paris Memoires. 
Here Fran�is Nicole (1683-1758) in 1729--1731 filled in debcils missing 
from Newton's classification of cubics ; Christophe Bernard de Brage­
logne (1688-1744) in 1730 and 1731 attempted a systematic examina­
tion of curves of fourth order ; and Bernard de Fontenelle (1657-1757) , 
editor of the Memoires, added general historical accounts for these 
years. Such work on higher plane curves was closely associated with 
contemporary developments in the calculus, illustrated by the 1729 
memoir of P. L. M. de Maupertuis (1698-1759) on the singularities of 
higher plane curves. However, it seems to have had little immediate 
influence on the elementary Cartesian geometry of the time. In 1730 
there appeared posthumously the Commentaires sur la glomltrie de M. 
Descartes of Claude Rabuel (1669--1728) , a prolix traditional treatment 
which enjoyed quite a vogue. Rabuel regarded Descartes' Glomltrie 
as of an "almost insurmountable difficulty" and felt that Schooten also 
was concerned more with fame than simplicity of exposition. His 
Commentaires is therefore a large volume of 590 pages-in contrast to 
the brevity of Descartes-and it consists of an amplification in explana­
tory detail of the original material, rather than of a contribution of new 
results. Even the errors of Descartes on the normals to a space curve 
are left uncorrected. Rabuel retained the Cartesian classification of 
curves, although he mentioned the possibility of arranging them by 
degrees ; and he followed the rules of Descartes on the canonical con­
structions of equations, while pointing out the objections Fermat, 
Lahire, Bernoulli, and others had raised against these. Rabuel did, 
however, depart from his master in the conception of coordinates, for 
he used two axes and pointed out more clearly than had anyone hereto­
fore that they are on an equal footing. He showed that from given 
points one can, if he prefers, draw parallel abscissa lines to the y-axis 
and then from the ends of these measure the ordinates along this axis 
from the origin. For the two branches of the conchoid, however, he 
gave two distinct equations, indicating a failure to grasp the significance 
of negative coordinates. In the matter of space coordinates Rabuel 
went no further than Descartes ; but solid analytic geometry was 
being developed at that very time by Leonhard Euler (1707-1783) . 

The Commentarii Academiae Scientiarum Imperialis Petropolitanae 
of 1728 includes a paper by Euler, "De linea brevissima in superficie 
quacunque duo quaelibet puncta iungente, ' '  the significance of which 
for the history of analytic geometry has not been fully appreciated, per-
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haps because its publication was delayed for four years. Lahire had 
given, quite incidentally, the equation of a surface, without describing 
it ; Parent had discussed a few surfaces given by equations ; and Jean 
Bernoulli had added a further illustration. Nevertheless, it was Euler 
who presented for the first time a reasonably systematic analytic treat­
ment of whole classes of surfaces. His language is surprising in its 
implication that the analytic representation of surface loci was prac­
tically unknown. In spite of the fact that his researches on geodesics 
on surfaces were suggested by Jean Bernoulli, Euler at first adopted a 
single coordinate plane and a single axis, probably not being acquainted 
with Bernoulli's use of three mutually perpendicular coordinate planes. 
Euler found the coordinates of a point M in  the manner of Lahire and 
Parent-by dropping a perpendicular y = MP to the coordinate plane, 
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then in the plane drawing an ordinate x = PQ perpendicular to the 
axis, and then taking as abscissa the distance t = QA from a fixed 
point A on the axis (Fig. 32) . After giving the equation of the sphere 
in simplest form as a1 = t1 + x1 + y1, Euler applied his analysis to 
three broad classes of surf aces---cylinders, cones, and surfaces of revolu­
tion. In all of these classes he refers not to special cases, as had always 
been the case heretofore, but to general types. Thus by cylinder he 
means not only common cylinders with circular bases, but "any body 
of which sections perpendicular to an axis are similar and equal to 
each other. " He did not define the word axis, but any line parallel to 
elements of the surface would do. It is not clear whether the surface 
is necessarily closed, but the word "body" suggests stereometric con­
siderations and seems to imply that Euler regarded the surface as 
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bounding a solid. Many years later Euler asked, in a famous paper on 
developable surfaces of 1771, whether there are "solids" other than the 
cylinder and cone whose surfaces can be unfolded upon a plane, his 
phraseology again indicating a view of surfaces as necessarily linked 
with volumes."  Kaestner, too, referred to "the nature of surfaces 
which bound bodies, expressed by equations."  The definitive work 
on surf aces considered as truly independent entities generally is as­
cribed many years later to Gauss ;" but Euler's work was the most ad­
vanced for his day. 

In finding the equation of his cylindrical surface Euler takes as 
origin a fixed point A not on the surface, as axis a line AQE parallel to 
an element of the cylinder, and as coordinate plane one through the 
axis and two elements BD and CF of the cylinder. Euler then ob­
served that the differential equation of the surface will be P dx -
Q dy, in which P and Q do not involve the letter t; and this is the equa­
tion also of the "base" ABHC. For the special case in which the base 
is a circle with center at A ,  the equation will be x dx  - - y dy. The fact 
that the equations are here given in differential form is not significant 
for the history of analytic geometry inasmuch as they are easily seen 
to be equivalent, respectively, to F(x, y) - 0 and x1 + y1 - a1• 

With the same degree of generality Euler defined a cone as "a solid 
bounded by straight lines drawn through the points of any curve and a 
fixed point taken outside of the plane of the curve. " One is surprised 
that he should have restricted himself in this definition to plane curves, 
for Henri Pitot (1695-1771) in the Paris M hnoi,res for 1724 had studied 
the helix on a cylinder and had prophetically said that perhaps some 
day "curves of double curvature, ' '  a name here coined for the first 
time, would be the object of researches in geometry. Pitot also 
pointed out an interesting connection between the ellipse and the sine 
curve : If one traces on a right circular cylinder an ellipse cut from it 
by a plane inclined at an angle of 45 ° to the base, and if the cylinder is 
then rolled along a plane, the ellipse will trace out a sine curve on this 
plane. He did not carry such work further, however, and the system­
atic stu.dy of skew curves really began about half a dozen years later. 

In connection with the cone Euler took the origin as vertex, a line 
through this as axis, and a plane through this cutting two elements of 
the cone as coordinate plane. Then he said that all sections by planes 
perpendicular to the axis are similar, so that the equation in t, x, y is 
such that if two coordinates are increased or diminished in a given 

H See Cajori, "Generalizations in Geometry as Seen in the History of Developable Sur· 
faces," American Mal/NmalicaJ Monthly, XXXVI ( 1929), p. 431-437. 

• See Cantor, Vorluunien fiber Gudridle tier MaUlemalik, lV, p. 407. 
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ratio, the third will be increased or djminished in the same ratio. 
Hence if for t, x, y one substitutes nt, nx, ny, the equation will remain 
unchanged ; and so "conoidical bodies," i. e. ,  conical surfaces, have the 
property that the equation with respect to the vertex is homogeneous 

and may be written in a form in which "�  is equal to a homogeneous 
x 

function of x and y of degree zero. ' '  Euler then put this in the language 
of dlif erential equations in order to find geodesics on the surface. In 
this latter connection he gave a hint of later work on developable sur­
faces in his statement that the shortest curve between two points on 
the cone would become the straight line between these points if the sur­
face were flattened out into the form of a plane. 

The third general type of surface which Euler studied consisted of 
those of revolution. Special cases of these had been considered fre­
quently since antiquity, but Euler was the first one to give a whole class 
by means of an equation. If the axis of revolution is taken as the t­
axis, Euler expressed the equation of the surface in the form x1 + y1 = 

T, where T is any function of t. This is virtually the modern form of 
expression for such surfaces. 

The work of Euler on surfaces in three-space was almost simulta­
neous with the more famous contribution by Alexis Claude Clairaut 
(1713-1765) on skew curves. His Recherches sur les courbes a double 
courbure was presented to the Academie des Sciences in 1729 when 
Clairaut was only sixteen years old, but it was published two years 
later. The Recherches, like the Glomltrie of Descartes, appeared with­
out the name of the author on the title page, although this was generally 
known. It carried out for space curves the program that Descartes 
had suggested almost a century before-their study by a consideration 
of the projections on two coordinate planes. From the preface of his 
book one gathers that he knew only of the work of Descartes, Bernoulli, 
and Pitot in three dimensions, and not of the far more important con­
tributions of Lahire, Parent, and Euler. It was apparently a memoir 
by Jean Bernoulli which first drew his attention to the study of sur­
faces. 

One might have expected Clairaut to open with the straight line, or 
at least to consider first the theory of surf aces ; but he began in medias 
res with a study of a space curve with reference to a single axis. He 
calls his coordinates x, y, s and says that if the s's are connected with 
the x's and with the y's by non-linear equations, then they determine a 
space curve. He calls it a "curve of double curvature,"  following 
Pitot, because its curvature is determined by that of two curves ob­
tained by projection of the original curve upon two perpendicular 
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planes. Clairaut said that he would give only algebraic curves, but he 
asserted that transcendental curves are just as easily handled. He 
promised, in the preface, to give later a treatise on "curves given by 
coordinates from a point"-i. e. ,  polar coordinates in three dimensions. 
This would have been the earliest use of such a system, but unfortu­
nately the work never appeared. 

Clairaut implicitly corrected the error of Descartes on normals by 
pointing out that such a curve has infinitely many normal lines ; 
and he saw that, for a given space curve, any two projecting cylinders 
y = f(x) and s = g(y) determine a third s = F(x) = gff(x) ] .  This sug­
gested the use of three mutually perpendicular coordinate planes in­
stead of the single plane and axis with which he had begun. 

Clairaut's discussion of surfaces is surprisingly simUar to that of 
Euler, but less systematic. He first gave as examples the sphere 
a1 = x1 + y1 + s1, the cone (n/m)s = v' x1 + y1, and the paraboloid 
y1 + s1 = ax. Then he went on to give the equations of other sur­
faces of revolution, such as the ellipsoid, the one-sheeted hyperboloid, 
and the surface obtained by revolving the parabola ay = x1 about the 
tangent at the vertex. Clairaut gave a treatment of general conical 
surfaces, using as generating curves the higher parabolas, ellipses, and 
hyperbo]as--;x' = ar - 1 y and ar + '/c = y (a = y)'. Like Euler, he 
knew that the equation of a cone with vertex at the origin is homoge­
neous. Clairaut also gave numerous examples of curves defined not by 
projecting cylinders but through the intersection of other surf aces; 
and he determined whether or not these curves lie on a given surface. 
He considered both positive and negative coordinates, although only 
portions of the figures are given in the diagrams. He showed how to 
sketch a surface by considering plane sections, using Bernoulli's sur­
face xyz = a• as an illustration. He knew that the equation of a plane 
is linear in the variables, and in the Paris Mhnoires for 1731 (the very 
year in which his Rechet-ches was published) he wrote this in the inter­
cept form (ax/c) + (ay/b) + s = a; but he did not go further in his 
study of linear equations. Clairaut included in book II some results 
on tangent and normal lines to a space curve, making use of the cal­
culus ; and the Rechet-ches closes with book III in which the integral 
calculus is applied to curves and surfaces. This work is carried 
through in geometrical form dependent upon diagrams, indicating that 
the development of differential geometry waited upon further work 
by Euler and Monge. 

There is one point in plane coordinate geometry where Clairaut 
made an innovation of some interest. Historical accounts of analytical 
geometry place considerable emphasis upon the introduction of the 
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distance formula, generally thought" to have taken place in 1797 and 
1798. However, the familiar formulae, for both two and three dimen­
sions, are found in the Rec'herches of Clairaut. They are, of course, 
incidental to other matters, but they are clearly stated in connection 
with the determination of the equation of a spherical surface. Let the 
center C have coordinates AB == =a, BD = = b, and DC = ::1: c 
with respect to the axis AB and the base plane ABD (Fig. 33) ; and let 
N be any point on the sphere with coordinates AP = x, PM = y, and 

MN = s. Then Clairaut wrote'7 that EN = MD = �1 + y ""  b1• 
He followed this with the analogous formula for three-space--

f = Vx "" a
' 

+ y "" b
1 

+ �, where f = CN. This is possibly the 
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first time that either of these formulae appeared in print. Conse­
quently, credit for them should go, pending further evidence, to Clai­
raut. His forms differ but slightly from the modern equivalents, mainly 
in the failure to regard the literal quantities a, b, and c as indifferently 
either positive or negative-a point which Hudde had made as early 
as 1659. 

The contribution of Clairaut in this connection should not, however, 
be exaggerated. The distance formulae are, after all, obvious analyti­
cal expressions of an ancient theorem named for Pythagoras but known 
to the Babylonians of some four thousand years ago. There can be 
little doubt but that their equivalents were known to the earliest 

• See, e. g., Tropfke, Gesc1Helil4, VI, p. 124 ;  Loria, "Da Descartes e Fermat a Mo111e e 
Lagrange," p. 840-842; W'seleitner, Gesc1He1'14, II (2), p. 42; Coolidge, Histor1 0/Geometrical 
JL.t'llotls, p. 134. 

II Redtefc1Ju, S.r lu '°"'M a double '°"'llfmJ (Paris, 1731 ), p. 98. 
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analytic geometers, including Descartes and Fermat. The equations 
of circles and spheres, given long before Clairaut, are tantamount to 
distance formulae ; and the rectification of curves, known since 1659, 
is dependent upon some such equivalent. The formulae for distance 
in infinitesimal analysis---ds = v' dx1 + dy1 and ds = v' dx1 + dy1 +d.s' 
-appear frequently in the Rec'herches, but these are not to be as­
cribed to him. It would not be surprising, in fact, if further research 
would reveal explicit, as well as implicit, anticipations of Clairaut's 
distance formulae, not only for the calculus, but also for analytic 
geometry. Nevertheless, it is important to note that, in formaliza­
tion, infinitesimal analysis had at that time far · outstripped Cartesian 
geometry, even though the invention of the latter preceded that of the 
former by about half a century. Formulae had been a natural out­
growth of the algorithms of Newton and Leibniz, but the coordinate 
geometry of Descartes and Fermat still leaned heavily upon auxiliary 
diagrams. Consequently, the distance formulae did not appear sys­
tematically until the time of Lagrange. 

In 1731,  the year of his Rec'herches, Clairaut published in the M hn­
oi,res of the Acad&nie a paper relating his solid analytic geometry to 
the theory of higher plane curves. In this work, "Sur les courbes que 
l'on forme en coupant un surface courbe quelconque, par un plan donn� 
de position,"48 he proved Newton's well-known theorem on the pro­
jective transformation of cubic curves. Using the equation of the 
conical surface xyy = ax• + bxxs + exu + d.s1, whose traces in the 
planes x = k are the divergent parabolas, Clairaut showed that the 
plane sections of this surface have as equations the various species of 
cubics in the Enumeratio. An interesting case of the simultaneity of 
ideas is found in the fact that Nicole presented a similar analytic proof 
of the theorem in the very same volume of the Mhnoires. 41 The cor­
responding theorem for the conics was proved, also in this volume, by 
Charles-Marie de la Condamfoe (1701-1774) . He showed that the 
conic sections are derivable as plane sections of the cone nnxx = yy + 
n, apparently the first instance in which solid analytic geometry was 
applied to this ancient theorem. 

The study of the plane and of other surfaces in space was resumed in 
the following year by Jacob Hermann (1678-1733) . In a paper, 
"De superficiebus ad aequationes locales revocatis, variisque earum 
afiectionibus,"  published in the Petersburg Commentarii for 1732-

• AcatUmk tla Seieneu, M&roiru, 1731, p. 483-493. 
• "Mani&e d'engendier clans un corps solide toutes les lignes du troisime ordre," lbi4 . •  

p. 494-510. See also another paper by Nicole, "Sur les sections coniques," in  the same 
volume, p. 130-143. 
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1733, he said that up to that time the geometry of surfaces other than 
planes and surfaces of revolution had scarcely been considered. 60 
This would indicate that he did not know of the Recherches of Clairaut, 
and that he was unaware of the work of his own associate, Euler. 
Hermann attributed the neglect of solid analytic geometry to the 
prolixity caused by the use of three unknowns, whereas for the plane 
two suffice. Hermann used the coordinates x, y, s defined in terms of a 
single coordinate plane and one directrix [or axis ] ; and he limited 
himself entirely to the first four octants, generally to the first alone. 
His study of the equation as + by + ex - e1 = 0 is better than any 
previously given, for he determined the position of this plane by find­
ing its traces and intercepts ; and then he showed conversely that 
every point in this plane satisfies the given equation. He made a be­
ginning in the important matter of directional properties and metric 
considerations by finding that the sine of the angle between this plane 
and the coordinate plane is Vb1 + c1 : Va2 + b1 + c1• The choice of the 
sine instead of the cosine is of no great consequence, but the use of 
only one coordinate plane concealed the symmetries which later en­
couraged the further use of analytic methods in the metric study of 
three dimensions. Hermann saw that solid analytic geometry could 
be applied in spherical trigonometry ; but this idea was not effectively 
exploited until over a century later, when Cesaro revived it. 

Hermann's work in solid analytic geometry seems to have been car­
ried out independently of that of his predecessors. It is surprising 
how slowly ideas in this field spread, even among members of the 
same academy. His study of curvilinear surfaces was less general 
than that of Euler and covered somewhat the same ground as that of 
Clairaut. He identified successfully the parabolic cylinder s1 - ax -
by = 0 and the cones s2 - xy = 0 and as2 - bxz - cys + cy1 = O ;  
but two somewhat more general quadrics, s1 - ax1 - bxy - cy1 -
ex - fy = 0 and as1 + bys + cy1 - exz + fx1 + gs - bx = 0, he de­
scribed only as "conoidal surfaces" whose sections are conics. His 
most general statement on surfaces is that u1 - x1 - y1 = 0 represents 
a solid of revolution if u is "any quantity involving s and constants."  
For surfaces such as the above, Hermann gave maxima and mfojma, 
tangent planes, and geodesic lines, but his methods, making use of 
partial derivatives, resemble those of Parent and are less elegant than 
those of Euler. He added also a study of the ruled surface which Wal-

,. In the same volume (VI, 1732-1733) p. 13-27 of the Commentarii of the Petersburg 
Academy there appeared a paper by G. W. Krafft, " De  ungulis cylindrorum varii generis," 
in which cycloidal cylinders, cissoidal cylinders, and other types of cylindrical surfaces are 
considered ; but they are not studied analytically in terms of equations in three coordinates. 
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lis had described as a cono-cuneus. Here for the first time the analytic 
equation is given, appearing as (b - s) v' a1 - y1 == bx. 

Hermann's work is not well organized, but it shows a genuine en­
thusiasm for the study of solid analytic geometry. He promised fur­
ther studies on surfaces, but he died before they could be completed ; 
and so it remained for Euler to give the first general treatment of sur­
faces of second degree. Before passing on to this, however, it will be 
well to refer briefly to Hermann's analysis of the general equation of 
second degree in plane analytic geometry. In 1729 he published a 
paper in which he recalled and extended the method Descartes had 
used to identify conics.61 Beginning with the general equation 
ayy + 2{Jxy + 'YXX + 26y + 2ex + t1J = 0, a form which had appeared 
essentially in L'Hospital's Conics, he solved this for y and showed that 
the curve is an ellipse, parabola, or hyperbola according as fj1 - a"( is 
less than, equal to, or greater than zero ; this result was known earlier 
to Craig and L'Hospital, to whom Hermann refers, along with De­
beaune, De Witt, and Schooten. He indicated further that if, in the 
solution for y in terms of x, the radical sign disappears-i. e., if ( ae -
fJ6} 1 == {61 - at/J) {fJ1 - a'Y}-then the equation represents a pair of in­
tersecting straight lines (for a pi! O) . Descartes in this case had 
thought of the result as a single line, for he had failed to use the double 
sign before the radical. The work by Hermann on conics and quadrics 
shows that the analytic study of second-degree plane curves had 
reached maturity while that of second-degree surfaces was still in its 
infancy. 

The eighteenth century in numerous respects is noteworthy for its 
elaboration and perfection of implications inherited from the earlier 
periods, and the case of polar coordinates, to which Hermann made an 
important contribution, is an apt example of this. Newton's use of 
polar coordinates was as yet unpublished, but Jacques Bernoulli, in 
continuing the study of Fermat's parabolic spirals, specifically pro­
posed the use of vectorial lines in 1691 and 1694.11 Varignon about a 
decade later suggested that from known curves new types might be ob­
tained by the simple expedient of interpreting the variables in the rec­
tangular Cartesian representation of the former as polar coordinates 
for the latter.61 For example, the higher parabolas became parabolic 
spirals, and the higher hyperbolas became hyperbolic spirals. A hint 

11 "De locis solidis ad mentem cartesii concinne construendis," Commentarii Academiae 
Pelroflolilaruu, IV (1729), p. 15-20. 

11 See Jacques Bernoulli, Opera (2 vols.,  Genevae, 1744), I, p. 431 f. 
11 See At:atUmie du Scien&u, Mlmoiru, 1704 ( 1722). Such coordinate transformations 

are analytic equivalents of the geometric transformationsao popuJar in the preceding century. 
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of space polar coordinates is found in Clairaut's preface, where he re­
fers to curves of double curvature "dont les coordon� partent d'un 
point" ; but this idea, like those of other anticipators, was not amplified. 

Far more significant than these somewhat equivocal adumbrations 
was the clear-cut proposal, made by Hermann in another paper" of 
1729, that polar coordinates are as appropriate for the study of geo­
metric loci as are Cartesian. "But with equal right it [the doctrine of 
loci] can be explained through the relationship which vectorial radii 
bear to the sine or cosine of the angles of projection, from the considera­
tion of which the properties of curves :flow just as elegantly as they are 
brought out in the usual manner." Hermann gave equations for 

Fig. 34 

transforming equations from rectangular to polar coordinates, using 
the letters m and n for the sine and cosine of the vectorial angle and s 
for the radius vector. The form he proposed is more general than that 
now ordinarily used, for the pole did not necessarily coincide with the 
origin. If A F  (or AG) is the abscissa, and BF (or CG) is the ordinate of 
a point on the curve ABC (Fig. 34) and if the pole is taken as E, where 
EA = a, then the equations of transformation are x = ns - a and 
y = ms. As an illustration Hermann converted the Cartesian form 
of the parabola y1 = px to the polar equation m2z1 = npz - ap-per­
haps the first instance of the application of polar coordinates to a conic 
section, or to curves other than spirals. 11 Among other examples, 

14 "Consideratio curvarum in punctum positione datum projectarum, et de affectionibus 
earum inde pendentibus," Commenla.rii Academitu PetrofHJlilanae, IV ( 1729), p. 37-46. 

11 Tropfke, Gucl&ic'llle, VI, p. 169, incorrectly ascribes the polar equation of the conic to 
Lacroix. 
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Hermann gave the transformation of the folium of Descartes y• -

bxy - x3 to s = bmn/(m1 + n1) ,  where the pole and origin coincide. 
He suggested also the study of equations in mixed forms, such as that 
involving the variables y and s. 

In view of the clarity and generality with which Hermann presented 
the case for polar coordinates, it is difficult to see why the major por­
tion of credit for this system should be given by historians to others 
much later. Smith, for example, reports that "the idea of polar 
coordinates seems due to Gregorio Fontana (1735-1803) , and the name 
was used by various writers of the 18th century."" The idea-and 
more-must obviously be ascribed to Hermann, if not earlier to Newton 
or Bernoulli. Nevertheless, Hermann's work in this connection seems 
not to have been widely known, and hence the definitive use of polar 
coordinates may perhaps with justification be ascribed to Euler about 
a score of years later. 

For fifteen years following the work of Clairaut and Hermann there 
were few significant new treatises touching upon analytic geometry. 
One might except the work of Jean Paul de Gua de Malves (1713-
1785) , Usages de l'analyse des Descartes pour d'couvri.r, sans le secours du 
calcul di..ff benti.el, les propri.etls, ou affections pri.nci.pales des li.gnu 
g'omltriques de tous les  ordres, which appeared in 1740. This implies 
in the title that De Gua felt, with some justification, that Cartesian 
geometry was overshadowed at the time by the calculus, and he there­
fore presented the theory of plane curves along the lines of Newton's 
Enumerati.o, having recourse to infinitesimal methods only to shorten 
the calculations. His work is noteworthy for its thorough treatment 

,,, of curve sketching, especially with respect to singular points, and for 
the use of Newton's parallelogram in a new form, known as De Gua's 
analytical triangle. In this "algebraic triangle, "  as he calls it, all 
sides are on the same footing, a situation which facilitates the study of 
the infinite branches of curves. De Gua added new results in the 
theory of curves, such as the theorem (implied in Clairaut's paper of 
1731) , that if a cubic has three points of inflection, these lie on a 
straight line. He showed, in a general way, that singularities are com­
pounded of ordinary points, cusps, and points of inflection. He gave 
also, like Clairaut and Nicole, a proof of Newton's theorem on the di­
vergent parabolas, and he added two new species of cubics to the 76 
recognized by Stirling. De Gua used translations and rotations of axes 
in various forms, but without trigonometric symbolism. In general 
his work is more significant in establishing curve theory as a subject in 

" Hutor1 of Mallsematiu (2 vols. , New York, 1925). II ,  p. 324. Cf. also Cantor, Gu­
chic/Jte, IV, p. 513, and Encyklopidie, III,  p. 596, 656. 
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itseH, and for new results outside the scope of elementary analytic 
geometry, than for any influence on the methods of coordinate geom­
etry. Moreover, his book seems to have been little known until re­
ferred to ten years later by Cramer in a more popular work on alge­
braic curves. 67 

The year of De Gua's Usages saw also the appearance of the De 
linei,s curvis of J. B.  Caraccioli. Italy had contributed little to the de­
velopment of analytic geometry during the century following Des­
cartes' Glomltrie, but in 1738 there appeared at Rome a book which 
enjoyed quite a vogue-the Institutiones analyticae earumque usus in 
geometria cum appendice tk constructione problematorum solidorum of 
Paolino Chelucci. This contributed nothing essentially new to the 
ideas of analytic geometry, and it strikes the modern reader as very 
tedious and highly unanalytic ; but it appeared in at least four editions 
by 1761 and so undoubtedly aided in making algebraic methods better 
known in Italy. Caraccioli's De linei,s curvis is also analytic only in 
part, but it is far more modern in treatment than the work of Chelucci. 
It is unusual especially in the great variety of curves presented, trans­
cendental as well as algebraic. Considerable space is devoted to the 
generalized ellipses and hyperbolas-y"' + • == (a � ax/b)"'x". In 
spite of the predominantly synthetic form of the book, polar coordinates 
(using the then customary symbols x and y) are applied to the higher 
spirals b"'x" == a•y•. Mixed coordinates are used, as in Newton, for 
the generalized quadratrices a•y• == b"'x• ; and, as in Reyneau, three 
interdependent coordinates are used in the analytic equation of the 
cycloid. 

The middle years of the eighteenth century produced a number of 
unusually popular works bearing on analytic geometry, and 1748 in 
particular was responsible for three of international significance. The 
three books were from widely separated regions, and each one was 
translated later into other languages. One, A Treatise of Algebra by 
Maclaurin, appeared (posthumously) in England ; another, the In­
stituzioni analytiche of Maria Gaetana Agnesi (1718-1799) , came from 
Italy ; and the third, the Introductio in analysin injinitorum of Euler, 
was by a Swiss who wrote in Latin, spoke in French, lived in Germany 
and died in Russia. Each one of these three treatises includes a sec­
tion on "The Application of Algebra to Geometry, "  the title then pre­
ferred for what is now called analytic geometry. Maclaurin had 
planned his volume in 1729 as a commentary on the A rithmetica of 

17 For an account of de Gua's work, see Paul Sauerbeck, "Einleitung in die analytische 
Geometrie der Mheren algebraischen Kurven nach den Methoden von Jean Paul de Gua de 
Malves," AbhafUUHgen "'' Gucllu/114 tler ma41'emtUiscllen Wusenshaften, XV ( 1902), p. 
1-166. 
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Newton, but he showed less reluctance to combine algebra and geom­
etry. Of the three main divisions in the book, the third is devoted 
to "the use of algebra in the resolution of geometric problems ; or 
reasoning about geometric figures ; and the use of geometric lines and 
figures in the resolution of equations."  As in the Geometry of Des­
cartes, quantities are represented by lines, and equations are "con­
structed" geometrically ; but Maclaurin gives more careful considera­
tion to the linear equation. Given ay - bx - cd = 0, he finds the 
locus as follows : With reference to a pair of perpendiculars APE and 
PNM, draw a line AN with an angle of inclination NAP such that the 
cosine is to the sine as a is to b (Fig. 35) . Then draw AD parallel to 
PM and equal to cd/a, taking AD on the same side of AE as PN if bx 

Fig. 35 

p E. 

and cd have the same sign, otherwise on the opposite side. Then 
through D draw a straight line BDM parallel to AN. The line BDM 
is, of course, the required locus with respect to the lines AP and AD as 
axes. Here one can see the gradual development of the idea of the 
slope-intercept form of the straight line ; but it was another fifty years 
before the modern forms made their definitive appearance. More­
over, the old hesitation in the face of negative coordinates is evident in 
Maclaurin's omission, reminiscent of that of De Witt and L'Hospital, 
of the form y = -ax - b in his enumeration of the various types of 
linear equations : y = ax +  b, y = ax - b, and y = -ax + b.68 

Maclaurin gives constructions for quadratic equations and discus­
sions of curves of second order, but these are unexceptional. In an 

11 See Algebra (London, 17 48), p. 305 f, and also appendix. 
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appendix to the Algebra/'9 "Concerning the general properties of 
geometrical lines,"  the author acknowledges the continuing influence 
of Newtons's Enumeratio. In this work, one of the last Maclaurin 
wrote, curves are not constructed but only traced in the modern 
manner. Maclaurin gave also an application of the method of Ber­
noulli, L'Hospital, and Stirling on the graphical solution of polynomial 
equations. In this connection he used the graph of a cubic polynomial 
to illustrate the occurrence of imaginary roots. The use of graphical 
methods in algebra was unusual for that time. For over a hundred 
years the most popular textbooks on elementary algebra-by Clairaut, 
Saunderson, Simpson, Euler, Bossut, Lacroix, Loomis, Davies---show a 
complete lack of graphical methods. A statement by Clairaut in­
dicates that such omission was not due to lack of acquaintance with 
graphical work. In the preface to his Elemens d'Alg,bre of 1746 he 
remarked, apropos of equations above the fourth degree, that, except 
for special cases, one is here reduced to simple approximations ; "and 
as these approximations are often simplest when one is aided by 
geometry, I propose to treat these equations when I shall expound the 
theory of curved lines. ' '  This projected treatise by Clairaut seems not 
to have been completed, but his plan indicates how clearly the fields of 
algebra and analytic geometry were separated. Maclaurin's Algebra 
is exceptional in this respect, but this book (which appeared in at 
least half a dozen editions, including a French translation of 1 753) 
shows also the lack in England of a clear-cut analytical program to take 
the place of the Cartesian tradition. 

A perfect example of balance between the points of view of Descartes 
and Fermat is seen in the Instituzioni analytiche of Maria Agnesi,80 
written for the instruction of a younger brother. This is not only the 
first important surviving work written by a woman ; it is also one of the 
few early contributions to analytic geometry to come from Italy. It 
does not include any essentially new material ; but it is significant for 
its clarity of exposition and its widespread influence as a textbook,81 as 
well as for the picture it gives of the state of the subject at that time. 
The first book of this is devoted to the "Analysis of Finite Quantities, " 
which, the author says, "is commonly called the Algebra of Cartesius. " 

11 Op. cit. The appendix contains both the Latin original, De linearum geomdricaf'um 
fWoprWlatibus generalibtu, and an English translation. 

• The :I.loge historique tk Marie-G"tane Agnesi (transl. from Italian, Paris, 1807) by A.-F. 
Frisi supplies biographical details but not an adequate analysis of her work. 11 The preface of the English edition, A nalytical Institutions (London, 1801), indicates 
that John Colson learned Italian for the sole purpose of translating this work which was 
"well known on the Continent." An extensive commentary on Book I is added by the 
translator. 
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In it one recognizes indeed La glomltrie, somewhat rearranged and 
amplified. Even Descartes' method of tangents is described, although 
this is supplemented by an alternative in which a line is substituted for 
the circle. The geometric construction of algebraic expressions, 
equations, and loci comes in for all the emphasis Descartes had given 
to it-with an additional section on the construction of first-degree 
equations along the lines given by De Witt in the Latin editions of The 
Geometry. One sees in Agnesi's work some of the old errors with re­
spect to negative coordinates, for y = ax/b is regarded as a ray lying 
entirely in the first quadrant, with y = -ax/b as its complementary half­
line. The coefficients of equations are not general as to sign, so that 
quadratic equations in one unknown are divided into four types. Not 
one, but six different forms of linear equations are considered, and these 
lines (or rays) are constructed in geometric style somewhat as in Mac- . 
laurin's Algebra. Right and oblique coordinates are used more or less 
indiscriminately ; and a single axis is usually adopted, although a 
second is sometimes implied. The study of the conics and their appli­
cation to the solution of equations is in the usual tradition. The equa­
tions of the circle and the general conic sections are given with respect 
both to the center and to a vertex. Other cases are handled by the 
equivalent of a translation of axes. A long section is devoted to the 
construction of determinate equations, with rules determining the 
simplest possible loci required ; but the Cartesian manner of con­
structing polynomial equations is supplemented briefly by a descrip­
tion of the method of L'Hospital, in which xi - bx4 + acx• - aadx2 + 
a•cx - a4f = 0, for example, is solved through the intersections of the 

xi - bx4 + acx• - a'ldx2 + a•cx • 
curves s = 4 and s = f. The influence 

a 
of the Newtonian curve-tracing is seen in her recognition of two ways 
of constructing a locus or indeterminate equation : "The first manner 
of tracing them is by finding an infinite number of points. The second 
is by means of other curves of an inferior degree which are already de­
scribed." The first [or Fermatian ] . method is explained at some 
length, presumably because it was not so well known, after which the 
author adds, "This method of describing curves by an infinite number 
of points may perhaps be reduced to a greater perfection by making use 
of geometrical constructions."  The old Cartesian hierarchy of curves 
is here well illustrated by the "second" manner of tracing a2y = x• 
through thf' motion of lines with respect to an Apollonian parabola. 
Let the parabola be given in rectangular coordinates by x2 = as, where 
OR = a, OB = s, QP' = y, and BP = 0Q = x (Fig. 36} . Draw PQ 
perpendicular to OR and draw the line BR. Then if OP' is drawn 
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parallel to RB, the locus of P' will be the curve desired, as one sees im­
mediately from the proportion OR : OB - 0Q: QP'. This curve is 
now in tum used in the construction of others of higher degrees. 

, 
Fig. 36 

I I I I , 

p' 

I I I I 

The well-known "witch of Agnesi" is an excellent example of the 
author's "double standard" for curves. This curve had been redis­
covered in 1703 by Guido Grandi (1671-1742) who gave it the name 
verswa.11 Maria Agnesi first plotted it from the equation (which 
Fermat had given more than a century earlier) and then constructed 
it in a strictly Cartesian manner through the well-known locus of lines 
with respect to a circle (given half a century before by Newton) . 
Using a notation similar to that above, where OR - a, OB = y, BP -z, BP' - RQ - x, and the circle is z2 - ay - y2 (Fig. 37) , we have 
RQ/RO = BP/BO. Squaring and substituting, this becomes x1/a2 -
(ay - y2)/y2 or y = a1/(a1 + x1) .  

The works of Maclaurin and Agnesi in 1748 show the tendency of 
authors to compromise with the Cartesian tradition on constructions, 

11 The name "witch," customarily used in English, apparently is due to a mistranslation. 
The word "versiera" which Grandi coined in 1718 to indicate the manner in which the curve 
is generated, has also the meaning "witch," in Italian, but this has no connection with what 
Grandi and Agnesi had in mind. See Gino Loria, Spesielle algebraische und transcendenle 
ebene Kurom (Leipzig, 1002), p. 75. On the origin and properties of this and other curves, 
and also for numerous bibliographic references to sources, the work of Loria is most valuable. 
See also R. C. Spencer, "Properties of the Witch of Agnesi," Journal of tile Optical Socid1 , 
of America, XXX ( 1940), p. 415-419. 
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but Euler's contribution of this same year marks a complete victory 
for the attitude of Fermat. Loria has well said that in the history of 
analytic geometry the year 1748 is almost as important as 1637, for the 
subject then became "a robust structure" affording material for a 
college course.88 The Introductio of Euler is referred to frequently by 
historians, but its significance generally is underestimated. This book 
is probably the most influential textbook of modern times. It is the 

Fig. 37 

work which made the function concept basic in mathematics. It 
popularized the definition of logarithms as exponents and the defini­
tions of the trigonometric functions as ratios. It crystallized the dis­
tinction between algebraic and transcendental functions and between 
elementary and higher functions. It developed the use of polar 
coordinates and of the parametric representation of curves. Many of 
our commonplace notations are derived from it. In a word, the In­
troductio did for elementary analysis what the Elements of Euclid did 
for geometry. It is, moreover, one of the earliest textbooks on college­
level mathematics which a modern student can study with ease and 
enjoyment, with few of the anachronisms which perplex and annoy the 
reader of many a classical treatise. It can be read, however, only in 
Latin, French, or German, 84 whereas Maclaurin's Algebra can be read in 
English as well as French, and Agnesi's Instituzioni appeared in 
Italian, French, and English. 

11 "Da Descartes e Fermat a Monge e Lagrange," p. 825-827. 
" A Russian translation was once planned, but seems not to have appeared. For a com­

plete bibliography of the works of Euler, see Gustaf Enestr6m, "Verzeichnis der Schriften 
Leonhard Eulers," JaMesbericlU der Deutschen Mathematiker- Vereinif"nf, Erginzungs­
biinde, IV, 191�1913. This contains 866 entries, excluding multiple editions! 
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The first part of the I ntroductio is devoted to "pure analysis, " the 
second to the "application of algebra to geometry. " The latter is a 
systematic treatise on analytic geometry in the sense of Fermat. 
Both sides of the fundamental principle are clearly stated by Euler : 
With Descartes, he recognizes that "the nature of any curve whatever 
is given by an equation between two variables x and y of which x is 
the abscissa and y is the ordinate" ;  and with Fermat he holds that 
"any function whatever of x gives rise to a continuous curved line 
which can be described by plotting. "  Note that Euler here uses the 
word "plotting," and not the Cartesian word "constructing. "  The 
Introductio is one of the first treatises to give numbers of graphs of 
specific curves with numerical coefficients, clearly indicating the units 
used on the axis of abscissas. Euler does not take up systematically 
the Cartesian derivation of equations of loci ; for him analytic geom­
etry was more Fermatian in aspect and centered about the sketching 
of curves as given by their equations. By 17 48 the old Cartesian 
classification of curves had been virtually abandoned, so that it is not 
given by Euler, Agnesi, or Maclaurin. Euler did bow to the Carte­
sian tradition to the extent of including a section on "The construction 
of [determinate ] equations" ;  but this is one chapter out of twenty­
two, whereas with Descartes this topic had occupied two books out of 
three. Moreover, Euler preferred to follow Newton in his selection of 
intersecting curves for their simplicity of description rather than ac­
cording to Descartes' rule with respect to order ; and he closes the 
brief chapter on constructions with the apologetic statement that he 
"has stayed over long on this question, more curious than useful. "  

The most noteworthy feature of the Introductio, from the point of 
view of the development of plane analytic geometry, is undoubtedly 
the generality of Euler's treatment. One of the chief advantages of 
modern analytic methods over the synthetic approach of the ancients is 
that many special cases can be included within one comprehensive 
formulation ; but this aspect, to some extent understood by Fermat and 
Descartes, had been largely overlooked during the first century of the 
new analysis. Halley in 1694 had well expressed this advantage : 

The excellence of modem geometry is in nothing more evident, than in 
those full and adequate solutions it gives to problems ; representing all . . . cases m one view . . . . 

but neither he nor his successors adequately appreciated this remark. 
Descartes himself had laboriously worked out variations of sign be-

11 Philosophi.caJ Transactions, 1694, p. 960. For a list of Halley's writings see Corres� 
enee an4 Paflers of Edmond HaUe, (ed. by E. F. Mac Pike, Oxford, 1932), p. 272f. 
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longing to different cases ;  and as late as 1748 the works of Maclaurin 
and Agnesi continued to splinter the linear equation into numerous 
different cases. Distance and direction formulae had but rarely been 
introduced ; transformations of coordinates remained on an ad 'hoc 
basis ; and dependence upon the use of diagrams continued to be the 
rule. Euler did not change all of this, but he did more than any other 
single individual to generalize analytic methods and to make the use of 
coordinates a point of departure for a systematic exposition of alge­
braic geometry. To begin with, before introducing the conic sec­
tions, "which up to that time had been almost the sole object of this 
branch of mathematics, "  he gave a theory of curves in general, based 
on the idea of function which had been developed in the first volume of 
the Introductio. The Cartesian distinction between geometrical and 
mechanical curves is given in modem terminology by the names 
algebraic and transcendental, and this is supplemented by a subdivision 
of functions into continuous and discontinuous, single-valued and 
multivalued. 

Following the brief introduction to curves in general, Euler turned 
in order to curves of various degrees. His treatment of the linear equa­
tion is characteristic for its generality, but it is startingly abbreviated. 
To cover all forms of the straight line, Euler gave the single general 
equation a:x + {Jy - a = 0, remarking incidentally that the inter­
cepts are a/ct and a/{J {for ct � 0 � {J) . He mentioned specifica.lly 
the cases ct = 0, {J = 0, and ct = a = 0, but not {J = a = 0, possibly 
because he used a single axis. It is noteworthy that the geometrical 
construction of lines is completely abandoned and that no use is here 
made of diagrams. Euler remarked that a line is uniquely deter­
mined by two points, evidently implying that its equation can be 
found by means of undetermined coefficients ; but he went no further 
in the study of equations of first degree for the reason that "the geom­
etry of the straight line is well-known. "  This is greatly to be re­
gretted, especially since he was composing an elementary textbook. 
Had he amplified the treatment of the linear equation, the history of 
analytic geometry might have been advanced by almost precisely half 
a century, for not until 1797-1798 did equations of first degree become 
an integral part of textbooks in the subject. The situation with re­
spect to the circle is similar. Presumably Euler felt much as Newton 
did-that analytic geometry is not to be applied to elementary prob­
lems involving the straight-edge and compasses. How different was 
the situation to be just half a century later ! 

What Euler might have done for the line and circle he did effectively 
accomplish for the conic sections. Here again one finds the treatment 
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truly analytic-general, and free from reference to diagrams. Wallis 
had freed the conics from the cone, but Euler went further. Pointing 
out that previous writers had derived the properties of the curves either 
from the cone or from a geometric construction, he adds, "We will be 
satisfied by examining here what one can deduce from their equation, 
without recourse to other means. "84 Beginning, as had Hermann , 
with the general equation tyy + exy + 8xx + 'YY + {Jx + a = 0, 
Euler solved the equation for y in  terms of x and found diameters much 
as Newton and Stirling had earlier-through the sum of the roots. 
Finding the diameter which bisects all chords parallel to the ordinates, 
first for rectangular coordinates and then again for oblique coordinates 
at any angle, the intersection of these diameters gave him the center 
of the conic. Then starting with the rectangular Cartesian equation 
of the central conic with respect to its principal axes, Euler easily found 
the usual points, lines, and ratios associated with the curve, completing 
the analytic study begun by De Witt and continued by Wallis, Craig, 
L'Hospital, Stirling, and Hermann. He was, of course, familiar with 
the characteristic, stating that the conic is an hyperbola if EE > 48t, and 
he knew that for the equation of the hyperbola with respect to its axes, 
the asymptotes are obtained by equating to zero the terms of highest 
degree. The looseness with which he handled infinitesimals in the cal­
culus is here paralleled by the statement that the parabola is nothing 
but an ellipse of which the major axis has been increased to infinity. In 
contrast to the modem treatment, Euler derived the properties of the 
parabola from those of the ellipse. He first considered the equation 

of the ellipse with respect to its center and axi� = bb (aa - xx)-aa 
and then with respect to a vertex and an axis-yy = 2cx - [c(2d -c)xx/dd]., where c = bb is half the parameter or latus rectum, and d == 
a - v' aa - bb is the distance between a vertex and its focus. In the 
language of Euler, when 2d = c the ellipse becomes a parabola and the 
semiaxes a and b become infinite. 

Euler's treatment of conics is thorough, and carried out in terms 
of both rectangular and oblique coordinates. The use of a single 
axis did not prevent him from giving perhaps the first analytic treat­
ment of the transformation of coordinates. A single pair of equations, 
for example, suffices to cover the transformations from rec­
tangular to oblique axes, without recourse to geometrical figures : 

x = nr - (nv - mµ)s - f 
y = -mr + (µn + vm)s - g, 

11 Introdtl&lio, vol. II ( 1797), p. 40. 
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where f and g are the rectangular coordinates of the new origin, m 
and n are the sine and cosine of the angle between the old and new 
axes, and µ. and .,, are the sine and cosine of the angle of obliquity of the 
new ordinates ; and where the old and new coordinates of any point 
are x, y and r, s, respectively. These equations are easily reconciled 
with the modern forms for rectangular coordinates by noting that in 
this case µ. = 1 ,  .,, = 0, and the sign of the angle between the axes is 
reversed. 

Euler abandoned the Cartesian arrangement of curves by classes 
for the Newtonian classification by degrees, although he still felt it 
necessary to justify such a step. Following his study of quadratic 
curves, he then started with the general cubic and subdivided these 
curves into types, with their principal properties. Next he gave a 
similar treatment of quartics in which 146 normal forms are included. 
Following this, Euler reverted to the properties of curves in general­
their tangents, asymptotes, diameters, curvature, and singular points. 
He seems not to have been aware of the earlier work of Stirling and 
De Gua. An elementary illustration of his greater generality is found 
in the fact that whereas La.hire and De Gua had noted that ya = x3 
represents three lines, two of which are imaginary, Euler enunciated 
the theorem that f(x, y) = 0 represents a system of m lines [real or 
imaginary] through the origin if f is a homogeneous algebraic function 
of degree m. After a chapter on the intersections of curves, Euler 
added one, previously mentioned, on the construction of equations. 
Here the statement that by means of two curves of orders m and n, 
respectively, one can construct the roots of equations of degree not 
greater than mn, was but a reformulation of Fermat's correction of 
Descartes and of Maclaurin's theorem on the number of possible inter­
sections of algebraic curves. 

One of the unusual features of Euler's work on analytic ge0metry is 
the inclusion of a chapter on transcendental curves. The Newtonian 
school followed Descartes in considering algebraic curves primarily ; 
and although logarithms and trigonometric functions had been long 
and widely used, their graphs seldom appeared in print. The forms 
of these curves had been given about a century before the Introductio, 
but Euler's work seems to have been definitive in bringing them into 
books on an elementary level. During the latter part of the eighteenth 
century, in fact, the analysis of the trigonometric functions was freely 
ascribed to Euler, and with not a little justification. Euler listed 
systematically all the usual formulae of goniometry, with special ref­
erence to the multiple-angle formulae ; he treated the circular func­
tions as ratios rather than as geometric lines ; he emphasized the 
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periodic nature of the functions and drew their graphs ; he correlated 
circular and exponential functions through the use of imaginary quan­
tities ; and he differentiated and integrated the direct and inverse 
trigonometric expressions logarithmically rather than in terms of 
geometric properties. In short, he made the study of trigonometric 
and other elementary transcendental curves part of coordinate geom­
etry and the calculus. Curves of the usual elementary functions were 
not the only ones which Euler included in his analytic geometry. The 

chapter on transcendental curves includes such oddities as y == xv'i, y == r, r == r, and y == ( - 1)•, some of which he undoubtedly owed 
to his teacher, Jean Bernoulli. 

The lntroductio includes also two accounts of polar coordinates 
which are so thorough and systematic that the system frequently is 
ascribed to Euler.87 Whereas Newton, Bernoulli, and Varignon had 
applied vectorial coordinates only to transcendental curves, and Her­
mann had used them only for algebraic curves, Euler devoted a sec­
tion to each of these classes. In connection with the latter case, 88 he 
gave the equations of transformation x == z cos q,, y == z sin q,, intro­
ducing modem trigonometric symbolism into polar coordinates. He 
gave general consideration to z as a function of sin q, and cos q,, and he 
noted in more detail the lima�ns z = b cos q, = c and the conchoids z == (b/cos q,) = c. Like Hermann, Euler, too, suggested the transforma­
tion of equations of conics into polar coordinates. 

One is surprised that neither Hermann nor Euler referred to those 
curves which now are so prominent in the elementary use of polar co­
ordinates-the curves r = a sin nq, and r = a cos mf>. These had been 
described by Grandi as early as 1713 in letters to Leibniz, and they 
were published in England89 in 1723 and in ltaly70 in 1728. However, 
Grandi had not handled his "roses" analytically, but had described 

them in words. The curve r = sin iq,, for example, was indicated as 

follows : In the circle with center C and radius CA (Fig. 38) take angles 
A CD and A CG in the given ratio, a to b; and along CD take CJ equal 

� See, e. g., E. M6ller, "Die verscbiedenen Koordinatensysteme," Encylelopdtlw tler 
matlsematischen Wissenschaften, III ( 1 ), 596-770, especially p. 656-657. Cf. EncyclopUie 
des sciences matMmatiques, III (3),  1 ,  p. 47. On the other hand, Coolidge (Hislo"J of Geo­melru Methods, p. 171-172, mentions no contributions to plane polar coordinates between 
1691 and 1794. 

• Jntroduclio ( 1748), II, p. 212 ff. 
• Guido Grandi, "Florum geometricorum manipulus," Philosopliil:al Transadions, 

XXX.11 ( 1723), p. 355-371 .  This account includes a score of beautifully drawn figures-­
bifoliate, trifoliate, etc. Grandi wues eloquent on the role of geometry in the beauties of 
nature. 

10 Guido Grandi, Flores get>melrui e:: rliotlonearum (Florentiae, 1728). 
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to HG, the sine of angle A CG. The locus of the point I is then the 
curve in question. That is, "the rose curves are those which are formed 
by segments, cut off from the infinite number of branches going out 
from the center, equal to the sines of those angles which are to the cor-

H A 
Fig. 38 

responding angles of the branches in a given ratio. "7 1 What tongue­
twistings Grandi would have been spared had he been familiar with 
polar coordinates ! 

In the polar treatment of transcendental curves Euler adopted a 
somewhat different notion and notation for the independent variable. 71 
Here he studied curves of the form z = f(s) , where the argument s is 
the arc of a unit circle which measures the angle </>. Ostensibly even 
Euler, more than a century after the appearance of La glomltrie, felt 
that coordinates must of necessity denote lengths. In connection with 
the spiral curves which he drew, Euler made use of the general angle, 
allowing s to increase indefinitely, both positively and negatively. As 
a consequence of his use of negative polar coordinates, the spiral of 
Archimedes here appeared, perhaps for the first time, in its dual form.71 

It is probably not too much to say that although Newton may have 
originated polar coordinates, it was the work of Euler which was the 

n Floru geometrici, p. 2. 
71 Introtlucti.o, II ,  p. 284 ff. 
71 Loria mistakenly ascribes negative radii and the dual form of this spiral to Cournot 

about a century later. See Gino Loria, "Perfectionnements, �volution, m�tamorphoses du 
concept de coordonn�," Mathematica, XVIII ( 1942), p. 125-145 ; XX ( 1944), p. 1-22 ; 
XXI ( 1945), p. 66-83, in particular, p. 139. This important paper appears also in Osiris, 
VIII ( 1948), p. 218-288. 
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decisive factor in making the system a traditional part of elementary 
analytic geometry. Jean-le-Rond d'Alembert (1717-1783) , in the 
article "Geometrie" in the Encyclopldie, took cognizance of the sys­
tem in writing that the equation of a curve can be given in terms of 
parallel coordinates, or of the radius vector and either the abscissa or 
the ordinate, or of the radius vector and the sine, secant, or tangent 
of the angle of inclination. The phrase "polar equation" was used in 
1784 by Gregorio Fontana (1735-1803) in connection with polar curves 
of the form s = f(u, sin u, cos u) , where z is the radius vector and u is 
the arc of a unit circle ;74 and this fact seems to have led Smith un­
warrantedly to ascribe to him the idea of polar coordinates. 71 Cer­
tainly the system of plane polar coordinates is not to be attributed to 
any one later than the time of Euler, for it began then to appear in rep­
resentative didactic works of the century. For example, the In­
stitusioni analytiche of Riccati and Saladini (1765-1767) included the 
formula for radius of curvature in polar coordinates, using the New­
tonian scheme with (x, y) for (r, rlJ) . 

The method of parametric representation of curves, systematized 
largely by Euler, again was a development of implications of a hundred 
years before. In presenting the fundamental principle of analytic 
geometry, Descartes had pointed out that, for a curve, one must have 
one more unknown than there are conditions or equations. Para­
metric equations of a curve are only a special case of this principle. 
In fact, the composition of movements, so popular in the seventeenth 
century but in reality going back to the quadratrix of Hippias, is also 
an anticipation of the parametric representation of curves. But it 
was Euler who pointed out specifically the advantages of such forms. 
Where y and s are related by an implicit algebraic function, such as 
y10 = 2ayz' + byz• + cs4, he suggested the substitution y = xz, as the 
result of which z and y are each expressible algebraically in terms of 
the parameter x. Similarly the curve y = r is given, after the sub­
stitution y = tx, in the parametric form x = t•l<1 - 1> and y = 
flU - o, or, if t - 1 = u, as x = (1 + ;)• and . y = (1 + ;)• + • . 
Where Leibniz represented the cycloid by a differential or integral 
equation, Euler wrote it parametrically in the now more usual manner79 

" "Sopra l'equazione d'una curva," Memorie tli Malemalit:a e Fisica tlella Sociela llaliana, 
II (part i, 1784), p. 123-141 ,  especially p. 128. Cf. also his Dispisiliones filsysico-mathe­
malictUI (Papiae, 1780), p. 184-185. Here Fontana uses the letters � and y instead of "  and 
s. Earlier (in 1763), Fontana had given the formula for radius of curvature in polar co­
ordinates. 

" Smith, Hislory of Mathematics, II,  324. The work of Fontana gives one the impression 
of having been influenced by Euler. 

" See lnlrotl'4dio, I, p. 39--46 ; II ,  p. 294. 
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z 
x = b - b cos ­

a 

y = z + b sin �. 
a 

Possibly the most important general contribution of the eighteenth 
century to mathematics was the development of the notion of func­
tion. This idea again had been familiar to earlier men, from Descartes 
and Fermat to Newton and Leibniz ; but it was Euler who established 
it firmly in his Introductio. Improving on the definition given fifty 
years earlier by Jean Bernoulli, Euler wrote : "A function of a variable 
quantity is an analytic expression composed in any manner whatever 
of this variable and constants. "  In this definition Bernoulli and 
Euler had in mind the chief means of defining plane curves-by means 
of "analytic expressions" or equations in two variables ; but the 
emphasis, as in the case of Descartes, was on the equation rather than 
on the curve. On at least one occasion, nevertheless, Euler inverted 
the situation and used the term function to designate the relationship 
between x and y implied by any curve "drawn free-hand" in the xy 
plane. This generalization of the Cartesian mechanical motions, how­
ever, was not exploited until a century later. 

The Introductio closes with a long and systematic appendix on solid 
analytic geometry. This is perhaps the most original contribution of 
Euler to Cartesian geometry, for it represents in a sense the first text­
book exposition of algebraic geometry in three dimensions. 77 Inas­
much as Clairaut's well-known book had presented the theory of curves 
of double curvature, Euler devoted most of his appendix to the study 
of surfaces and touched but lightly upon skew curves. As in his plane 
analytic geometry Euler had used a single axis, so in three dimensions 
he continued his early use of a single coordinate plane as basic. Never­
theless, he expressly remarks that three planes can be used, and he him­
self makes frequent use of this scheme, especially in illustrations. 
Moreover, he pointed out the signs of the coordinates for the eight 
octants associated with such a trihedral of reference, and tests for 
symmetry and extent are given, even though Euler limited his diagrams 
largely to the first octant. The order of treatment of the material is 

n There is surprisingly little material on the history of surfaces. The catalogue of the 
New York Public: Library, for example, includes a trayful of references on surfaces ; yet not 
more than three or four of these are in any real sense historical, and even these refer only to 
recent developments. It is interesting to note in this connection that the first decade of the 
twentieth century produced a greater number of papers dealing with surfaces than did any 
comparable period before or since. There are at least half a dozen extensive treatments of 
the history of curves ( see the bibliography at the close of this work) , but one looks in vain 
for analogous works on the history of surfaces. 
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similar to that given above for two dimensions. Surfaces are first con­
sidered in general, and are divided into two classes, algebraic and trans­
cendental. They are studied in the usual manner by a consideration 
of the traces in various planes. Cones, spheres, cylinders, and conoids 
serve as illustrations. Paralleling his contribution to plane analytic 
geometry, Euler gave the first formulae for translation and rotation of 
axes in three dimensions--the non-symmetric form still known by his 
name :78 

{x = t cos r  + u sin r cos .,, - v sin r sin .,, - a 
y = - t sin r + u cos r cos ,, - v cos r sin ,, - b 
s = u sin ,, + v cos '1· 

This has been a classic portion of solid analytic geometry ever since. 
For three dimensions, as for two, Euler's treatment of the linear 

equation is characteristically general but disappointingly brief. He 
gives the plane in the form ax + {Jy + 'YS = a, and finds its traces and 
intercepts with the coordinate plane and axis. Like Hermann, he 
found the angle between the given plane and the coordinate plane, but 
he wisely gave the cosine of this angle, 'Y/V aa + {J{J + 'Y'Yi instead of 
the sine. 

Euler's classification of quadric surfaces is significant as the first 
unified treatment of the subject. It is surprising to note that here one 
finds apparently the first conception of the surf aces of second degree as 
a family of quad.rics in space analogous to the plane conic sections. 
Euler begins with the general quadratic equation with ten terms and 
points out that the aggregate of terms of highest degree furnishes the 
equation of the asymptotic cone, real or imaginary. He indicates that 
the general equation can be reduced by transformation to the canoni­
cal forms App + Bqq + Crr + " = 0, App = Bqq == ar, and App = 
aq, from which he derives a classification of quadric surfaces. He in­
cludes the five fundamental types-the ellipsoid, the hyperboloids of 
one and of two sheets (elliptico-hyperbolica and hyperbolico-hyper­
bolica), and the elliptic and hyperbolic paraboloids (elliptico-para­
bolica and parabolico-hyperbolica)-but he does not list all of the 
degenerate types . We have seen above, however, that he was thor­
oughly familiar with cones and cylinders, general as well as quadric. 
Euler's work here represents the first attempt at a unified treatment of 
the general quadratic equation in three unknowns-over a century 
after Fermat and Descartes had done a similar thing for binary quad­
ratics. Such a classification has remained ever since a part of standard 
courses in analytic geometry. 

71 Wieleitner, Geschic/JU, II (2), p. 53, inadvertently credits this to Meusnier in 1785. 
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Euler did not undertake to give a full discussion of the curves of 
intersection of surfaces, but he showed not only how to study these in 
the Cartesian manner by means of projection curves, but also how to 
write the equation of a plane section of a surface in terms of two co­
ordinates in the plane. He investigated in particular the sections of 
the sphere, elliptic cylinder, and quadric cone, and pointed out that the 
order of a plane section of a surf ace is not higher than the order of the 
surf ace . 

The work of Euler may be said to mark a turning point in the de­
velopment of analytic geometry in several respects. In the first place, 
it marks the close of the period in which the strict Cartesian point of 
view was dominant. The subject no longer had for its chief end the 
solution of problems in geometrical construction. It was not, in fact, 
concerned exclusively with two dimensions. Analytic geometry for 
Euler meant essentially but one thing-the sketching and study of 
curves and surfaces by means of their equations, i. e . , the graphical 
representation of functions. In retrospect one can easily appreciate 
the service he rendered in releasing the subject from the rigidity of the 
older tradition.79 In a sense, one may say that Euler freed the subject 
from geometrical fetters, even though he did not go beyond three di­
mensions. Under the Cartesian view, analytic geometry began from 
a geometrical problem and ended with a geometrical construction ; the 
algebraic study of curves and equations constituted the connecting 
link from the initial to the terminal stage. For Euler, on the other 
hand, analysis was not the application of algebra to geometry ; it was 
a subject in its own right-the study of variables and functions-and 
graphs were but visual aids in this connection. To some extent this 
represents a return to the use of the word analysis by Viete ; but 
whereas formerly it referred to algebraic calculation in which unknowns 
were operated upon as if they were known, it now dealt with continuous 
variability based upon the function concept. It is, of course, possible 
to read this meaning into the works of Fermat and Descartes, or even 
into that of Viete ; but only with Euler did it take on the status of a 
conscious program. 

Euler's analytic theory of functions was invaluable for the develop­
ment of mathematics, but it seems to have over-shadowed the develop­
ment of one other aspect of plane analytic geometry. He and most of 
his successors failed to appreciate the advantage of algebra as a fitting 
language for elementary geometric concepts. As Loria has pointed 

" Hermann Hankel, Die Entwickelung tler Mal/Nmatik in den lelaten Jahr'/iuntlerlen (2 ed., 
TU.bingen, 1884), p. 12. One should beat in mind, nevertheless, that the increased general­
ity often was accompanied by a corresponding loss of vigor. 
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out,80 analytic geometry now generally includes four things : (1)  
generalities on the method of  coordinates ; (2) examples of  equations of 
loci and the tracing of curves ; (3) formulae for solving fundamental 
questions on points, lines, and planes ; ( 4) the study and classification 
of curves and surfaces of second degree. All but the third of these are 
found clearly developed in the Introductio, so that this work sometimes is regarded as the first textbook containing the essence of analytic 
geometry.11 The one thing missing is the plane and solid algebraic 
geometry of rectilinear configurations. The variables x, y, and s and 
the functional relationships ax + fJY = a and ax + fJY + 'YZ = a 
were of interest as aspects of analysis, not as algebraic counterparts of 
points, lines, and planes. This may well be the reason that such 
fundamental formulae as those for distance, midpoint, slope, angle, and 
area, appeared so late in the history of analytic geometry. The back­
ground for the formula-building stage of algebraic geometry arose very 
gradually during the half-century following the Introductio, and it is 
paradoxical to note that the program for two dimensions did not in 
general precede, it followed, the introduction of corresponding formulae 
in solid analytic geometry, of which branch Euler was the effective 
founder. 

• "Qu'est-ce que la gtom�trie analytique," L'Enseigrsemenl MalMmatique, XIII ( 1923 ) ,  
p. 142-147. 

•• See D. J.  Stroik, A ConciseHistory of Mallumatics (2 vols., New York, 1948),  I I ,  p .  1 3�.  
169. 



C H A P T E R  V I I I  

The Definitive Formulation 

A thorough advocate in a just cause, a penetrating mafhemati­
cian facing the starry heavens, both alike bear the semblance of 
divinity. 

-GOETHB 

THE second half of the eighteenth century was a period of con­
flicting tendencies in the history of analytic geometry. In a 
broad sense it is possible to distinguish three trends : there was 

one which may be called the continuation of the Cartesian tradition of 
constructions and graphical solutions ; a second direction emphasized 
the Fermatian aspect as formulated in Euler's theory of functions ; 
and finally there was the gradual development of a third movement 
which might be characterized as foreshadowing the formula-building 
of modern algebraic geometry. The books of Guisn� and L'Hospital, 
so characteristic of the Cartesian tradition of the first half of the 
century, continued to be popular during the second half and appeared 
in new editions. In the famous Encyclop,die, D'Alembert devoted 
several pages to an article on "Construction, "  in which equations are 
solved graphically by means of circles and parabolas ; and it was 
natural for him here to cite the textbooks of Guisn� and L'Hospital. 
These texts were supplemented by a number of new books of similar 
character, such as the Conics of La Chapelle, which appeared in 1750. 
The full title of the work is Trai" des sections coniq_ues et autres courbes 
anciennes, an interesting commentary on the Cartesian lack of interest 
in the host of new curves which analytic geometry might have 
suggested. 1  La Chapelle held that at first there were only two men 
in Europe-de Beaune and van Schooten-whounderstood the geometry 
of Descartes, and that for a-· century it was the object of com­
mentaries by the strongest mathematicians. His own work is, in 
a sense, one of these commentaries. It is based upon Lahire and, more 

1 A work with a very similar title and in much the same spirit as La Chapelle's appeared 
two years later-Les sections conig,_ues, et aulres courbes ancienne.s traitb flrof� (Paris 
1752), by Jean Edme Gallimard ( 1685-1771). 
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especially, Guisn� and L'Hospital, who, the author says, were about 
the only writers on the conics known in his day. La Chapelle's book 
is not at all like a modern textbook, or even like that of Euler. It 
makes use of the older language of proportions, and, except incidentally 
in connection with the conics, it does not give equations of the curves 
considered, such as the cissoid, conchoid, quadratrix, spiral of Archi­
medes, and cycloid. There is no plotting of curves and little of the 
Eulerian analytic approach to geometry. 

The older tradition, so clearly represented by La Chapelle, had 
become intrenched in the didactic Sammelwerke of the period. During 
the seventeenth century analytic geometry had not generally been 
included in mathematical compendia and works of instruction ; but 
with the opening of the next century one found the subject in the 
textbooks of Wolff and others. The mathematical program of the 
time seems to have become more or less standardized. in the French 
Cours de matMmatiq_ues (such as those by Sauri or B&out) , the German 
Anfangsgrunde zur hoheren Analysis ( e. g.,  by Kastner or Wolff) , and 
the Italian Instituzioni analytiche (Riccati and Saladini) . These 
invariably contain a section on "the application of algebra to geom­
etry," following the pattern of L'Hospital and Guisn�. The first 
American textbook on analytic geometry, in 1826, was derived from 
the Cours of :£tienne B&out (1764-1769) , and one can still hear echoes 
of Descartes in the ingenuous justification for the study of the conic 
sections : "When questions one wishes to solve do not exceed the second 
degree, one does not need these curves, but beyond this they become 
necessary. ' ' 2  

The multi-volumed collections of the later eighteenth century, 
nevertheless, betray clearly a tendency to reach a compromise between 
the points of view of Descartes and Fermat. The works of Euler did 
not enjoy an impressive multiplicity of editions, but his all-pervasive 
influence is quite evident in the literature of the age. Practically 
every one of the authors of the ubiquitous continental compendia ex­
presses indebtedness to the great analyst, but no one of them forged 
ahead to the next stage in coordinate methods. Emphasis upon the 
notion of functions and long sections devoted to curve-tracing are 
found in all the works ; but there was a natural tendency for the 
material on curves to be merged with that on the calculus, and hence 
analytic geometry in this sense sometimes lost its identity. One of 
the best-known single-volume textbooks of the period, however, 
valiantly and effectively maintained, free from reference to the cal-

1 Lacroix and B&out, An FJemenlar1 Treatise on Plane and Spherical Trigonomdry, and 
on the Application of Algebra lo Geometry (Cambridge, Mass., 1826), p. 110. 
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culus, the tradition of Fermat, Newton, and Euler against that of 
Descartes, L'Hospital, and Guisn�. This was the Introduction a 
l'analyse des Ugnes courbes of Gabriel Cramer (1704--1752) which ap­
peared in 1750, the same year as La Chapelle's very different work on 
"conic sections and other ancient curves. "  

Cramer's volume resembles strongly in aim and content the work of 
de Gua• and Euler. The author, however, says that his book had 
been almost completed before the appearance of the Usage de l' analyse 
in 1740, and that the Introductio of 1748 was published too late for him 
to make use of it. The first half of this statement is belied to some 
extent by the effective use Cramer made of the analytical triangle, for 
the introduction of which he compliments de Gua ; but the latter half 
is home out by his failure to employ the analytical trigonometry of 
Euler. Apparently Cramer was influenced primarily by Newton's 
Enumeratio and Stirling's Commentary. He did not apply the calculus, 
and so his book rivals that of Euler as a resume of the application of 
analytic geometry to the study of curves. It opens with a general 
theory and classification of algebraic curves. Transcendental curves 
are illustrated by the cases y = ba"' and y"i + y = x, but these are not 
systematically considered. A whole chapter is devoted to the trans­
formation of axes, but trigonometric symbolism is not here used. 
Cramer was among the first to make formal use of two axes and to 
define the two coordinates simultaneously and symmetrically in terms 
of these. The coordinates are designated by the terms couple and 
app/,i,qule, as well as by the more modem names abscissa and ordinate. 

One finds an intruding chapter on the old subject of the construction 
of equalities, with a table like that of Lahire indicating the curves of 
minimum degree necessary for the graphical solution of equations in 
the traditional manner. The table runs from quadratic equations to 
those of degree one-hundred , for the last of which two tenth-degree 
curves are indicated as necessary. Cramer even quotes the rule given in 
L'Hospital's Conics to cover this favorite Cartesian topic of the 
simplest possible curves ; but he adds hesitantly that he doesn't 
know whether or not this restriction is for the best. He suggests as 
an alternative the Newtonian idea that it is less the algebraic sim­
plicity than the geometric facility of description which one should 
seek. This being so, he doesn't see why one should reject the type of 
graphical solution of polynomial equations which is found in L'Hos­
pital's Conics and which Cramer ascribes to Jacques Bernoulli. This 
method, described above, makes use of the intersections of the line 
x = a and the curve x = by + cy2 + dy3 + ey4 + . . .  to solve the 

1 Sauerbeclc, op. &ii., refers to Cramer's work as in a sense an improved edition of de Gua. 
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polynomial equation a = by + cy� + dy• + ey' + . . . . A score of 
cubic and quartic polynomial equations of this form are plotted 
graphically.' Cramer pointed out that "this construction is simple 
and of an easy practicality,"  but he himself used it, following L'Hos­
pital and Stirling, largely to illustrate the character of the roots of 
equations as determined by the coefficients. No examples are given 
in which the coefficients are simple numbers. Cramer did, however, 
express a well-warranted surprise that such graphical solutions should 
be rejected6 (presumably by the algebraists of his day) . 

Like Euler, Cramer devoted much space to the properties of plane 
curves, both elementary_ and higher-their diameters, singular points, 
and infinite branches. He made extensive use of the Newton-de Gua 
triangle and of series developments for singularities, both at the origin 
and at infinity. Specific cases of equations with numerical coeffioents 
are given frequently, an exceptional practice in that day. The general 
equation of the circle, rarely given by writers of the time, appears in 
the form (y - a) 2 + (b - x) 2 = "; but neither of the curves of el­
ementary geometry-the line and the circle-was studied systemati­
cally. The straight line appears in the general form a = ± by ± ex, 
and various cases (cutting across each of the four quadrants, respec­
tively) are geometrically constructed. The equations of the axes, 
x = 0 and y = 0, are specifically mentioned. In determining a curve 

n(n + 3) . 
of order n through 

2 
pomts, Cramer suggested the method of 

undetermined coefficients. Thus to find the conic through five points, 
the coordinates of the points are substituted in the equation A + By 
+ Cx + Dyy + Exy + xx = 0 ;  and by means of the five linear equa­
tions thus obtained one calculates the five unknown coefficients. 
Admitting that the calculation is fairly long, Cramer adds the comment, 
"I believe I have found for this a rule which is quite convenient and 
general when one has any given number of equations and unknowns 
none of which exceeds the first degree."• Using exponents as dis­
tinguishing indices instead of powers, Cramer wrote the equations as 

A 1 = Z1z + Y1y + X1x + V1v + 
A 2 = Z!z + Y2y + X2x + V'v + . .  . 
A I = z•z + Y'y + x•x + V'v + . .  . 

' Gabriel Cramer, lntrotlwction a l'analyse tles lignes cnrbes algebritJl'es (Genevae, 1750), 
plate opposite p. 108 ; cf. also p. 92. 

• An  exception to this is found in Andreas Segner, "Methodus simplex et universalis, 
OIDDes omnium aequationum radices detegendi," Norn Commentarii Acatlalsiae Pdro�i­
lanae, v. VII, 1758-1759 ( 1761), p. 211-226. In this the graphical solution of polynomial 
equations is freely used in the modern manner (except for the continued use of a single axis 
of coordinates). 

' lfllrotlwction, p. 60, 657-659. 
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"Then to :find the values of the unknowns one forms fractions as fol­
lows : in the denominator one writes all possible products of a Z, a Y, 
an X, a V, etc. ,  always written with letters in order and with signs 
determined according as the number of inversions in superscripts is 
odd or even. In the numerator one substitutes the A 's for the co­
efficients of the unknown desired. "  Through this device, now known 
as Cramer's rule, the author is entitled to credit as a rediscoverer of 
the value of the determinant notation of Leibniz. Leibniz in a letter 
to L'Hospital had shown7 how to take advantage of a harmonious 
notation in eliminating two unknowns from three linear equations, 
boasting that this ' 'little pattern'' showed that Vi�te and Descartes 
were not aware of all the mysteries. Determinant patterns were 
occasionally used in the latter half of the eighteenth century, but it 
was almost a hundred years after the time of Cramer before mathe­
maticians generally realized the role that determinants can play in 
analytic geometry. 

Among the properties of curves cited in the Introduction is one which 
has become known as "Cramer's paradox, " although it had been re­
ferred to in a memoir by Euler two years before, 8 and was mentioned 
also by Maclaurin. This dilemma pointed out that in general two 
algebraic curves of degree n intersect in n2 points, but that the number 

n1 usually is greater than 
n(n � 3) , the number of points by which each 

of the curves presumably should be uniq_uely determined. The only 

exceptions are the conics (for which n2 is 4 and 
n(n : 3) is 5) and the 

cubics (for which both numbers are 9) . Cramer seems to have rea­
lized, in a vague sort of way, that the question of independence of 
points was involved here ; but it remained for the nineteenth century 
to give a clear explanation of this paradoxical situation.•  

Cramer's Introduction is the work of an expert on the subject. It 
includes almost 700 pages of exposition and hundreds of illustrations­
a worthy successor to Newton's Enumeratio. 

Half a dozen years after Cramer's popular treatise on curves, there 
appeared anonymously a far less known and much less extensive 

7 See Leilmisens mathematische Schriften (ed. by Gerhardt). v. II {Berlin, 1850), p. 239-
240. 

• "Sur un contradiction apparente dans la doctrine des lignes courbes.'' Mlm. tle Berliti 
v. IV, 1748. 

• Gergonne. "Sur quelques lois qui regissent les lignes et les surfaces alg�briques.'' A nn. 
tle Math . •  v. XVII ( 1826-1827), Plri.cker, Analytische geometrische Unternchungen ( 1828), v, 
I, p. 41.  For an excellent historical account of the paradox see Charlotte A. Scott, "On the 
Intersections of Plane Curves. American Mathematical Society Bulletin. v. IV ( 1897-1898,) p. 
260-273. 
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work, a Traitl des courbes alglbriques which was significant for a some­
what new orientation. The authors of this book were in reality M. 
P. Goudin (1734-1817) and A. P. Dionis du Sejour (1734--1794) . 10 

They opened the subject of curves, as did Euler and Cramer, with the 
translation of axes. This led them then to the first systematic treat-

• ment of the derivation of the equation of the straight line, as distinct 
from the earlier constructions of lines of which the equations were 
given. It is interesting to note, however, that even here, in 1756, the 
linear equation was not studied for its intrinsic interest, but because 
it was found to be of value in disclosing the properties of higher plane 
curves through the determination of the number of times various 
secants cut a given curve. 

Goudin and Dionis du Sejour first wrote the rectangular Cartesian 
equation of a line through the origin as ms - nu = 0, where u and s 
are the abscissa and ordinate, respectively, and m : n is "the ratio of 
the cosine to the sine" of the angle of inclination. Loria exaggerates11 

in saying that this marks "the first elementary metric question which 
is found in the literature of coordinates,"  for Euler earlier had given 
the intercepts of the line (in two dimensions) and he and Hermann had 
given a direction angle for a plane (in three dimensions) . Never­
theless, it should be emphasized that this is perhaps the first treatise 
to give specific formulas for finding equations of straight lines directly 
from given data without reference to geometric diagrams. The form 
of presentation for the general line, based as it is upon transformations 
of axes, differs somewhat from the modern equivalent. Upon trans­
lating the axes either p units to the right or q units upward, the equa­
tion ms - nu = 0 becomes either ms - nr - mq = 0 or ms - nr - np = 0, 
where r and s are the new abscissa and ordinate, respectively. Con­
sideration is given to the special cases for which m = 0 or n = 0. 
The book is full of examples of linear equations, derived from the 
above forms and used in the study of curves. This shows that the 
general impression given by historians of analytic geometry that the 
equations of straight lines did not enter until the end of the eighteenth 
century is inaccurate. It is true that the form in which linear equa­
tions are given by Gaudin and Dionis du Sejour is less convenient and 
less rigidly formalized than that in modern textbooks, but this is 
relatively a minor matter. One could, in fact, impute to the authors 
by implication the point-slope form of the straight line, for the equa-

tion ms - nu = 0, coupled with the transformation {; : � t �which they 

18 See AcatUmie des Sciences, Histoire, 1756, p. 79. 
11 "Da Descartes e Fermat a Monge e Lagrange,'' p. 829. 
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suggest, leads directly to the form 
y - s = n. 

This latter form, how-x - r m 
ever, does not explicitly occur in their work. It seems first to have 
been given a quarter of a century later by Monge, a point again over­
looked by historians of the subject. 

Except for a somewhat more pronounced attention given to the 
linear equation, the Traill des courbes alg�briq_ues is in the manner of 
Euler and Cramer. It is what the name implies-a study of higher 
plane curves, rather than an analytic geometry in the modern sense. 
The authors indicate, for example, that a curve of order n can have not 
more than n(n - 1 )  tangents with a given direction. This observa­
tion was later developed synthetically by Poncelet into the important 
idea of the class of a curve. Gaudin and Dionis add also that the 
curve can have no more than n asymptotes ; and they point out, as had 
Maclaurin, that an asymptote cannot cut the curve in more than 
n - 2  points. In England similar work on plane algebraic curves was 
carried out by Edward Waring (1743-1798) in his Miscellanea an­
alytica de aeq_uationilrus algebraicis et curvarum proprietatilrus of 
1762. The most unusual part of this work is a section on surfaces in 
which Waring treats these from a general point of view. Among other 
things, he gave the number of independent coefficients for an algebraic 

surface of degree n as (n + l) (n + 2) (n + 3> - 1 ,an extension by 
1 . 2 . 3 

analogy of the corresponding result for algebraic plane curves. He 
indicated that most of the theorems on plane curves can be extended 
to surfaces and curves of double curvature ; but he did not develop 
this idea extensively. Waring, too, seems to have been more interested 
in the volumes of bodies than in the properties of surfaces. The 
rivalry of the time between the adherents of the method of fiuxions 
and those who espoused the differential calculus seems to have caused 
a gulf in geometry as well, for Waring does not cite a single Continental 
mathematician. His work, however, was more a part of the method of 
fiuxions than analytic geometry, to which British mathematicians 
contributed little of significance during the second half of the century. 

The nature of analytic geometry did not change appreciably in the 
twenty-five years following Euler's Introductio. Mich. Hube (1737-
1807) , in his Versuch einer analytischen Abhandlungen von den Kegel­
schnitten11 of 1759, sought to give wider circulation to Euler's general 

11 I have not seen this work, but have depended upon the account given by Cantor, 
Vorlesungen flber Geschichte der Mathematik, v. IV, p. 453f, and Wieleitner, Geschichte Iler 
Mathematik, v. II p. 21 ,  40. I have seen K. C. Langsdorf, Ausftihrung Iler Erlaulerungen 
flber die Kdstnerische A nalysis des Unendlichen, nebst Anmerbngen su Hubens analytischer 
Abhantllung 11on den KegelschniUen (Giessen, 1781), but this is virtually unintelligible with­
out access to Hube's work. 
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analytic treatment of conics. Hube's Versuch has therefore been 
refetTed to as the "first German testbook of analytic geometry." 
A long introduction to this by Kaestner, on the advantages of analysis 
as compared with synthesis, shows that there was a tendency to dis­
tinguish more sharply between the two approaches. The treatises 
of Vincenzo Riccati and Girolamo Saladini (1765-1767) and of the 
Abbe Sauri (1774) show strongly the influence of Euler, especially in 
trigonometry and in "goom�trie sublime ou goom�trie des courbes" ;  
but if anything they were less courageous in breaking away from the 
older dependence upon Descartes and the geometric background. The 
spirit and arrangement of the first six chapters in the Institusioni of 
Riccati and SaJadini is clearly Cartesian-the geometric construction 
of determinate equations and problems, first of degrees one and two, 
then of degree three or four, and finally for those beyond four. The 
Cours of Sauri is somewhat less Cartesian, but it also includes a long 
section on constructions of determinate and jndeterminate equations. 
It is interesting to nott" that in at least one respect virtually all com­
pendia of the time depart from the older tradition-in the use, to a 
limited extent, of polar coordinates. Riccati and Sala<fjni give "the 
equation of a curve related to a focus," 11 jncluding the logarithmic 
spiral u == ly; and Sauri refers to "curves of which the ordinates isme 
from a point called focus," 1' including the hyperbolic spiral s == rc/y, 
where z is the arc of a fixed circle of radius r. 

It should be noted, however, that in both cases these applications 
are made in connection with the calculus rather than with coordinate 
geometry. A few years later Goudin composed a TraiU des pro.pri,etls 
communes a toutes les courbes (Paris, 1778) in which are listed 371 
formulas (mostly from the calculus) expressing the properties of curves ;  
and among these one finds the equivalent of transformations from 
rectangular coordinates (x, y) to polar coordinates (t, s)-t2 = x2 + y2, 
ry == x tan s, rx = t cos s, ry = t sin z, where r is a constant. Bezout's 
Cours (third edition) and Kaestner's Anfangsgrunde also contain brief 
reference to polar coordinates. One gets the impression, nevertheless, 
of a certain timidity in the use of polar coordinates in the eighteenth 
century. As late as 1797 there appeared a paper by S. Gourieff11 
in which the equations x = s cos w, y == z sin w for transformation from 
rectangular to polar coordinates, as well as the polar formula for radius 
of curvature, are derived as though they were novel. Here, in spite 

u Institiaioni analiticlie, v. II ,  p. 176, 255. 
u Cours complet, v. III ,  p. 70f. 
11 "Memoire sur la r&olution des principaux problmies qu'on peut proposer clans les cour­

bes dont les ordonnees partent d'un point fixe," NDPO Acla Academitu Pdrof>olitantU, v. 
XII ( 1794), p. 176-191 . The paper was presented May 22, 1797, but the volume containing 
it was published in 1801. 
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of the earlier work of Euler and Hermann (former members of the same 
Academy) , one finds an account of polar coordinates more repetitious 
and less expert than that of Newton more than a century before. In 
some respects the development of coordinate geometry was surprisingly 
halting. 

From Descartes and Fermat to Euler and Cramer, analytic geometry 
had been concerned almost exclusively with constructions and loci 
other than those covered by the line and circle. Rarely had analytic 
methods been used in connection with problems of elementary geom· 
etry, for which synthesis had afforded solutions. Euler had freed the 
analysis of conics, higher plane curves, and quadric surfaces from geo­
metric considerations ; but bis analytic geometry did not invade the 
domain in which synthesis reigned supreme-the study of lines and 
circles, spheres and planes. In the article on "Geometrie" in the 
Encyclopldie, D'Alembert adopted Euler's view when he said, "Al­
gebraic calculation is not to be applied to the propositions of elementary 
geometry because it is not necessary to use this calculus to facilitate 
demonstrations, and it appears that there are no demonstrations in 
elementary geometry which can really be facilitated by this calculus 
except for the solution of problems of second degree by the line and 
circl " e. 

The first decisive steps in the application of algebra to the problems 
of elementary geometry were taken in three-space rather than in two 
dimensions. The history of the point and line in solid analytic geom­
etry differed, for obvious reasons, from that in the plane. The straight 
line in space does not lend itself readily to construction in the Car­
tesian sense or to plotting point by point in the sense of Fermat, 
Newton, and Euler. Moreover, given two points or two lines in a 
plane, their mutual relationships in terms of distance and direction are 
obvious on the face of it, irrespective of a coordinate system ; but this 
is not true of these elements seen in three-space or in a plane per­
spective drawing of them. Their relative positions are made clear by 
referring them to some familiar configuration, such as a coordinate 
system. Inasmuch as visualization and pictorial representation are 
more difficult in three dimensions than in two, it is here desirable, even 
for relatively simple situations, to express geometric elements in 
algebraic terminology. When Lagrange, the greatest mathematician 
of the age, in 1773 suggested the analytic treatment of certain aspects 
of elementary geometry, he naturally chose an illustration in three 
dimensions. 

Joseph Louis Lagrange (1736-1813) reminds one of Euler in the 
international character of bis life. He was born in Italy and died in 
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France, living for over a score of years in each of these countries and 
for a comparable period in Germany. His work, too, resembles 
Euler's in its elegance and generality. In a paper on "Solutions an­
alytiques de quelques problemes sur les pyramides triangulaires,"  11 
Lagrange set bjmself an old and familiar simple problem-the deter­
mination of the surface area, center of gravity, and volume of a 
tetrahedron, as well as the centers and radii of the inscribed and cir­
cumscribed spheres. The significance of the work lay more in the 
point of view than in the substance, as Lagrange realized. : "I flatter 
myself that the solutions which I am going to give will be of interest to 
geometers as much for the method as for the results. These solutions 
are purely analytic and can even be understood without figures." 11 
And true to his promise, there is not a single diagram throughout the 
work. The paper is characteristic of its author for generality and 
elegant symmetry. Beginning with the four vertices (O, 0, O) , 
(x, y, s) , (x', y', s') ,  and (x', y', s') ,  he found the six edges of the 
tetrahedron by means of the distance formula. It is interesting to note 
that this formula had appeared long before in Clairant's work on skew 
curves. That the distance formulas did not reappear in the interval 
is, in a sense, symptomatic of the lack of appreciation before Lagrange 
of the value of analysis as a geometrical medium of expression for 
elementary geometry. Where diagrams are readily available, there 
is less need for formulas. In three dimensions, however, geometrical 
figures often are not at hand and perspective drawings of them are not 
so easily interpreted. Conclusions in this case are derived with 
greater precision from analytic formulas than from synthetic forms. 
To this situation is probably ascribable the fact that the definitive 
steps in the analytic geometry of rectilinear figures were made first 
in three dimensions rather than two. 

To determine the altitude of the tetrahedron from the origin of 
coordinates, Lagrange wrote the equation of the plane of the opposite 
face as u = l + ms + nt, where l, m, and n, the coefficients, are found 
by means of the coordinates of the three vertices determining the 
plane. The normal form of the plane not being known, he found the 
altitude by the methods of the calculus, getting the mfojmum distance 
from the origin to the plane. The volume, V = 1/a Bh, was then 
determined ; but Lagrange went further and expressed this with 
beautiful elegance in various forms (equivalent to determinants) in 
terms of the sides, faces, and vertices. In another connection• 

u Onwu, v. Ill, p. 658-692. Although delivered in 1773, the paper was published in 
1775. 

11 Oeuvres, v. Ill, p. 661. 
u Oeuvru, v. Ill, p. 585-586. 
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he made use of these formulas in expressing the condition that four 
points be coplanar through the fact that the points determine a tetra­
hedron of volume zero. This work of 1773 represents one of the 
earliest associations of linear algebra with analytic geometry. Again 
displaying the advantages of his method, Lagrange solved the problem 
of findfug in the tetrahedron a point such that, on connecting it with 
the four vertices, the volumes of the four pyramids with the point as 
vertex and the faces of the given tetrahedron as bases shall be in a given 
ratio. Then he found the center of the circumscribed sphere by means 
of undetermined coordinates, equating the distances from the center of 
the sphere to the vertices of the tetrahedron. For the center of the 
inscribed sphere {and the centers of the escribed spheres) he again 
used the calculus to find the distance from a point to a plane and then 
equated the distances to the faces of the tetrahedron. For the center 
of gravity of the tetrahedron, he found the intersection of planes 
through an edge and the midpoint of the opposite side. It should be 
emphasized that the choice of general coordinates for three of the 
vertices {the fourth being at the origin) made the beautifully neat and 
symmetric results of Lagrange possible and freed algebraic geometry 
from. constant reference to special axes and from frequent appeal to 
geometric diagrams and theorems. Cartesian geometry, at least for 
three dimensions, was at length being truly arithmetized. 

Lagrange closed his paper with the apologetic remark that he has 
presented this work only to give an example of the application of 
analysis to this type of research ;  but his interest in solid analytic 
geometry is apparent also in other memoirs of the same year. In one, 
"Sur !'attraction des spheroides elliptiques, " 19 he presented again a 
problem which Maclaurin had given before in elegant synthetic form.­
to show "the detractors of analysis that it furnishes a solution which is 
simpler, more direct, and more general."  The distance formula, for 
two dimensions as well as three, is used freely, and the general equation 
of the sphere is given both in rectangular Cartesian and in spherical 
coordinates. This seems to be the first application of polar coordinates 
to solid analytic geometry, although Clairaut had long before promised 
to cany out such work. The novelty of this method in 1773 seems to 
be implied by the unusually detailed explanation with which it is 
presented-yet Lagrange refers to it as "ordinary," possibly to indicate 
that he himself had used it frequently : 

One of the most useful and ordinary transformations is to introduce, in 
place of the rectangular coordinates x, y, and z, a radius vector issuing from 

H Nouwaus Mhnoira tie l'Acadlmie RD,ale ties Scienus d Belles-Ldtra tie Berli•, 1773. 
See Oeimu, v. III, p. 617-658. 
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a fixed point which is called the center of the radii, together with two angles 
p and q which determine the position of this radius, of which p is that angle 
which the radius makes with one of the axes, such as that with the s-axis, 
or rather with an axis parallel to this, but passing through the center of the 
radii ; and of which the other q is the angle which the projection of the 
radius r on the plane of the x, y coordinates makes with the x-axis, or, which 
is the same thing, with an axis parallel to the latter and passing through 
the center of the radii. If one denotes by a, b, c the rectangular coordin­
ates which determine the arbitrary position of the center, it is clear that 
one will then have 

r = v'(x - a)I + (y - b) ' + (s - c) ' 

from which one easily :finds 

sin p = v(x - a) 2 + (y - b) Z and sin q = y - b . 
' ' 

V(x - a) 1 + (y - b) 1 '  

and from these one concludes that• x - a = r si n  p cos q, 
y - b = , sin p sin q, .r; - c = , cos p 

Perhaps the most significant feature of the paper for the develop­
ment of analytic geometry is the use, generally overlooked by his­
torians, of the rotation of axes in modern symmetric form :n 

{X = �I + JI.YI + 1181 
y = >.'x' + p.'y' + .,, 's' 
s = .",.x' + p."y'  + .,, "s' 

where the nine coefficients are connected by the six familiar relation­
ships 

XI + X'I + X"I = 1 
µ.I + p.'I + p."I = l 
.,,1 + .,, 11 + .,, •1 = 1 

and 
Xp. + X'p.' + X"p." = 0 
x.,, + x'.,, ' + x•.,,• = o 
"'"' + .,, 'µ. ' + .,, "µ. " = o . 

This form of the equations of transformation, so much more convenient 
than that given twenty-five years before by Euler (although sometimes 
incorrectly ascribed11 to Meusnier in 1785) , is eminently characteristic 
of the precision, elegance, and generality of the work of Lagrange. 

In point of view, the analytic geometry of Lagrange comes closer to 
the modern form of the subject than that of any of his predecessors. 
It was elementary geometry in analytic language, quite independent 

• Qeupres, v. III, p. 626-627. For the case in which r is constant, these equations are a 
parametric form for the spherical surface ; but this does not seem to have been generally 
recognized at the time. 11 See Oeuvres, v. Ill, p. 646-648 . 

n See Wieleitner, Geschiehle tler Mathetnatik, v. II (2), p. 53. 
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of reference to geometric diagrams. 21 Analytic formulas replaced 
geometric entities, and the calculations were carried out with full 
generality. Unfortunately, however, Lagrange was not a geometer, 
and so he never wrote a textbook on the subject. He did not, in fact, 
digress long enough to give a treatment for two dimensions analogous 
to his papers on solid analytic geometry. He turned instead to physics 
and in the M lcanique analytique of 1788 he did for mechanics what he 
might have done for geometry-developed the subject from first 
principles without reference, as he specifically boasted, to a single 
diagram. In this book he remarked that mechanics may be looked 
upon as the geometry of a four-dimensional space (time being the 
fourth dimension) ; but he did not take steps to build up a multi­
dimensional coordinate geometry. 

For about a score of years, Lagrange's suggestion to geometers of 
the possibility of a complete analytic form went largely unnoticed 
until finally a student of his, by the name of Lacroix, undertook to put 
the idea into textbook form. But Lacroix had the inspiraton not 
only of Lagrange, the analyst, but also of Gaspard Monge (1746-
1818) ,  the greatest geometer of the century.24 The analytic geometry 
of Monge, like that of Lagrange, was limited pretty largely to three 
dimensions. In an important paper on developable surfaces delivered 
in 1771 (two years earlier than that of Lagrange) but published in 
1785, he considered a number of problems in coordinate geometry. 
The first one was to find the plane through a point (x', y

'
, z') and 

perpendicular to the line given by ax + by + cz + d = 0 and a'x + 
b'y + e's + d' = O. This "he solved in the usual modern manner by 
taking the plane to be found as A (x - x') + B(y - y') + C(z - z') 
= 0 and then determining• the ratios of the coefficients A ,  B, and C 

from the proportions � = B = f, where 'Y = ab' - a'b, fJ = ac' -a fJ 'Y 
a'c, and a = be' - b'c. The quantities 'Y· fJ, and a are, of course, the 

two-rowed determinants of the matrix II ; t c� II , but such notations, 

the natural results of the symmetries appearing in the work of La-
11 Brunschvicg in Les Mapes tle la philosophie matlsimatique (Paris, 1912), p. 293, sees in the 

Geometry of Descartes the prototype of such work as that of Lagrange ; but Brunschvicg, 
like Comte, overemphasizes the part pure calculation played in the Cartesian point of view. 14 For a good biographical account, see Louis de Launay, Un grand franVJis. Monge. 
Fontlateur tle Ncole polytechnique (Paris, 1933 ) .  For further details on his work, see Charles 
Dupin, Essai hislorique sur les seroices el les lravawc scienlifiques tle Gaspard Monge (Paris. 
1819). An edition of Monge's works is badly wanted. An excellent summary of his work, 
however, is available in Rene Taton, L'oeuwe scientifiq_ue tle Monge (Paris, 1951 ). 

11 "Memoire sur les developpees, les rayons de courbure, et les diff&ens genres d'inB.exions 
des courbes a double courbure," Mlm. tl. math. et de physique, f1ruentU a l'A.t:atUmie Royale 
des Scienus, v. X ( 1785), p. 51 1-650. 



THE DEFINITIVE FORMULATION 205 

grange and Monge, were not used until almost the middle of the nine­
teenth century. 

Another problem of the "Mmtoire sur les developpees" involved 
the perpendicular distance from the point to the line. Extending the 
notation above, Monge expressed the distance in a compact form some­
what similar to the work of Lagrange of 1773 : 

v'>..t + 1 + 1 >.. = ay' - {Js' + 8 8 = ad' - a'd, 

t � : ' where p. = {Jx' - 'YJ1 + r and � = cd' - c'd, 
a + fJ + 'Y ,, = -ys' - ax' + � r = bd,' - b 'd,. 

Monge here seems to have anticipated Lagrange not only in symmetries 
of notation but also in the complete avoidance of diagrams in connec­
tion with solid analytic geometry. The distance formula for three 
dimensions also appears here, a couple of years before it was used by 
Lagrange ; but it is to be noted that this paper by Monge was not 
published until a dozen years after that of Lagrange had appeared in 
print. ll& A third problem in the paper by Monge belongs largely to the 
calculus : to find the normal plane to the curve y = q,(x) , s = t/I (x) 
passing through a given point. This has significance for algebraic 
geometry, however, in that it definitively cancelled the error Descartes 
had made almost a century and a half before when he had thought that 
for such a space curve a unique normal Une, rather than a normal 
plane, was determined. 

The examples above show how thoroughly modern the work of 
Monge is, both in notation and in method of attack. The only de­
ficiency is in a corresponding treatment for two dimensions. Here the 
lack is not so pronounced as in Lagrange, for ten years later Monge 
presented another paperrr in which the modem point-slope form of the 
plane equation of the straight line is given explicitly, perhaps for the 
first time. 18 The passage in question 29 opens with the statement that 
' 'the equation of the line is generally of the form y = ax +  b. ' '  This is 
not new, for it had appeared in Monge's paper of 1771 and in numerous 
works as far back as Fermat. But Monge continued, "and if one 
wishes to express the fact that this line passes through the point M of 
which the coordinates are x' and y', which dete11nines the quantity b, 

• Loria, "Da Descartes e Fermat a Monge e Lagrange," p. 836-&7, bas overlooked this 
delay in �blication (and also the work of Clairaut), incorrectly reporting that the distance 
formula (for three dimensions) "here is found for the first time in the literature." 

17 "Memoire sur la theorie des d�blais et des remblais," Memoires de l'AcatUlnu du 
Sciences, 1781 (pub. 1784) ,  p. 666-704. 

• This form generally is incorrectly ascribed to Lacroix. See Wieleitner, GuchidlU tler 
Mathematik, v. II (2), p. 42, 58 ;  Tropfke, Geschi&�e tler FJemenlar-Mathematii, v. VI, p. 
123 ;  Loria, "Da Descartes e Fermat a Monge e Lagrange," p. 841. 

• OfJ. cu., p. 669. 
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this equation becomes y -y
' = a(x -x') ,  in which a is the tangent of 

the angle which this stlaight line makes with the line of x's." 
This passage is not of great significance as far as substance is con­

cerned. Mathematicians from the very earliest days of analytic 
geometry (and probably long before that) were familiar with the 
property which this equation exp�that uthe straight line lies 
evenly between its ends." It is not, in fact, greatly <lifferent from the 
forms given by Goudin . and Dionis du Sejour. The importance of 
Mange's statement lies in the tendency to formalize the straight line in 
analytic symbols, the direction which Lagrange had suggested to 
geometers. The works of Monge on coordinate methods, in spite of 
the fact that he was the greatest synthetic geometer of the age, remind 
one strongly of the analyst Lagrange in the virtual absence of diagrams. 
Lagrange and Monge seem to have realized more fully than their 
predecessors how useful might be a complete alliance between analysis 
and geometry. Analytic geometry was rapidly approaching a new 
stage. 

The point-slope equation of the straight line appears frequently in 
Monge's paper of 1781 , but there is little besides in the way of plane 
analytic geometry. The interest of Lagrange and Monge lay especially 
in three dimensions, and it is here that contributions were made also 
by their contemporaries. The decade from 1771 to 1781 was, in fact, 
perhaps the most significant of all in the development of coordinate 
geometry in three-space. Whereas previously solid analytic geometry 
had lagged about a century behind that in the plane, it now was 
taking the lead. Journals of the time, in Germany, France, and 
Russia, give evidence of a sustained interest in at least one aspect of 
the subject-the transformation of axes. Even the aged Euler, whose 
definitive work belonged to an earlier period, took part in the program. 

In 1771 , the year of Monge's first paper (as yet unpublished) , 
Euler wrote an article on developable surfaces in which he expressed 
these surfaces parametrically. In this work80 he used the now cus­
tomary notation for the perpendicularity of two lines in space-l ). 
+ mµ + n11 = 0, where l2 + m2 + n2 = 1 and ).2 + µ2 + 112 = 1 .  
That the sum of the squares of the direction cosines of a line is equal to 
unity has been ascribed to later men, 1 1  but it is implicit in the work of 
Lagrange and Monge, as well as in that of Euler. In another paper a 
few years later, 82 Euler gave the familiar formulas for finding the 

• "De solidis quorum superficiem in planum explicare licet," Nwi Commenla.rti A.cademiae 
Pdropolitanae, v. XVI ( 1771), p. 3-34, especially p. 6 and 22. 11 Wieleitner, Gesclsic�e der Mallsematil:, v. II (2), p. 52, ascn'bes this result to Tinseau, 
as does also Kommerell in Cantor, v. IV, p. 544 . 

11 "Nova methodus motum corporum rigidorum determinandi," Nwi Ctnmnenlarii 
A.cademia11 Pdropolilanae, v. XX ( 1775), p. 208-238. See especially p. 219, 230, 235. 
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direction cosines of the line through the points U, g, h) and (x, y, s) in 
the form x -f = s cos r, y -g = s cos ,,, s-h = s cos 8, where s is the 
distance between the points. Here he specifically stated that the three 
direction angles a, fJ, 'Y associated with a given line are equivalent to 
two conditions inasmuch as cos' a + cos' fJ + cos' 'Y = 1 .  His famili­
arity with the work of Lagrange is made evident by his praise of the 
Lagrangian formulas for the rotation of axes ; and Euler used these in a 
form which was especially popular in the early nineteenth century : 

cos � = cos U cos � + cos U cos � + cos U cos �  
cos zB = cos ZB cos bB + cos ZC cos bC + cos ZA cos bA 
cos zC = cos ZC cos cC + cos ZA cos cA + cos ZB cos cB. 

Analogous formulas were given in the same year by Euler's colleague 
at St. Petersburg, A. I .  Lexell (17 40-1784) , who added also equations 
for the translation of axes. Lexell not only remarked that the sum of 
the squares of the direction cosines of a line is unity, but added also that 
the sum of the squares of the sines is equal to two. 11 The relationship 
cos3 a +  cos' fJ + cos' 'Y = 1 had been given also in 1774 by Ch. Tinseau 
(1749-1822) , but his memoir, like that of Monge, was not published 
until 1785." In this article Tinseau gave an interesting generalization 
of the Pythagorean theorem for space of three dimensions : the square 
of the area of a plane surface is equal to the sum of the squares of the 
projections of this surface upon three mutually perpendicular coordi­
nate planes. De Gua in 1783 claimed that in 1760 he had anticipated 
Tinseau in this discovery, and for the special case of a trirectangular 
tetrahedron the theorem had been known earlier to Faulhaber and 
Descartes ; but even as late as the end of the nineteenth century the 
theorem was not well known.• To Tinseau it appears that the use 
of the word "conoid" in the modern sense is due. He adopted it for 
the locus of a line which moves so as to remain parallel to a given plane 
and to cut a given curve and a given line perpendicular to the plane. 

� As an example, the hyperbolic paraboloid ky = xs here appeared as a 
locus of a line instead of (as in Euler) the locus of points satisfying an 
equation. Tinseau also gave the equation of the tangent plane to a 
surface, but this was a familiar result of the eighteenth century and is 
traceable back to Parent. 

]. B .  Meusnier (1754-1793) , in his work on the curvature of surfaces 
11 A. I .  Lexell, "Theoremata nonnulla generalia de translatione corponun rigidorum," 

Nun Commenlarii Academiae Puropolitanae, v. XX ( 1775), p. 23�270. See especially p. 
244, 246-247, 250, 261, 270. 

14 Mim. tle matlt. d tle �ltysilpu, FUentU a l' A cadhnie R4yale des Scienus, v. X ( 1785), p. 
593-624. 

11 See G. Enestrom, " Note historique sur une proposition analogue au thmrme de Pytha­
goras," Bibliotlte&tJ Mat"'"""iea (2), v. XII ( 1898), p. 1 13-114. 
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(read in 1776 and published in 1 785, along with the memoirs of Monge 
and Tinseau) , again made use of Euler's form for the equations of 
rotation ;86 and Monge in 1784 gave again87 the symmetric form of 
Lagrange, showing that Cartesian geometry for three-space was taking 
on its definitive modem form. Plane analytic geometry, however, had 
not changed appreciably since 17  48. The textbooks of Bezout ap­
peared in several editions throughout the later eighteenth century, 
and these contained the usual part on "the application of algebra to 
geometry" in which a balance is maintained between Euler's geometry 
of curves and Descartes' construction of problems. When in 1 795 
Laplace taught at the :&ole Normale, he summarized the status of the 
subject by citing Cramer's Lignes courbes and volume II of Euler's 
Introductio as supplying "all the details one can desire in this respect," 
adding that one should also read "the two original works which gave 
birth to them"-the Geometry of Descartes and Newton's Enumeration 
of Cubic Curves.38 During the closing years of the century, however, 
this situation was radically changed. 

The establishment in 1794 of the :&ole Polytechnique was decisive 
in changing the form of analytic geometry, for it brought together the 
three men who engineered the chang�Lagrange and Monge, and 
their student, Lacroix. Instruction at the school included two chief 
branches, one devoted to mathematics, the other to physics and chem­
istry. The former included two parts : mathematical analysis (with 
applications to geometry and mechanics) and descriptive geometry 
(with three subdivisions-stereotomy, architecture, and fo1tification) . 
Students took mechanics only in the second and third years after a 
first year including analysis and the applications of algebra to the 
geometry of space. 19 Admission requirements included application of 
algebra to [plane] geometry, as well as arithmetic, algebra (including 
the solution of equations through quartics) , geometry (including trig­
onometry) , and conics.40 Lagrange taught the analysis, presumably 
along the lines indicated in the textbook on Theorie des fonctions an­
alytiques which he later published in 1797. Monge was in charge of 
the solid analytic geometry, and be too found no suitable text available. 
He referred students tentatively to his classic paper of 1781 and he set 
to work to supply them with notes. These he called Feuilles d'analyse 

• Wieleitner, Geschichte der Mathematik, v. II (2), p .  53, says that Meusnier first gave the 
transformation of space coordinates in full generality, but one finds the equivalent of this in 
Euler, Lagrange, Monge, and, especially, in Lexell. 

n "M�moire sur ] 'expression analytique de la g&i&a.tion des surfaces courbes," Mhn. de 
l'Acad., 1784 ( 1787), p. 85-1 17. See p. 1 12-1 14. 

• See Journal de l'&ole Polytechnique, cahiers 7-8, 1796, p. 122-123. 
n Journal tle l':&ole Polytechnique, cahiers 1-2, 1795-1796. 
• Op. cit., cahier IV, p. ix. 
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appliq_uee a la geomltrie, the first edition appearing in 1795. They 
were reprinted in 1801 and reappeared with modification�so with 
new title, AppUcat-ion de l'analyse a 'la geometrie -in 1807, 1809, and 
1850. 

The Feuilles d' analyse are characteristic of analytic geometry as 
Lagrange and Monge had visualized it. No figures or diagrams are 
used until the author is weJl into differential geometry in the last third 
of the work. Unfortunately, however, it includes only a few brief 
introductory paragraphs on the analytic geometry of two dimensions, 
and even these were omitted in editions after the second.'1 The book 
opens with the equations of the line given in his paper of 1781-first 
the slope-intercept form, x = az + b, and then the more general point­
slope form, x -x' = a(z -z ') .  Then he gives the condition that the 
two lines x = az + b and x' = a'z + b'  be perpendicular, writing this 
in the form aa' + 1 = 0.  This is perhaps _ the first time that this 
familiar result appeared in print. The bulk of the work is then devoted 
to three dimensions, so that it is virtually the first textbook on solid 
analytic geometry and differential geometry. The equations of a line 
th.rough two points (x', y', z') and (x", y", z") are given as 

x(z' -z") = z(x' -x") + x"z' - x'z" 
y(z'  -z") = z(y' -y") + z'y" -z"y'. 

The distance formula for three-space appears in the usual form. The 
direction cosines of the angles between the plane Ax + By + Cz + 
D = O and the coordinate planes are given in the ordinary radical 
form, as is also the formula for the cosine of the angle between two 
planes, given previously by Euler. The method of undetermined 
coefficients is employed to find the plane through three points. For 
the line through a point and perpendicular to a plane, the projection 

form {; : :: t � is adopted. The condition that this line be per-

pendicular to the line {�, : �:: t c;: is given as 1 + a a' + b b'  = O. 

The usual problems on points, lines, and planes are included-to find 
a line through a point and perpendicular to a line ; given two planes, 
to find the projections of their intersection (this is essentially the 
symmetric form of the line, although this does not enter explicitly) ; 
to find the distance between two parallel planes ; to find the angle 
between two lines, or between a line and a plane ; to find the shortest 
distance between two lines, and to determine the equations of the 

" This omission probably accounts in part for the failure of historians correctly to a.scribe 
the point-slope equation of the line to Monge. 
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common normal. These problems are handled algebraically in a 
thoroughly modem manner. The remainder of the Feuilles d'analyse 
(and by far the largest part) is devoted to a study of surfaces and skew curves by means of the calculus. 

It is interesting to note the difference in emphasis in the analytic 
geometries of Euler and Monge. The former had stressed the study 
of curved lines and surfaces by algebraic means, omitting almost 
entirely the line and plane ; the latter gave the algebraic geometry of 
lines and planes, but relegated the study of curves and surfaces (even 
those of second degree) to the calculus. Only after Lacroix had united 
these points of view in the first truly modem textbook on plane analytic 
geometry did Monge and Hachette collaborate to issue a solid analytic 
geometry in the sense of Euler-an algebraic study of the quadric surfaces . •t 

Monge had a fertility of imagination and of geometrical innovation 
which seems to have been the envy of Lagrange himseU, but he was 
distracted by political interests. 41 An ardent republican, and later 
an equally enthusiastic Bonapartist, he lacked the time or patience to 
compose systematic introductory treatises in the manner of Euler. 
His papers on solid analytic geometry, differential geometry, and 
descriptive geometry are classics ; but he wrote almost nothing on 
plane analytic geometry, and even the little he did publish has been 
generally overlooked. The need for an introductory work on plane 
algebraic geometry for students in the newly formed French schools 
was nevertheless clear and this was soon met by S. F. Lacroix (1765-
1843) , student and colleague of Monge. 

The P.cole Normale was founded in the same year as the P.cole Poly­
technique, and among its faculty were Lagrange, Laplace, Monge, 
Hachette, and Lacroix. The last named was undoubtedly the most 
prolific textbook writer of modem times, if allowance is made for 
multiple editions ;44 and among his numerous works are two which 
mark the definitive stage in the history of elementary plane analytic 
geometry : the TraiU de calcul of 1797 and the TraiU ellmentaire de 

41 Traul des swrfaces du seumtl tkgrl, Paris, 1813. This appeared in 1801 in cahier 1 1  of 
the Journal de l'&ole Polyteehnique,· in 1805 under the title A1>1>lication de l'algNwe d la 
ghnnMrie, by Monge and Hachette ; and in the 1807 edition of -Monge's Application de 
l'anal1se d la glombrie. The 1807 edition includes also the transformation of coordinates, 
especially the equations of rotation in both the Euler and the Lagrange form. 

41 See D. E. Smith, "Gaspard Monge, Politician," The Poetry of Mathematics and Other 
Essays ( New York, 1934), p. 71-90. This paper is found also in Scripta Mathematica, v. I. 

44 In 1848 there appeared at Paris the 20th edition of his Traill 'lbnenlaire d'arithmbique 
and the 16th edition of his :tlbnens de g'ombrie. The 20th edition of his Elbnens d 'algibre 
was published at Paris in 1858 and the 9th edition of the Traill :tlbnentaire de calcul in 1881. 
In 1897 there appeared a 25th edition of his work on trigonometry and analytic geometry! 
And these figures do not take into account the large number of translations into other 
languages. 
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trigonomltrie rectiligne et sphlrique et application de l'algibre a la 
glomltrie of 1798-1799. Here Lacroix did for two dimensions what 
Lagrange and Monge had done for three-space. His object is clearly 
stated in the preface of his Traill de calcul. 

In carefully avoiding all geometric constructions, I would have the reader 
realize that there exists a way of looking at geometry which one might 
call analytic geometry, and which consists in deducing the properties of exten­
sion from the smallest possible number of principles by purely analytic 
methods, as Lagrange has done in his mechanics with regard to the prop­
erties of equilibrium and movement. 

Lacroix goes on to describe the program further and to give some 
hint of its inspiration. He points out that Adrien-Marie Legendre 
(1752-1833) , in notes to bis famous geometry of 1794, had given the 
equivalent of the equation of the straight line and had suggested an 
analytic treatment of certain parts of geometry." In view of the 
fact that Lacroix began assembling material for his Traill in 1787 and 
that the printing began in 1 795, it is doubtful that Legendre's reference, 
more suggestive than helpful, exerted an appreciable influence on 
Lacroix. The inspiration went back much earlier. As Lacroix said, 
Lagrange's work in 1773 on pyramids is a chef-d 'oeuvre of the type of 
geometry he had in mind. He adds, however, that be believes Monge 
"was the first one to think of presenting in this form the application of 
algebra to geometry."  This statement is interesting for its inference 
that the work of Monge was part of a conscious program and that this 
view of analytic geometry had occurred to Monge before Lagrange 
made his suggestion to geometers. The early works of Monge and 
Lagrange were composed at practically the same time, and it would be 
interesting to know whether there existed mutual influences. J. B.  
Biot (1774-1862) and L.  Puissant (1769-1843) , writing a few years 
after Lacroix, ascribe the new program jointly to Lagrange and Monge ; 
but in 1810 J. B .  Delambre ( 1749-1822) writes that the "resurrection 
of the alliance of algebra and geometry, contracted by Descartes, was 
due to the works of Monge," and that his influence extended also to 
elementary works such as those of Biot and Lacroix." Whatever the 
relative weight of inspiration may have been, it is probably fair to speak 
of the new program as "analytic geometry in the sense of Lagrange, 
Monge, and Lacroix."  Lagrange suggested the new orientation and 
illustrated it for a number of problems ; Monge applied it systemati-

.. Cf. Legendre, �s tle giomarie (Paris, 1794), p. 287 f. 
• Biot, Essai tle 1"1mllrie analytifl1U (Paris, 1802). L. Puissant, Recueil tle tliHt'su twot>­

omions tle giomllrie ruolues OU tUmontrles par l'analyse alglbrique (2nd ed., Paris, 1809), 
avant-propos. The first edition appeared in 1801. Delambre, Rapf>ort historique 111r lu 
progru des scien&es #14'/shnatiques tlepuis 1189 et sur leur lt4' aauel (Paris, 1810), p. 39-42. 
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cally to the geometry of three dimensions ; and Lacroix first explicitly 
formulated it and presented it for two dimensions in textbook form. 

In 1798 there appeared an odd little book by L. A. 0. de Corancez, 
Precis d'une nouvelle met'hode pour r"1-uire a de simples procldes an­
alytiques la demonstration des principaux theoremes de la geometrie, et la 
degager des figures & constructions qu' on y a employees jusqu 'd present, 
in which credit for the analytic point of view is ascribed largely to 
Lagrange and Legendre ; but this work is not analytic geometry in 
the usual sense. The emphasis is upon the avoidance of figures through 
the use of algebra, especially in elementary Euclidean geometry, 
rather than upon the explicit introduction of coordinate systems. 
This seems to be essentially what Legendre had had in mind in 1794-
the succinct demonstration of the fundamental propositions of geom­
etry (in particular, those on similar figures) by the consideration of 
functions'7:-but this program was not strictly identifiable with that of 
Lagrange, Monge, and Lacroix. 

Algebra and geometry had been associated in various ways even 
before Descartes. The Greek geometric algebra was an early example of 
this ; Descartes had emphasized the value of algebra as an intermediary 
between the formulation and the construction of geometric problems ; 
Fermat had stressed the study of geometric curves as given by al­
gebraic equations ; and Euler had thought of curves as geometric 
representations of the theory of algebraic functions. Lacroix com­
plained, in the introduction to his Traite de calcul, of the manner in 
which almost all books mix up geometric considerations with algebraic 
calculations. This indictment may well have been directed in parti­
cular against the form of analytic geometry as found in Descartes, with 
its emphasis upon the construction of equations. Even as late as 1791 
one finds a whole book by G. C. F .  d e  Prony (1755-1839) on "Exposition 
d'une methode pour construire les equations indeterminees qui se rap­
portent aux sections coniques. ' '  Lacroix held that algebra and geometry 
"should be treated separately, as far apart as they can be ; and that 
the results in each should serve for mutual clarification, corresponding, 
so to speak, to the text of a book and its translation. " 48  (Sophie Ger­
main later expressed this idea when she said that algebra is but written 
geometry and geometry is but figured algebra.) He adds in other 
passages that "algebra is a language appropriate for propositions, " 
and again that "the application of algebra to geometry is not restricted 
to the use of algebra in the study of extension" [the Cartesian view ] ,  
"one sees in i t  also all the properties that an algebraic expression sig-

.., P.umens tle giomllrie, p. 287 f. 
41 TraiU de calcul, v. I, p. xxvi. 
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nifies"48 [the view of Euler] .  The result of the point of view of La­
croix was an analytic geometry remarkably like that of present-day 
textbooks. The chapter on "Theorie des lignes courbes" (occupying 
over 100 pages in the first edition60 of the Traite de calcul) presents 
explicitly-in many cases for the first time-most of the material 
commonly found in the early chapters of any moderi;i text ; and about 
a year later Lacroix published much the same material in his text­
book on trigonometry and the application of algebra to geometry. 
The distance fonnula, for example, is given in the familiar form 
V(a' - a) 1  + ((J' - fj) 2. The point-slope equation of the line is 
presented systematically,61 together with the associated two-point form, 

y - (J = 
(J: - (J 

(x - a) . The tangent to the circle x1 + y2 = r2 through a - a 
a point (a, (J) on it is given as y - (J = - � (x - a) . The area of the tri­

angle with vertices (0, O) , (a, (J) , and (a', (J') is given as a(J' ;a'(J. 
The perpendicular distance from a point (a, (J) to the line y = ax + b 

(J -aa - b  
is given as _ / , the equivalent of the use of the normal form of a line. 

v l  + a2 
There are formulas for the sine, cosine, and tangent of the angle (J be-

. . r(a' -a) r(l + aa') 
tween two lines : sm 8 = v' V cos fJ = v' 1 + a1 1 + a'2 '  v'1 + a2 1 + a'21 

I 
tan (J = 1 a+

-:' , where a and a' are the slopes and r is the "radius."  

(The trigonometric functions were still taken as lines rather than ratios.) 
The transformation of coordinates is given in simple formal manner. 
Also given is the general equation of the circle. This had been known, 
of course, as far back as Roberval, Fermat, and Descartes, and it had 
been given incidentally by Cramer ; but analytic geometry had 
been preoccupied with conics and higher plane curves, so that a sys­
tematic treatment of the circle had not appeared before. No sig­
nificant part of Lacroix's material represents new discoveries ; it is 
novel only in the form of exposition used. The continued emphasis 

" TraiU iUmentaire tle trigontmiAtrie ( 10th ed., Paris, 1852), p. 87, 120. 
IO In the preface to the 2nd edition (Paris, 1810), Lacroix wrote that he had suppressed 

the preliminary work on plane elementary geometry inasmuch as it had appeared in his 
TraiU tl'application tle l'alg�bre a la geom&rie and thence had passed into many other text­
books. He explains further that he has sought to make the treatment of three dimensions 
still more independent of geometric considerations. 

•1 Wieleitner ("Zur Erfindung . . .  ," in Zeitschriftfilr mafh. Unterricht, v. XLVII ( 1916), p. 
414-426) misleadingly says the equation of the straight line first appeared in a textbook on 
analytic geometry in Biot's work of 1802. 
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upon the almost automatic application of formulas made the subject 
resemble an algorithm, in which independent reference to the geo­
metrical properties of figures is dispensed with. For pedagogical reasons, 
however, Lacroix's work does include diagrams to about the ex.tent 
now customary in elementary textbooks. 

The usual elementary treatment of curves and loci, with emphasis 
upon conics, is much like that presented today. An elementary treat­
ment of conjugate diameters is included in rectangular coordinates ; 
and the significance of the characteristic fj1 - 4a-y is noted. 61 The 
fundamental principle of analytic geometry is clearly stated : "the 
equation of a curve is obtained by expressing analytically one of its 
properties" ; and, reciprocally, an equation "gives rise to a curve, the 
properties of which are made known by the equation. ' '  The equation 
of the parabola with focus at the pole is given in polar coordinates as z == 
1 +2c', , where s is the radius vector, q, the vectorial angle, and c' 

cos "' 
is the distance from focus to vertex ; the analogous form for the central 

· · c'(l + e) 
h 

· 

th 
· · 

(B b 
· · 

comes 1s s = 1 
+ 

, w ere e 1S e eccentricity. y su stituting e cos q, 
c' == 1 � e one obtains the now usual polar form.)H 

The plane analytic geometry which is found in Lacroix's TraiU de 
calcul of 1797 is found also in his TraiU llhnentaire de trigonomitrie of 
about a year later. Less than half of the latter small volume is on trigo­
nometry, the larger portion being devoted to the remainder of the title-­
et application de l' alg,bre a la glomltrie. There are, of course, some things 
in this analytic geometry which are not found in modern texts, and con­
versely. There is, for ex.ample, a hangover of Cartesianism in short sec­
tions on the construction of the roots of the equation x1 -ax == ± b1 by 
means of line and circle, and on the construction of quartic equations by 
conics. On the other hand, there is nothing on transcendental plane 
curves, one-parameter families of curves, or curves given by para­
metric equations. But, nevertheless, the work of Lacroix is the first 
textbook treatment which could serve (with some relatively slight 
modification) as a basis for a modem course in plane analytic geom­
etry. 

The Traill de cakul included also a chapter on curved surfaces and 
curves of double curvature, but this is omitted in the earliest ed­

•1 Tropfke (GuclsicllU tler Elemenlar-Mathemali!), v. VI, p. 164, incorrectly ascribes the 
general statement of the characteristic to Lacroix, whereas in reality it goes back at least to 
L'Hospital. 

11 Tropfke, ofJ. cu.,  p. 169, ascribes the polar equation of the conic to Lacroix, but various 
forms had appeared earlier in Euler and Hermann. 
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itions of the Trai" llhnentaire de trigonom"rie'' The theory of this 
chapter, which comprises the material for a course on elementary 
solid analytic geometry, Lacroix says is almost entirely due to Monge, 
"who in a way rediscovered the work of Euler and Clairaut and gave 
it a new and considerably amplified form." The preliminary work on 
points, lines, planes, angles, distances, projections, and transformation 
of coordinates is practically in modern form. Transformations are 
given from rectangular coordinates to spherical coordinates, in the 
manner of Lagrange : r = Vx' + y' + s1, s = r sin p, y = r cos p 
sin q, x = r cos p cos q; and also in the more symmetric form56 now 
generally known as polar coordinates : s = r cos t/>, y = r cos "1, x 

= r cos r, where cos2 ti> + cos' "1 + cos1 r = 1 .  The treatment of sur­
faces of second degree follows Monge in making early use of the 
methods of the calculus rather than those of algebra. 

Lacroix did not write a textbook devoted solely to analytic geometry. 
This is not of great significance and probably was merely the result of 
the fact that he wrote a series of texts to cover the usual program of 
mathematics . The sequence of courses in Paris seems to have become 
more or less standardized in the following order : arithmetic, algebra, 
geometry, trigonometry, applications of algebra to geometry, com­
plement of algebra, descriptive geometry, and calculus. In composing 
his series of textbooks for this "Cours de mathematiques" at the �le 
Central des Quatre Nations, 18 it was convenient to group together 
trigonometry and coordinate geometry. This combination of subjects 
is occasionally found at the present time. It is surprising that, al­
though Lacroix in 1797 referred to this new point of view in geometry 
as analytic, he did not use this in the title of the textbook he wrote. 
He preferred instead to retain the century-old designation used by 
Guisnee. The phrase analytic geometry evidently was suggested to 
Lacroix by the title of Lagrange's Mlcanique analytiq_ue, but in reality 
it goes back at least as early as 1709 when Rolle used it. During the 
second half of the eighteenth century the word "analytic" was much 
discussed and frequently used in titles. D' Alembert, in the article on 
"Analysis" in the Encyclopldie, wrote that it "is properly the method 
of solving mathematical problems in reducing them to equations."  
Hence, he said, the words "analysis" and "algebra" often were re-

" The third edition of 1803 included an appendix (p. 233-259) on solid analytic geometry. 
This edition, the earliest I have had an opportunity to examine, does not di1fer greatly from 
later editions I have seen, including the fourth, eighth, and tenth. 

11 Trauitle calcul, v. I, p. 464. Coolidge (History of Geomarical Md""4s, p. 172) ucn"bea 
this syster 1 to Monge in 1807 ; and it may well be that Lacroix learned of it from his teacher 
before 17P7. 

11 See S F. Lacroix, Essa is sur l' enseignemenl en ginbal, el sur celui tles mathlmMiquu en 
fJorliculier (Paris, 1805). 
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garded as synonymous.67 For the article on Cartesian geometry 
D'Alembert used the title "Application de l'alg�bre OU de l'analyse a 
la goometrie, ' '  and in it he held that analysis is just as rigorous as the 
geometry of the ancients. In the article on "Conique," he said that 
it was possible to "achieve a truly analytic treatise on conic sections, 
i. e. ,  in which the properties of the curves are deduced immediately 
from the general equation"-presumably as Euler had done. 

In the titles of books and articles the word "analytic" came to be 
used with increasing frequency. Miiller in 1760 published a Traill 
analytique des sections coniques, a title similar to that used by Hube the 
year before ; Kliigel in 1770 issued an A nalytische Trigonometrie and 
in 1778 an Ana/.ytische Di,optrik, fittingly dedicated to Euler. The 
name "analytic geometry" appeared in 1779 as the title of Newton's 
Method of Fluxions in the Opera edited by Horsley, and in the titles of 
two papers by Fuss in 1780 and 1781 . 68 In 1779 a book by a Swedish 
author, Niels Scbenmark, bore the title Ana/.ytische Geometrie/19 and 
in 1782 the words "Algebra et geometria analytica" appear on the 
title page of volume I of the Operum of Paolo Frisi (1728-1784) . The 
introduction to the latter work includes an historical resume in which 
the author explained that he had put less emphasis upon the solution 
of cubic and quartic equations and had treated at greater length that 
part of algebra in which his age excelled-"the application of analysis 
to geometry, which for this reason obtains the name analytic geom­
etry" . This would imply that the designation "analytic geom­
etry" was by no means new at the time, only a few years before 
Lacroix began his work. 

Analytic methods in the eighteenth century flourished more in 
France and Germany than in England and Italy. Kliigel and Kaest­
ner especially did much in Germany to popularize analytic methods. 
Besides the volumes mentioned above, Kliigel composed a volume on 
the mutual relationship of analysis and synthesis. 80 In this, however, 
he does not use the term analysis in the clear-cut algebraic sense but 

IT This is indicated also by the Analyse dhnomrie and Usage de l'analyse of Reyneau in 
1708 and 1738, for these volumes are on algebra, as well as the application of algebra to 
geometry. For more extensive discussion and references on the use of the word analysis 
see my paper, "Analysis : Notes on the Evolution of a Subject and a Name," The Mathe­
matics Teacher, v. XLVII ( 1954), p. 450-462. 

11 "Exercitatio analytico-geometrica" and "Disquisitio analytico-geometrica," in Acta 
Academiae Scimtiarum lmperiaJis PetrotoZilanae, v. I and II  ( 1780-1781) .  The phrase 
"analysin geometricam" appeared also m Hermann's work of 1729 in the Commmtarii 
Academiae Petropolitanae, v. IV ( 1729 ), p. 47. 

" I  have not had an opportunity to refer to this work ; I cite it on the authority of 
Tropfke, Gtschichte der Elemmtar-Mathematile, v. VI, p. 154. 

'° De ratione quam inter se habmt in demonstrationibru matlsematicis metluxlus synt'/ietica el 
analylica (Helmstadt, 1767). I have not seen this work and have relied here upon the 
description given in Cantor, Vorlesungen, v. IV, p. 455-456. 
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rather with the older Greek meaning. Hence the difference was not 
so much between constructions on the one hand and calculations on 
the other as it was in the inner nature of truth and the way in which it 
is to be sought. He pointed out that analysis not only is better a­
dapted to the making of new discoveries, but it also affords greater 
generality. Conics, he said, are of three types in synthesis, but only 
one family in analysis-a statement which seems to imply that he 
here has in mind the modem rather than the ancient use of the words. 
A similar discussion of analysis had appeared in Kaestner's preface to 
Hube's Conics of 1759, and here Kaestner had characterized the an­
alytic approach as affording less beauty but more power. 

The failure of Lacroix to adopt the phrase ' 'analytic geometry'' as 
a title for his work may have been due to the confusion in meaning 
evinced by Kliigel. This conjecture is strengthened by some passages 
which appeared in the &sais sur l'enseignement of 1805. Here La­
croix explains at length the difference between analysis and synthesis, 
using the word in its ancient logical meaning, as described by Pappus. 
Lacroix points out that his plan in the application of algebra to geom­
etry is alternately analytic and synthetic in this sense. It is prob­
able that he did not call his work analytic geometry because be feared 
this might obscure the earlier use by Plato. There is nothing alge­
braic in the older analysis ; it has reference only to the order of ideas 
in a demonstration. 

The Essais includes also an enlightening critique of the development 
of coordinate geometry. Characteristically of the period, he ascribes 
the invention of the subject categorically to Descartes, while admitting 
that the first traces are found in Vi�te. But Descartes, he points out, 
applied it only to questions occupying geometers of the time, and not 
to curves in general. The theory of curves was begun by Newton 
and perfected by Euler and Cramer. Force of habit, however, caused 
geometers to amalgamate the methods of the ancients with the new, so 
that they began with curves of second order rather than with the straight 
line. Lacroix holds that the views of the eighteenth century on the ap­
plication of algebra to geometry should not be followed, inasmuch as 
Descartes, Euler, Lagrange, and Monge had in mind simply the de­
duction of the properties of extension. In this last assertion, however, 
Lacroix does not do justice either to his illustrious teachers or to Euler. 
Whereas earlier Lacroix had given credit to Monge, he seems here to 
arrogate to himself more than is warranted. He claims that his plan, 
at the time of the first edition, was without doubt new, as were the 
means used to fulfil it-at least with regard to its elements.11 Unless 

11 Essais, p. 381. 
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one appropriately emphasizes the closing words of this assertion, the 
claim of Lacroix is too categorical. He did for plane coordinate 
geometry essentially what Monge and Lagrange had done earlier for 
solid analytic geometry. In this there is sufficient glory for all three, 
for they made Cartesian geometry what it is today. 

The program launched by the works of Monge and Lacroix in 1795 
and 1797 met with such extraordinarily prompt and widespread 
approval that one might appropriately refer to it as an "analytical 
revolution,"  comparable to the very nearly contemporaneous "chem­
ical revolution" initiated by Lavoisier.81 The early years of the 
nineteenth century saw the publication of an array of introductory 
works on plane and solid analytic geometry which are strikingly 
similar to the pattern set by Lacroix and to modern textbooks, both 
in point of view and in subject-matter content. In 1801 there appeared 
the Essai sur la Ugne droite et les courbes du second degrl of F. L. Le­
fran�s [or Francais] , and the Recu.eU de di.verses propositions de gl­
omltri.e rlsolues ou dlnumtrles par l' analyse alglbri,que, suivant les 
pri,ncipes de Monge et de Lacroix, by Puissant. The very titles of these 
books indicate the shift of emphasis in coordinate geometry from the 
theory of higher plane curves toward the consideration of elementary 
geometrical problems. The object of Lefrancais, a former student of 
the Scale Polytechnique, was "to present the principles of analytic 
geometry, or the method which consists of treating questions which are 
proposed solely by the meaJlS which analysis furnishes, drawing from 
geometry only what is absolutely indispensable to the expression of 
the conditions of each problem."  That of Puissant was similar : 
. "Never to base his calculations upon geometrical constructions . . .  so 

, as better to make use of the advantages of algebra. ' '  Echoing La­
croix, Puissant contrasts this procedure with "the mixed methods 
used from Descartes to our day in the solution of most questions in 
geometry. ' '  The arithmetization of geometry was spreading rapidly. 

The textbooks of Lefrancais and Puissant illustrate the increased 
emphasis on the line and circle and the rapid rounding out of the now 
familiar details. In Lefrancais one finds the formula for the bisectors 
of the angles formed by the lines y = ax and y = a' x, expressed as 

a a' - 1  ± V(l + a2) (1 + a'2) • 
Y = Ax where A = , . Pwssant gave ' a + a  

11 It is of interest to note that Monge took part in the chemical revolution also, for in 
1783 he performed experiments on the composition of water, not knowing of the earlier 
work by Cavendish. See Arago, Oeuwes com('Ules, v. II, p. 427-592, for further biographical 
details on Monge. For work by Monge on the liquefaction of gases see M. G. Beumer 
"Gaspard Monge as a Chemist," Saipla AliUllemalica, v. XIII ( 1947), p. 122-123. 
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the simplified form fly + ax = r1 for the tangent to the circle x1 + y1 
= r1 at the point (a, fJ) . Proofs of propositions from elementary 
geometry are given in both books :  the concurrency of the perpendi­
cular bisectors of . the sides of a triangle appears in Lefrancais ; the 
concurrency of the altitudes is in Puissant ; and the concurrency of the 
medians is given in both. Numerous problems on lines and circles are a 
feature of these textbooks of 1801,  including (in Puissant) an analytic 
proof that the sum of the squares of the sides of a quadrilateral is equal 
to the sum of the squares of the diagonals added to the square of twice 
the segment joining the midpoints of the diagonals. The transforma­
tion of coordinates is given by Lefrancais in general form as 

Jx = u cos q + t cos p + a  b = u sin q + t sin p + b, 

where p -q = 100 °-an interesting example of the decimal influence of 
the French revolution. The formula for the removal of the xy term of 
the general quadratic equation through a rotation of axes is given, 
except for sign, in strictly modern form, tan 2q = b/ (c-a) .  The 
author's avowed intention to avoid negative quantities betrays the 
contemporary suspicion of all numbers not real and positive. 

His textbook, Lefrancais says, was intended to serve as an intro­
duction to the lectures of Monge and Hachette on solid analytic ge­
ometry, and so it was limited to two dimensions. Puissant, however, 
in a greatly amplified second edition of 1809,111 completed his own book 
with a section on three dimensions, as well as one on the applications 
of "transcendental analysis" to geometry. (The book includes also 
introductory chapters on trigonometry, as in the case of Lacroix.) 
Monge in his Feuilles de analysis of 1795 had given a brief elementary 
introduction to the solid analytic geometry of lines and planes, and 
Lacroix had amplified this in a chaptf'r of the TraiU du calcul of 1797. 
Monge and Hachette in 1801-1802 had rounded out the textbook ma­
terial on elementary analytic geometry by presenting a summary of 
their course, including an algebraic treatment of quadric surfaces." 
This summary is tantamount to a brief modern course in solid analytic 
geometry. It opens with points, lines, planes, angles, and the trans­
formation of coordinates (including the transformation from three 
mutually perpendicular planes to three arbitrary planes) . A proof 
of Tinseau's generalization of the Pythagorean theorem is given. 
The treatment of the quadric surfaces is in the customary algebraic 

11 The original edition contained only 121 pages, the second edition 442 pages. The New 
York Public Library has copies of each edition, as well as of the third edition of 1824. 

" "Application d'al�bre i\ la geom�trie," Jourffal tle l'&ole Polytuhniqtle, cahier XI 
( 1801-1�), p. 143--172. 
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manner, leading to the determination of principal diametral planes. 
The notation, phraseology, and methods are virtually the same as 
those to be found in any textbook of today. The definitive form of 
analytic geometry finally h ad been achieved, moi:e than a century 
and a half after Descartes and Fermat had laid the foundations. 

Monge and Lacroix gave analytic geometry its final form, but not 
its traditional name. Lacroix at one time had used the phrase "an­
alytic geometry" to characterize the sub "ect, but did not adopt it 
officially. The first of the new textbooks to carry this name in the 
title 86 seems to be the Essai de g�omltrie analytiq_ue (1802} of Biot, a 
work which rivalled that of Lacroix in popularity. This book was 
translated into numerous other languages and served for many years 
as the textbook at the United States Military Academy at West 
Point. 88 As in the case of Lacroix, the work opens with some of the 
old-fashioned material on geometrical constructions equivalent to the 
algebraic operations, but the body of the work is devoted to what Biot 
regards as the two divisions of analytic geometry : ' 'determinate geom­
etry, which consists in the application of algebra to determinate prob­
lems" ; and "indeterminate geometry, which consists in the investigation 
of the general properties of lines, surfaces and solids, - by means of 
analysis. • •Q The material does not differ appreciably from that in 
Lacroix, Lefrancais, and Puissant, except that plane and solid analytic 
geometry are integrated in a single volume devoted solely to this one 
subject. There are a few specific contributions which perhaps de­
serve to be noted. One is the recognition of the discriminant F(A C­
B') + E(BD -AE) + D(BE - CD) of the general conic. Another is 

the use of the equations �1 ± Y'Yb,1 = 1 for the tangents to the ellipse 
a . 

and hyperbola. The distance from a point to a line is given for 
oblique, as well as rectangular, coordinates. As in other textbooks 
of the time, the use of polar coordinates is limited to conics with a 
focus at the pole, and a simple treatment of conjugate diameters is 
given in Cartesian coordinates. One misses the problems on polyg� 
nometry which Puissant had emphasized, and one is struck by the fre-

quent use of the form y = x sin� �a} for the straight line through the 

origin, referred to oblique coordinates ; but in most respects the modem 

" Tropfke, Gesch-iehle tler Elementar-Mat'hematic, v. VI, mistakenly says the first appear­
ance of the name in the title of a book was in Garnier's 2Ummts de giomllrie analytiqxe of 
1808. Cf. also Wieleitner, Die Geburt, p. 6. 11  See J. B. Blot, An Elementary Treatise on Analyt-ieal Geometry (transl. by F. H. Smith 
New York and London, 1840), preface . 

., Ibid., p. 13. 
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reader would :find the book rather conventional. 88 The text by Biot 
exerted a very wide influence, and it was probably this that led Le­
fran�ais to change the title in his second edition {1804) to Essais de 
glMIUtrie analytigue. It was the text of Biot which found greatest 
popularity in the United States, even though it made its appearance 
there as late as 1836 in the edition by Davies.811 

The popularity of the new aspect of analytic geometry grew with 
amazing rapidity, evidenced not only by a host of new elementary 
textbooks, but also by articles in scientific periodicals. The numbers 
of the Journal de l'Ecole Polytechniq_ue and of the Correspondance sur 
l' Ecole Implriale Polytechniq_ue included much old and new material 
in this field ; and in books and articles of the time there are to be 
found further details which have been incorporated into modern 
textbooks. In 1808 Jean-Guillaume Garnier (1766-1840) issued 
another well-known text, Elhnents de glomltrie analytiq_ue, in which 
the concurrency of the angle bisectors of a triangle and the collinearity 
of the centroid, orthocenter, and circumcenter are proved by analytic 
means. Monge in 1809 gave the formula ± 1/2(a'b' + c'a' + b'c' 
- a'b' - c'a' - b'c') for the area of a triangle in the plane, showing 
that the sign is determined by the sense in which the boundary of the 
triangle is traversed. By equating the area to zero, he gave the 
condition that three points be collinear. He added also corresponding 
formulas {including attention to sign) for the volume of a tetrahedron 
with one vertex at the origin and for the area of a triangle in space, 
pointing out70 that these had been given long before by Lagrange. In 
other analytic studies on the triangular pyramid Monge proved in 
various ways that the center of gravity is the point of concurrency of 
the lines joining the midpoints of opposite edges. He gave also the 
analogue of the Euler line in three-space, showing that for the ortho­
centric tetrahedron the centroid is twice as far from the orthocenter 
as from the circumcenter.71 

Monge added also to the knowledge of the quadric surfaces. He had 
called attention to the orthoptic circle of a central conic-the locus of 
points from which the conic subtends a right angle-and hence this 
has become known as the "circle of Monge,"  even though this locus 
had been given earlier in synthetic form by Labire. Extending this 
theorem to space of three dimensions, he showed analytically that the 

• I have seen the second edition of 1805 and the sixth edition of 1823. The latter con­
sists of about 450 pages, half again as many as in the second. 

" See L. G. Simons, Fabre and Mathematics and Other Essays (New York, 1939), p. 65. 
111 "Essai d'application de l'analyse a quelques parties de la g&>m�trie Bementaire," 

f01'rnal tle l'&ole Polytechnique, cahier XV ( 1809), p. 68-1 17. 
71 Correspontlance sur l'&ole lmf>biale Pol'flechnique, ( 1804-1816), ed. by Hachette, 3 

vols., 1813-1816 See especially v. II, p. l�, 96-97, 263-266. 



222 HISTORY OF ANALYTIC GEOMETRY 

point of intersection of three mutually perpendicular planes each 
tangent to a central quadric generates a sphere-the director sphere-­
concentric with the quadric surface. For non-central quadrics the 
locus is a plane. 72 In his work on surfaces of second degree, Monge 
collaborated with his colleague J. N. P. Hachette (1769-1834) . These 
two men showed more rigorously than Euler that sections of a quadric 
by parallel planes are homothetic ; they discovered for the general 
case the circular sections which had been noted for particular instances 
by Wallis and D'Alembert ; they noted the double generation of the 
quadric surface by a moving circle,71 and they determined the um­
bilics of the quadric. Monge and Hachette also studied the prop­
erties of the rectilinear generators of the ruled quadric surfaces, 
showing that there are two systems, that through any point of the 
surface there passes one generator of each system, that two generators 
of different systems cut each other, and that two of the same system 
are not in the same plane. 74 Other contributions of Monge on fam­
ilies of surf aces and lines of curvature belong more particularly to 
differential geometry. 

The �cote Polytechnique was the center of the development in 
analytic geometry in the first decade of the nineteenth century, and 
there Monge, Hachette, and their associates continued the work of 
Euler and Lagrange on the transformation of coordinates in three 
dimensions. The Application de l' algebre a la g'om"rie of Monge and 
Hachette naturally included orthogonal transformations.76 J.-J .  Livet 
(1783-1812) , a former student, in 1806 published his paper on "For­
mules pour passer d'un systane de coordonnees rectangulaires 1 un 
systane de coordonnees obliques. "78 He used these formulas to prove 
that iI a, b, c, are the axes of an ellipsoid and if a ', b', c' are three 
conjugate diameters, then all + bll + ell = a 'll + b'll + c'2, a generali­
zation of the work of Apollonius. Lefrancais, another former student, 
introduced greater generality by transforming from one system of 
oblique coordinates to another oblique frame of reference. First 
transforming, as Livet had done, from the rectangular system x, y, .z to 
an oblique system x', y', .z', and then from x, y, z to another oblique 
system x", y", .z", he obtained the desired transformation from x', 
y', .z ' to x", y", z" by eliminating x, y, z from the above two sets of 

71 See Coolidge, History of Conic Sections aml Quadric Surfaees, p. 173-174, for the proof 
of this "Theorem of Monge" ; or see Monge and Hachette, Traill des surf aees du seanul 
<legr' (3rd ed., Paris, 1813), p. 234-239. 

11 See Journal de l'&ole Polytechniqfle, v. I, p. 5. 
71 See Monge and Hachette, op. cit., p. 34-44. Cf. also K6tter in Jahresberichl <ler Deutsche 

Mathemaliker Vereinigung (2), v. V, p. 75. 
" See Journal de l'&ole Polytechnique, cahier 1 1  (v. 4, 1801 ), p. 143-169. 
71 Journal de l'&ole Polytechnique, cahier 13 (v. 6, 1806), p. 270-296. 
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equations. 77 Hachette then again took up this question and wrote 
two articles on the transformation from one oblique system to a 
second oblique system without recourse to the auxiliary tri-rectan­
gular coordinate planes of Lefrantais. 78 

The Journal de l' P.cole Polytechnique and the Correspondance de 
r P.cole Polytechniq_ue during the first decade of the nineteenth century 
included numerous articles on elementary analytic geometry. Monge, 
Hachette, Lefrantais, Puissant, and others contributed new formulas 
or new proofs relating to points, lines, and planes, or solved innumer­
able problems, or disclosed new properties of the conics and the 
quadric surfaces. During the first years of the century "Cartesian 
geometry took a satisfying and probably definitive aspect in conse­
quence of the general formulas which could be applied almost 
automatically."79 But one misses, in the host of elementary analytic 
geometry textbooks and articles published from 1798 to 1808, the 
now familiar normal forms of the straight line and the plane. Various 
equivalents had appeared occasionally, but the standard equations 
x cos  a +  y sin a =  d and x cos a + y cos fj  + .s cos 'Y = d are a 
striking feature of an otherwise unconventional work of 1809-the 
P.lemens d'analyse g'om4trique et d'analyse a/.g,brique, appliqules a 
la recherche des lieux g'om4triques of Simon A. J. L'Huilier (1750-
1840) . The first third of the book {about 100 pages) is devoted to 
algebra and to the application of algebra to geometry without the use 
of coordinates-the word analysis being used in the sense of Pappus 
and Vi�te. Then, :finally, the author applies coordinate methods to 
the line and the circle, saying that the principles had been developed 
by the "moderns," and naming in particular L'Hospital, Euler, Cramer, 
Lagrange, Monge, Lacroix, Puissant, Biot, and Garnier. The first 
equation of analytic geometry given by L'Huilier is the normal form 
of the straight line, and this is used practically to the exclusion of other 
linear forms. Finding the circle tangent to three lines was but one of 
the applications he found for the normal form. In three dimensions, 
simUarly, the normal form of the plane occupies a position of 
prom;nence. In view of the frequency with which the normal forms 
appear in L'Huilier's work, it is surprising to :find that they often are 
ascribed to later mathematicians,80 notably to Cauchy in 1826 or to 
Magnus in 1833 or to Hesse in 1861 1 

n "M�moire sur la transformation des coordonn&s," Journal tlel'&ole Polytu:hniq#e 
cahier 14 ( 1808}, p. 182. 

71 See Loria, "Perfectionnements . . .  ," Mathematica, v. XVIII ( 1942), p. 125-145. 
" Loria,  "Perfectionnements . . .  ," Mathematica, v. XX ( 1944), p. 1-22. • See e. g., E�lop«lie des scimeu matlshnatiquu, v. III ( 17), p. 1 , 26. Loria, a compe­

tent authority, mastak:enly places the first appearance of the form for three dimensions in 
1861 with the work of Hesse. See his "Perfectionnements . . .  , " Mathematica, v. XX ( 1944), 
p . 12. 
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Historical accounts of analytic geometry frequently close with the 
work of Monge and Lacroix, leaving the impression that the subject 
had reached maturity.81 Lagrange himself apparently believed this 
to be the case . Having correctly predicted of Monge that "with his 
application of analysis to geometry this devil of a man will make him­
self immortal,' '  Lagrange made the mistake of underestimating the 
future of mathematics. He had written to D' Alembert that it ap­
peared that "the mine [of mathematics] is already too deep, and un­
less new veins are discovered it will have to be abandoned. "81 So 
discouraged was Lagrange with the prospects of mathematics that for 
a while he turned to chemistry. Seldom has a great man been more 
mistaken. In mathematics as a whole, and in analytic geometry in 
particular, "progress in the seventeenth and eighteenth centuries was 
almost negligible compared to what was done in the nineteenth. "81 

Elementary coordinate geometry, as now usually taught in a first 
course, had indeed reached its definitive form, with only details to be 
added here and there. But analytic geometry in a larger sense was 
about to burst forth in a period of growth far outstripping all previous 
ages in rapidity and extent. The estimate that "the nineteenth 
century alone contributed about :five times as much to mathematics 
as had all preceding history' '" applies to algebraic geometry as well as 
to any other branch. To give an adequate account of this work is 
beyond the scope of this volume ; but to omit a survey, even though 
brief, of this period-unquestionably the Golden Age of analytic 
geometry-would encourage a distprted view of mathematical his­
tory. An attempt will therefore be made in the next and concluding 
chapter to indicate some of the significant lines of development during 
the ebullient early nineteenth century. 

11 See, e. g., Tropfke, Gescliichte tler Elementar-Malhematik, v. VI ; Wieleitner, Geschichte 
tier Malhematik, v. II (2) ; Smith, History of Malllemalics, v. II. 11 See Bell, Mers of Mallmnatics, p. 157, 187. 11 See Coolidge in Osiris, v. I ( 1936), p. 23 1-250. Cf. his History of Geometrical Methods, 
p. 422-423. 

H Bell, Dewlopment of Malhematics, p. 15. 



C H A P T E R  I X  

'Th e  Golden .Age 

TM faculty of resolution is possibly much invigorated by matM­
matical study, and especially by lhat highest branch of it which, 
unjuslly, merely on account of its retrograde operations, has been 
azlled, as if par excellence, analysis. 

-EDGAR Au.EN PoB 

ONE reason that the early rise of the calculus had been rapid, as 
compared with that of analytic geometry, was that an aura of 

enthusiasm had been fostered by papers on the subject in the periodi­
cals of the time, especially the Acta Eruditorum at Leipzig, the Philo­
sophical Transactions in London, and the M mwi.res de l'Acadhnie des 
Sciences of Paris. These journals were not in existence when Cartesian 
geometry was in its infancy, and hence the subject had been poorly 
publicized. And after the journals were established, there naturally 
was less interest in the gawky teen-age subject of analytic geometry 
than in the bouncing infant prodigy, the infinitesimal calculus. Per­
haps the nearest approach to a sustained program of interest in co­
ordinate geometry during the eighteenth century is found in the 
papers on solid analytic geometry by Monge, Lagrange, and Euler from 
1771 to 1781 in publications of the Academies at Paris, Berlin, and St. 
Petersburg. The Golden Age in analytic geometry during the nine­
teenth century undoubtedly was due in no small measure to the 
buoyant spirit of the contributors to newly organized periodicals. Of 
these the J ourna/, de l' licole Polytechnique was the earliest. 

One might almost say that the present college course known as 
analytic geometry was born of the French Revolution and nourished by 
the Napoleonic interlude, for the Scole Polytechnique, established by 
the Republic in 1795 and fostered by Napoleon himseU, was the center 
from which the new spirit spread to the rest of the world. At Paris 
the geometer Monge, favorite of the emperor, inspired the men who 
gave elementary analytic geometry its present form and also the dis­
ciples who saw the unlimited possibilities of the subject in new direc­
tions. Not the least starry-eyed of the converts to the cause was 
Joseph-Diaz Gergonne (1771-1859) , an artillery officer fired by an 
enthusiasm born of an education at the �le Polytechnique. The 
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tempo of analytic geometry had been high throughout the first decade 
of the nineteenth century, but it received still further impetus in 1810 
through the journal which Gergonne founded and edited-the A nnales 
de mathhnatiques f>ures et appliqules, the first periodical to be devoted 
entirely to mathematics. This journal included a special section with 
the caption, "GeomHrie analytique,"  and the editor seized every op­
portunity to point out the power and facility afforded by coordinate 
geometry, the modem rise of which he attributed to Monge. Synthetic 
methods likewise had received a strong impulse in the descriptive ge­
ometry of Monge, and in various quarters among the students of the 
:£cote Polytechnique there were those who asserted that analytic ge­
ometry often failed where synthesis afforded short and elegant solutions. 
This challenge was met eagerly by Gergonne who felt confident that if 
coordinate geometry had appeared to fail in certain directions, this 
apparent failure was due only to lack of a correct method of attack in 
handling the problem. He thus began a new aspect in the develop­
ment of analytic geometry-its application to the classical problems of 
elementary synthetic geometry. The problem of Apollonius-to con­
struct a circle tangent to three given circles-had been a favorite topic 
of ViHe and Fermat, as well as of many others, but it had been at­
tacked largely through so-called pure geometry. Gergonne, as the re­
sult of reading L'Huilier's Slhnens, set himself the task of solving the 
problem by analytic means, and so well did he succeed that the elegant 
solution has become known as the "Gergonne construction," even 
though the synthetic basis had been given1 by L. Gaultier. 

In this construction, presented to the Academy of Turin in 1813, the 
desired tangent circles are determined by the points of intersection with 
the three given circles of lines drawn through the center of the circle 
which is orthogonal to the three circles and through the poles, with re­
spect to these given circles, of the axes of similitude of the three 
circles. Gergonne hoped thus "to avenge analytic geometry com­
pletely of the reproach too often made of not being able to rival pure 
geometry in the construction of problems" ;  and he tried to prove that 
"analytic geometry, suitably handled, offered the most direct, the 
most elegant, and the simplest solutions of two problems long cele­
brated, and which pass as diffi.cult"L-the circle tangent to three circles, 

1 "Sur les moyens g&l&aux de construire grapbiquement un circle determine par trois 
conditions et une spb�e detennin� par quatre conditions," J ""'nal tk l' &ole Polyledi11iqtu, 
cahier 14 (v. IX, 1813 ), p. 124-214. 1 A 11nalu tk matMmatiques, VII ( 1816-1817), p.  289-303. Very elegant analytic solu­tions of the problem of Apollonius were given also in the early nineteenth century by such men as Hachette, Poisson, and Plucker ; synthetic solutions were given by Chasles, Poncelet. 
Steiner, and others. There is an extensive history of the problem. See, e. g .• J. T. Ahrens. 

A.fHJIJnischu Problem (Augsburg, 1832). 
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and the sphere tangent to four spheres. Obviously disappointed by 
the lack of enthusiasm in the reception of his work, Gergonne amplified 
the exposition in his A nnales of 1816. He explains that he does this 
the more willingly in that "the methods used in this connection seem 
to open a new field of speculation and of research of a type to make 
analytic geometry take on an entirely new appearance. ' '  The element 
of novelty to which he referred lay presumably in his use of linear 
combinations of circles. This elementary principle was indeed des­
tined to change the character of analytic geometry about a decade 
later, but Gergonne failed to exploit it because he neglected to intro­
duce abbreviated notations. 

Gergonne's analytic geometry was many-sided, and the year in 
which he presented his famous construction he contributed also to 
another relatively new aspect of the subject-the search for new co­
ordinate systems. In his "Essai sur I' expression analytique des courbes 
ind�pendamment de leur situation sur un plan," 1  he pointed out that 
the number of possible systems is infinite. He cites polar coordinates 
as being useful for spirals, and also for conics and for the circle r = 
const. He suggests also the bipolar equations of the conics t ± u = 
const. But in such systems he says the equation depends upon the 
situation of the curve with respect to the coordinates and does not ex­
press "the intrinsic nature of the curve." Gergonne therefore proposed 
a system, the idea of which he had conceived a long time before : take 
as the coordinates of a point on a curve the radii of curvature R and 
R' of the curve and its evolute at corresponding points. Here there 
is nothing arbitrary, and hence one obtains an "absolute expression" 
of the curve. He pointed out that some curves with very awkward 
equations in "ordinary" coordinates have very simple ones in his new 
system. The cycloid, for example, becomes R1 + R'1 = 16a; the 
involute of the circle is given by the equation R' = a, and the logarith­
mic spiral is R' == R. Gergonne admits that in his scheme it is not 
easy to construct a curve from its equation ; and the equations which 
he gives for transformation from rectangular to "absolute" coordinates 
(and vice versa) are quite complicated. This may be the reason that 
his ideas were not widely adopted at the time. 

Gergonne was not the first one to suggest natural or intrinsic co­
ordinates. Attempts to define curves through connections between 
quantities inherent in a curve, such as radius of curvature, go back 
as far as some work of Euler in 17 40 in which he was looking for curves 
{such as the logarithmic spiral) similar to their evolutes. '  Again in 

• A•nalu tk �. IV ( 1813-1814), p. 42-55. 
• C0111"""'4rii At:atlemia. PdrofNJUlafllU, XII. 
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1764 Euler used semi-intrinsic parameters, arc length and angle of in­
clination, in proving that the evolute of a cycloid is a cycloid. 1 La­
crobc in 1797 had suggested more definitely that "a curve is given not 
only when its equation is given in coordinates parallel to two fixed 
lines or in polar coordinates, but also when one has any relation be­
tween two quantities determined by its nature." For the logarithmic 
spiral he proposed the equation u = afJ, where u is the radius vector 
and v is the polar subtangent. Similarly he said that a relation be­
tween radius of curvature and arc length can be looked upon as an 
equation of the curve, and such an equation has this remarkable char­
acteristic, ' 'that one of the variables is entirely inherent in the curve. ' '  
Arc length, however, is arbitrary inasmuch as it depends upon the 
choice of an initial point.• Half a dozen years later A. M. Amp&e 
(1775-1836) presented to the Acadanie des Sciences a paper in which 
he proposed to remove the arbitrary element in Lacroix's system by 
substituting for arc length the parameter of the osculating parabola at 
the point. He gave equations connecting rectangular coordinates with 
his "parabolic coordinates, "  and he wrote the equations of such curves 
as the cycloid and the involute of the circle in the latter system and also 
in the coordinates of Lacroix.7 

The work of Lacroix and Amp&e is cited by Gergonne ; but similar 
ideas in a work published during the very year of Amp&e's paper seem 
to have been pretty generally overlooked. 8 The Geometrie de position 
of L. N .  M. Carnot (1753-1823) is a recognized landmark in synthetic 
geometry, but it contains also a significant brief section on coordinates. 
Carnot had been a student under Monge in the military school at 
Mezieres, 9 and, later, he was influential in the organization of the 
:Scale Polytechnique. It is consequently natural to :find in his work 
the most general view of coordinate systems since the days of Newton. 
Innumerable transformations are suggested, including those for polar 

coordinates (tan s = l, t = v' x1 + y1 and x = t cos s, y = t sin s) and 
x 

1 Nwi Commentarii Academia. PelropolUanae, X ( 1764), p. 207-242; XI ( 1765), p. 
152-184. 

• Traili tla calcuZ (1797), I ,  p. 418. 
' "Sur les avantages qu'on peut retirer, dans la thme des courbes, de la consid&ation 

des para.boles osculatrices," Journal tle l'&o'le Polyk&'ltnique, cahier 14 (v. VII, 1808), p. 
159-181. 

• The most extensive account of the history of intrinsic coordinates is that by E. W6lf­
fing, "Bericht ilber den gegenwirtigen Stand der Lebre von den natilrlichen Koordinaten," 
BibUollleca MathematiuJ. (8), I ( 1900), p. 142-159 ; yet this overlooks also the important 
work in question. A good account which recognizes the work of Carnot is given by Loria. 
"Perfectionnements . . . ," MathematiuJ., XX ( 1944). 

• It was largely through the military genius of Carnot, the "Organizer of Victory, " that 
the French Republic was saved in 1798. For a thorOUfh account of his political activities 
see Huntley Dupre, Lamr• Carnot. Ref*blica• flalrio' (Ozford, Ohio, 1940). 



THE GOLDEN AGE 229 

bipolar coordinates10 (u = Vx1 + y1, " = V(a - x) 1 + y1• For the 
latter system the circle u = mv is given as an illustration. Carnot 

proposed also angular coordinates (u, v) , where tan u = l and tan 
% 

" = -'- ; and he illustrated these by the circle u + " = m and the hy-
a - x 

perbola u - " = m. Other unusual schemes are presented, such as 
the following : If A (0, O) and B(a, O) are fixed points and M(x, y) is a 
variable point (all in rectangular coordinates) ,  let s be the ordinate of 
the orthocenter K of triangle ABM. Then x and s are taken as new 

coordinates of the point M. In this system the ellipse yy = bb (ax -
aa 

xx) becomes .u = ';;<ax - xx) . Carnot suggested also as coordinates 

of M the quantities u and v, where these are the areas of triangles A MK 
and BMK. Equations of transformation from x and y to u and " are 
included. 1 1  

After proposing, as coordinates of a point on a curve, the radius 
vector and the radius of curvature, Carnot substituted for the former 
the length of arc of the curve. Inasmuch as the initial point from 
which the arc is measured remained arbitrary, several alternatives are 
suggested : the coordinate s may be taken as the angle between the 
tangent at the point and the line which bisects secants drawn in­
finitely close to the tangent and parallel to it ; or s may be the angle 
between the secant bisector and the normal ; or one can substitute still 
other lines or angles. 

Attempts to establish systems of natural coordinates appeared sporad­
ically throughout the nineteenth century. As early as 1802 (and 
again in 1804 and 1835) K. C. F. Krause (1781-1832) published at 
Jena his De philosophiae et matheseos notione earu.mque intima con­
junctione in which he took as coordinates of a point on a curve the arc 
length s and the angle f/J which the tangent makes with a fixed reference 
line. Shortly after Krause's last work, A. Peters (1803-1876) used the 
same coordinates, in his Neu.e Curoenlehre (Dresden, 1838) ,  to define 
new curves, such as sf/J = K. In England William Whewell (1794-
1866) recognized the value of such a system in articles published in 
1849 and 1851 , in connection with which he used the modern name 
"intrinsic equation. "  Toward the end of the century the definitive 
work on natural coordinates was contributed by Ernesto Cesho (185� 

11 Loria, "Perfectionnements . . .  ," Mathematica, XVIII ( 1942), p. 138, overloob the 
work of both Newton and Carnot in ascribing bipolar coordinates to Cournot in 1847. 

u �01Mtrie de iJosUion (Paris, 1803), p. 468-480. 
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1906),  culminating in his Geometria intrinsica (Napoli, 1896) . CesAro 
used arc length and radius of curvature as his intrinsic coordinates, 
and since then these have been adopted more widely than other com­
binations. 11 

Intrinsic coordinates seem to have had but little effect upon the de­
velopment of analytic geometry as a whole ; the infiuence of Gergonne 
was stronger in other directions. His contributions of 1813 fortunately 
were not limited to natural coordinates and the problem of Apollonius 
alone. He wrote also on subjects which gradually led him toward the 
important idea of duality. In his program of proving famous theorems 
analytically, he gave demonstrations of the dual theorems of Pascal 
and Brianchon on hexagons inscribed and circumscribed to conic sec­
tions. 11 A more important paper of that time presented an analytic 
theory of poles of conics and quadrics. H This opens with another de­
fense of coordinate methods. 

Even those who are most familiar with the advantages which are pre­
sented by analytic geometry properly so-called, such as the uniformity of 
its processes, knowing full well that it alone affords the privilege of leading 
us constantly to the end of our researches without any kind of uncer­
tainty, reproach the subject pretty generally for furnishing in the solution 
of problems only very complicated constructions, and of demonstrating 
theorems only by a calculation of which the prolixity often is repulsive. I 
have always thought that, most often, these inconveniences pertain per­
haps less to the nature of the instrument than to the manner in which it is 
employed. 

Gergonne therefore intends to show in this article that "analytic 
geometry, properly employed, can furnish, for the solution of problems, 
constructions which concede nothing, for elegance and simplicity, to 
those which one deduces by purely geometric considerations. "  The 
earnestness with which the author continued his plea for coordinate 
geometry led him, within a few years, into bitter confilct with the fore­
most French protagonist of synthetic geometry, Jean-Victor Poncelet 
(1788--1867) . 

Poncelet, like Gergonne, had been educated at the lkole Poly­
technique, where he had been deeply infiuenced by Monge and Car­
not ; but he was attracted more by the synthetic than the analytic 
geometry of his teachers. He completed his education in 1810, the 
year in which the Annales de mathhnatiques first appeared ; but while 
Gergonne was writing in praise of analytic geometry, Poncelet was in 

11 I have used the German translation by G. Kowalewski, Vorle.nusicn rJber flOliklicu 
Gcamdrie (Leipzig, 1901 ). 11 A ssllGlu tk �. IV ( 1813-1814), p. 381�. 

H .4ss11Glu tU �. III ( 1812-1813), p. 293-302. 
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far-off Russia, a prisoner-of-war after the ill-fated Napoleonic expedi­
tion of 1812. During the years of imprisonment, 1813 and 1814, 
Poncelet composed a long work, A ppUcations d' analyse et de g'omltrie, 
qui ont servi de principal fondement au TraiU des proprieUs projedirJes 
des figures, 111 which has been largely overlooked-partly because publi­
cation was delayed for half a century, chiefly, perhaps, because it has 
been overshadowed by the more famous TraiU of 1822 to which it was 
to have been the introduction. The Applications d'analyse shows that 
it is incorrect to hold to the traditional view that "Poncelet neglected 
all that was connected with the analysis of R. Descartes." 11 The 
second cahier of the book is, in fact, a good textbook on analytic geom­
etry, typical of the subject at the time at which it was composed. It 
seems to be clear from this work that it was analytic geometry which 
led him a little later to his characteristic principles in synthetic geom­
etry. He believed strongly in the generality of analysis and hence he 
sought to give geometric interpretations where none were thought 
possible before. On his return to France, Poncelet published his views 
in Gergonne's Annales for 1818, the very year of Monge's death. Ad­
mitting that analytic geometry had acquired a superiority over ordi­
nary geometry and a generality which it was impossible to contest, he 
felt that it was nevertheless possible to give to ordinary geometry the 
same degree of perfection. Inasmuch as the source of the power of 
analysis did not lie, he held, in the use of algebra or of coordinates, but 
rather in its generality, it was only necessary for synthesis to borrow 
from coordinate geometry the "principle of continuity or of the per­
manence of mathematical relations." 17 According to this principle, 
"The metric properties discovered for a primitive figure remain ap­
plicable, without other modifications than those of change of sign, to 
all correlative figures which can be considered to spring from the first. ' '  
This view-which he held to be implicit in,  and inseparable from, 
algebraic analysis-he assumed could clearly be extended to pure ge­
ometry. 11 As an example of the principle, when applied to synthetic 
geometry, Poncelet cited the equality of the products of the segments 
of intersecting chords in a circle. This becomes, when the point of in­
tersection lies outside the circle, an equality of the products of the seg­
ments of secants. If one of the lines is tangent to the circle, the 
theorem remains valid for this figure also on substituting the square 
of the tangent for the product of the segments of the secant. In a 

11 Two volumes, Paris, 1862-1864. 11 See Eneyclof>blw du scienus ��. III, 3, p. 193. 
n See Applications tie l'analyse, II, p. 296, or Gergonne's AnfltJles for 1818. 
11 A good philosophical account of the principle of continuity will be found in Ernst 

Cassirer, S#bslonu and Fxnaion (Chicago and London, 1923), p. 79 f. 
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limited sense this idea of a law of continuity had been proposed be­
fore by Kepler and Desargues ; but whereas they had appealed to it 
only in the case of elements at infinity, Poncelet extended it to imagi­
nary points, both finite and at infinity. All circles, he found, have in 
common two imaginary points at infinity-the so-called circular points. 

Poncelet boldly applied his principle of continuity to the discovery 
of many new and useful theorems, but he never was able to demon­
strate it in a manner to satisfy his opponents. He maintained that it 
could be justified, but he omitted a proof because he wished to present 
it as a purely geometrical principle. One suspects that Poncelet would 
conceal any indebtedness of synthetic geometry to analysis ; and this 
impression is strengthened by all of his subsequent work. He be­
came the champion of the synthetic point of view in France and wrote 
with polemic vehemence against rival analysts in general, and against 
Gergonne in particular. The controversy of the nineteenth century 
between the proponents of synthesis and analysis reminds one of that 
between the ancients and the moderns a hundred years before, or of 
that between the formalists and intuitionists of today ; but it en­
gendered a greater degree of bitterness. The crux of the issue, apart 
from the methodological question of the relative power of the two 
methods, was the existence in the space of pure geometry of imaginary 
elements. As Bell has said, "this proves to be a pseudo question 
without meaning" ; 19 but, like many another controversy, the results 
were fruitful and unexpected. Paradoxically, "perhaps nobody con­
tributed more to the first development of [recent ] Analytic Geometry 
than Poncelet who by his destructive criticism, has achieved precisely 
what he would prevent, the growing up of Analytic Geometry to the 
level, and even to far above the level, of Synthetic Geometry." 111 

During the early stage of the conflict over methods, Poncelet and 
Gergonne were earnest but friendly rivals, and the analyst made space 
available in his Anna.ks for the articles of the synthetist. Poncelet's 
paper of 1818 proposed some problems on polygons inscribed in conics 
which he had solved by pure geometry and which he held would be dif­
ficult to handle by coordinate methods. Gergonne in reply admitted 
that he had exaggerated the advantages of analysis, carried away by 
enthusiasm for his simple solutions of the problems of three circles and 
four spheres, because his construction had not produced the sensation 
he had expected. Nevertheless, he again pointed to the generality 
and uniformity of processes in analytic geometry, and he asserted that 

11 Development of Mafiumatics, p. 313-315. 
• H. De Vries, "How Analytic Geometry Became a Science," Scripta MatlsmuUiea, XIV 

( 1948), p. 5-15. See especially p. 6. 
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if one were to use more adresse, analysis would lead to solutions which 
need not yield to the geometry of the ancients in simplicity and in ele­
gance. 11 After all, Gergonne pointed out, analytic geometry in the 
sense in which he used it (and which he ascribed to Monge) , was very 
young and improvements were to be expected. 

Gergonne's prediction of improvements to come in analytic geometry 
was indeed prophetic, for in the very same year there appeared a little 
volume by Gabriel Lame (1795-1870) , entitled Examen des dijfbentes 
mlthodes emp'loyles pour rlsoudre les problhnes de glorn4trie, which has 
been acclaimed (with perhaps pardonable exaggeration) as making the 
year 1818-the one in which Monge died-' 'the birthyear of Analytic 
Geometry as a science." 11 Lame, also a graduate of the :SCOle Poly­
technique, was primarily an engineer, but in his Examen he made two 
important contributions to the adresse which Gergonne wished for 
analytic geometry. The first consisted of the very simple expedient of 
representing whole equations by single letters, so that loci would appear 
as E = 0 or E' = 0. The second contribution was the very elementary 
yet important principle that if one combines the equations of two loci 
in any manner whatsoever, the resulting equation will represent a third 
locus through the points of intersection of the first two. Lame and his 
successors limited themselves to the case where the combination is 
linear, the most useful one. Thus Lame noted in particular that if 
E = 0 and E' = 0 are two loci of the same degree, then on linking them 
by parameters or "multipliers" in the form mE + m'E' = 0, the result 
is a curve or surface of like degree passing through the intersections of 
the two loci. This work marks the entrance into coordinate geom­
etry of the systematic study of families of curves and surfaces. 
Monge had found envelopes of families of surfaces in differential ge­
ometry, and Lagrange had pointed out that a singular solution of a dif­
ferential equation generally is an envelope of the integral curves. 
Lines of curvature and geodesics had been developed in differential 
geometry by Monge and Euler. The study of envelopes in the cal­
culus goes back as far as Leibniz and is implicit in earlier work on 
evolutes. But before 1818 systems of curves were not a part of 
elementary analytic geometry. Even the geometry of the radical 
axis, which now appears in every textbook, was not included. It is 
odd to note that radical systems of circles, the theory of which is so 
simply presented in analytic form, arose first through synthetic geom­
etry. There is some evidence that the Arabs of about the year 1000 

11 Poncelet. "RMlexions sur l'usage de l'analise �brique clans la ��trie," A nnalu tU 
�. VIII ( 1817-1818), p. 141-155 ; Gergonne, "Reflexions sur l'article pdcMent," 
Ibid., p. 156-161.  Poncelet's article is reprinted in his Appliealiotu de l'anal1se, II, 466-76. 11 De Vries, o(J. cil., p. 9. 
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knew of the radical axis of two circles. 21 Arabic sources have pre­
served (among other things) the Archimedean theorems on the shoe­
maker's knife. One of the properties of this familiar figure is that the 
two inscribed circles (Fig. 39) are equal. The Arabs generalized this 
theorem to include the equality of the circles in the cases in which the 
two smallest semicircles are no longer tangent to each other. If they 
intersect each other, their common chord takes the place of the tangent ; 
if they do not intersect, one erects a perpendicular to the common base 
line at the point on this line from which the tangents to the two semi­
circles are equal. This line is, of course, the radical axis ; but the 
Arabs did not call it by this name, nor did they investigate further the 
properties of this remarkable line. Moreover, their work seems to 
have been overlooked by their successors. 

The properties of the radical axis were rediscovered in 1812-1813 by 
Gaultier, again in connection with pure geometry. 14 Take a circle 
with center A and radius AK = AG, and take a point 0 on the line GK 
(Fig. 40) . Then the circle with center 0 and radius OM = OG . OK 
is said to be radical to the circle with center A .  There are two cases 
according as 0 is outside or inside circle A ;  and in the latter case 
circle 0 is said to be a reciprocal radical circle. Given a pair of circles, 
their radical axis (known also as the ' 'line of Gaultier' '  or the ' 'power 
line") is defined as the locus of the centers of all circles radical to the 
pair of circles ; given three circles, their radical center is the center of 
the circle radical to the three circles. The various cases are con­
sidered in turn, and the properties of a radical system are developed. 
An analogous treatment is presented also for spheres. 

Gaultier's paper contained virtually no analytic geometry, and so 
the radical axis did not become part of the subject for another dozen 
years or so, after Lam.e's abridged notation began to be used syste­
matically. Lame himself did not fully exploit his principle of ' 'multipli­
ers." He did give the condition that three lines shall be concurrent, 
expressing this in the equivalent of modern determinant notation and 
also in the abridged notation in mE + m 'E '  + m"E" - 0 
[identically] .  The corresponding condition on four planes is also given. 
It is surprising that he did not develop systematically the idea of a 
radical family of circles, mC + m'C' = O ;  but this traditional portion 

11 See C. W. Merrifield, "On a Geometrical Proposition Indicating That the Property of 
the Radical Axis Was Probably Discovered by the Arabs," LOflllon MaJIJ. Sociely, Prouttl­
ings, II { 1866-1869}, p. 1 75-177. See also Apollonius Pergaeus, ConU:on1m libri 11., rn, wi 
(ed. by Borelli, Florentiae, 1661 ), p. 391-395. 

H "M�oire sur les moyens g�eraux de construire graphiquement un cercle d�termin� 
par trois conditions, et une sph� d�tennin� par quatre conditions," J""rnal de l'&ole 
PolytulsnUp4e, cahier 16 (vol. IX, 1813), p. 124-214. 
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of analytic geometry entered shortly afterwards, probably as the re­
sult of his infiuence. 11 

The importance of Lam�'s ideas went unappreciated for almost a dec­
ade, and analytic geometry developed along certain unrelated lines. 
In the enthusiasm for the new analytic geometry of Monge, the older 
Eulerian aspect was all but forgotten. When a paper on the graphical 
representation of functions did appear, it was concerned with pathologi­
cal aspects of curves instead of with general principles. For example, 
A. ]. H.  Vincent pointed out in Gergonne's Annales that the complete curve for the equation y = e" has a "branche pointilltt," as well as a 
continuous branch (Fig. 41) ; and the equation y = e" + e-• similarly 
represents not only the ordinary catenary but also (allowing for all pos­
sible combinations of signs for the roots of even index) three other dis­
continuous branches. •  

The foremost French mathematician of the period, Augustin-Louis 
Cauchy (1789-1857) , aided analytic extensively, but largely along the 
traditional lines. His Lefons sur le calcul of 1826 made such effective use of the normal forms of the line and plane that these are often as­
cribed to him instead of to L'Huilier.17 To Cauchy also is ascribed the 
parametric form of the straight line in three dimensions28, but anticipa­
tions of this are found in earlier works. Jean Jacques Bret (b. 1781) ,11 
for example, had systematically used the form x = a + ar, y = {J + 
lw, s = 'Y + er, where (a, {J, -y) are coordinates of a fixed point on the 
line, a, b, c are constants determining the direction of the line, and the 
parameter r is the distance between the points (a, {J, -y) and (x, y, s) . 
The symmetric form of the line also is given by Cauchy in the modern 

. x - .xo  y - yo s - .so 
notation'° 

cos a 
= 

cos b 
= oosc = ± v' (x - .xo) I  + (y - y,) I + 

(s - Bo) 1• Cauchy continued also the study and classification of 
quadric surfaces, giving a complete discussion of diametral planes and 
the problem of finding the center, in this respect rounding out the work 

• Lam� invariably is credited with the introduction of abridged notation in 1818, but it 
should be noted that he had used it somewhat earlier in a paper, "Sur les intersections des 
lignes et des surfaces," A nnala tk mathematiques, VII ( 1816-1817), p. 229-240. In the 
Emmm, which appeared in 1818 when he was about twenty-three years old, he says· that 
he had planned the work long before! Mention should also be made of the fact that 
abridged notation was used (possibly independently) by �gier in the A nnalu of 1818-
1819. 

• "Consid&ations nouvelles sur la nature des courbes logarithmiques et exponentielles," 
Annalu tk mathematiques, XV ( 1824-1825), p.  1-39. 

11 See his Oeuwu (2), V, p. 29. 
• Oeuwu (2), V, p. 18-19. Cf. E� du scienus matlthna#quu, III (22), 9, III 

( 17-18), 26. 
• "Th&Jrie analitique de la ligne droite et du plan," Annala tk mathematiqtus, V ( 1814-

1815), p. 329-341 .  Cf. also p. 93 of volume IV. 
m 0""1t'U (2), V, p. 19. 
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of Euler, Monge, and Hachette.1 1  Where Euler had included only the 
proper quadrics, Cauchy gave essentially the definitive type of classi­
fication (in terms of the signs of the coefficients of the terms of even 
degree in the canonical forms) now found in all textbooks. The con­
tinuing problem of orthogonal transformations attracted him as it did 
others of the nineteenth century. Gergonne had tried his hand at 
improving on the formulas of Euler and Monge ; and his A nnales for 
1824-1825 included similar work by a Swiss mathematician, C. Sturm 
(1803-1855) . Cauchy turned his attention to the question a score of 
years later, 11 using essentially the methods of Hachette ; but he had 
earlier made use of the rotation of axes, in 1826, to complete Euler's 
study of the plane sections of a quadric. 18 In 1826 Germinal Dandelin 
(1794-1847) considered the inverse question-to find a plane cutting a 
given quadric in a given conic. u Dandelin a few years before had given 
the striking theorem, known by his name : If two spheres are in­
scribed in a circular cone so that they are tangent also to a given plane 
cutting the cone in a conic, the points of contact of the spheres with 
the plane are foci of the conic and the intersections of the given plane 
with the planes of the circles in which the spheres touch the cone are 
directrices of the conic ;16 but this theorem had been anticipated syn­
thetically (in slightly different form) in 1758 by Hugh Hamilton11 
(1729-1805) . 

The generatrices of the one-sheeted hyperboloid were also studied by 
Cauchy,n who wrote them in the form 

y s ( x) - + E - = A  1 - -
b c a 

� - E � = ! (1 + �) 
b c A a 

where e = ± 1 .  Cauchy's work in determinants should also be men­
tioned because of the part these played later in analytic geometry. 
Apart from the work of Leibniz and Cramer, symmetric notations 
equivalent to determinants had appeared in the analytic studies of 
Le.grange and Monge. Similar devices had been used also by Vander-

11 See Cauchy, Oeuwes (2), V, p. 248 ; VIII, 12, p. 47. 
n Oeuwes ( 1 ), IX, p. 26.1. 11 Oeuwes (2), V, p. 273-280, XIII, p.  341 .  
14 NOMNaU mhnoires de l'AcadAmie Roya.le des sciences et belles-lettres de Bnaelles, III 

( 1826), p. 8. 
• Il>i4., II (1822), p. 169-202 and Fig. 1 .  
• Tr«Uise of t:Mlic seai<ms ( 1758), Book I I ,  theorem 37. Cf. Taylor, A ncien' and 

""1tlerft 1""'""'1 t1f CMIScs, p. 204-205. 
• Oeuwes (2), V, p. 231. 
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monde and Laplace, 18 as well as by others in the early nineteenth 
century. In 1812-1813, for example, J .  P. M. Binet (1786-1856) 
wrote a long and tedious paper in which he made use of analogous nota­
tions {which he called ' 'resultants' ')  in analytic theorems on volumes, 
areas, and lengths of rectangular configurations in three dimensions." 
His work includes the equivalent of the multiplication of determinants ; 
but in this early use of determinants the familiar square array was 
missing. This element, together with the double-subscript notation, 
was supplied by Cauchy at the very time of Binet's paper.40 Cauchy 
applied his "resultants" in attributing signed values to angles, areas, 
and volumes in coordinate geometry. n The invariance of such ex-

x 'Y z 
pressions as XX1 + 'J'J1 + &11 and X1 'Ji z1 under an orthogonal trans-

Xt '11 St 
formation is easily justified by interpreting these geometrically, but 
Cauchy studied them from a purely arithmetic point of view. Other 
mathematicians, too, seem to have hesitated, before about 1830, in re­
lating determinants and geometry. 

Cauchy was violently opposed to the geometric principle of con­
tinuity, regarding it as ordinary induction ; but Poncelet continued to 
lead synthetic geometry in a wave of progress. Gergonne did indeed 
continue his application of coordinate methods to classical problems, 
and in 1821 he gave an analytic proof of the theorem on the "Newton 
line"-the locus of the centers of conics tangent to four lines. 41 But 
Poncelet seems almost to have won the first skirmish in the battle of 
methodologies. Gergonne himself joined Poncelet in developing an 
important idea which at first appeared to be appropriate only to syn­
thetic geometry-the principle of duality. In spherical trigonometry 
the reciprocity of figures had long been known through the polar tri­
angle of a given spherical triangle. In the Conics of Apollonius the 
idea of poles and polars with respect to a conic is implied, but it was 
not until the nineteenth century that the general theory of polar re­
ciprocals was brilliantly developed by Poncelet. Some aspects of this 
theory appeared in his paper of 1818, mentioned above, on polygons in-

• See Mbn. de l'Acatl., 1772, part II. 
• "Sur un syst�e de formules analytiques, et leur application A des consid&ations 

g�m�triques," Jou'114l de l'&ole Polylechnique, cahier 16 (v. IX, 1813), p. 280-354. 
• See Cauchy, Oeuwes (2), I, p. 64 f., 90, 125 ff. 
n See either Loria, "Perfectionnements . • .  , " Maf/tema.ti&a, XVIII ( 1942), or his article, 

"A. L. Cauchy in the history of analytic geometry," ScluPTA MATRBKAnCA, I ( 1932), p. 
123-128. 

41 "Recherche du lieu des centres des sections coniques assujetties A quatre conditions," 
Annales de ma.tlsematiques, XI ( 1820-1821), p. 379-400. For Newton's work see Principia, 
I, lemma 25 and prop. 27. 
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and-circumscribed with respect to a conic. In fact, the theorems of 
Pascal and Brianchon are duals of each other and indicate the manner 
in which points are paired with lines with regard to a conic section. 
In three-space, it was known that in a similar way the quadric surfaces 
served to set up a one-to-one correspondence between points and 
planes. As early as 1806, the very year in which he gave the dual of 
Pascal's theorem, C. J. Brianchon (1783-1864) showed that the re­
ciprocal polar of a surface of second order is another surf ace of the 
same kind. 41 In 1824 Poncelet presented to the Academie des Sciences 
his general theory of polar reciprocity, an extract of which was pub­
lished in 1826. Meanwhile, Gergonne had noticed, as early as 1813, 
that in certain propositions of elementary plane geometry one ar­
rives at new theorems through an interchange of the words "point" 
and "line." He introduced the word "duality" to indicate the rela­
tionship between the theorems in this case ;  and he saw that the idea 
could be applied to solid geometry by interchanging the words "point" 
and "plane." It appeared to Gergonne that through his principle of 
duality one can prove two theorems at once, and he proceeded to take 
advantage of this fact. In his A nnales he began the ubiquitous prac­
tice of publishing geometrical theorems in double columns with "point" 
and "line" (or "point" and "plane") interchanged. Whereas pre­
viously theorems in a dual pair had each been proved independently, 
Gergonne became convinced by 1825-1826 that duality was a universal 
principle which could be invoked as a justification of the two theorems 
whenever one or the other had been proved." Poncelet, meanwhile, 
had noted the similarity between the theory of poles and polars and the 
principle of duality ; and he found in Gergonne's parallel columns some 
theorems which had been anticipated in his own study of the tangents 
to conics. He promptly and vehemently accused Gergonne of plagiar­
ism. Duality, he insisted, was only a consequence of his own theory of 
reciprocal polars. Gergonne denied that duality depended upon 
polar reciprocity and pointed to the fact that his theory dispensed com­
pletely with the intermediary conic or quadric. He described his 
principle as a law of symmetry ; and in 1827-1828 he attempted to 
justify it, but with no more success than Poncelet had had in connection 
with the law of continuity. Both principles depended, for their eluci­
dation, upon analytic geometry ; but duality at the time appeared­
even to Gergonne--to be far removed from algebraic geometry. How 
suddenly the picture changed ! After a comparative lull, coordinate 
geometry was about to burst forth in a period of expansion which was 

•• Journal de l'&ok Polytullnique, cahier 13 (v. VI, 1806), p. 297. 
44 See Annalu rlemaJWmatiques, XVI ( 1825-1826), p. 209-231. 
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unprecedented, both in scope and in rapidity ; and the grand geo­
metrical principles of Poncelet and Gergonne became merely two as­
pects of a new and powerful analysis. 

There are many dates which are important in the rise of analytic 
geometry-1637, 1707, 1748, 1797-1798, 1818-but no triennium con­
tributed more to the subject than did the years 1827-1829.41 As is to 
be expected, one finds a brilliant former student of the &<>le Polytech­
nique, Etienne Bobillier (1797-1832) , taking the lead in the new de­
velopment. Bobillier began where Lame had left off, for in Ger­
gonne's Annales for 1827-1828 he gave the first extensive explanation 
and application of the method of abridged notation." Representing 
the three equations of the sides of a triangle, referred to Cartesian co­
ordinates, by A = 0, B = 0, C = 0, he showed that the lines of the 
plane can be written as aA + bB + cC = 0, where the ratios of a, 

b, c serve to determine a specific line. In this way he avoided much 
of the tedious algebraic elimination with which analytic geometry had 
been overburdened. With striking originality, he wrote in the form 
aBC + bCA + cAB = 0 the equation of all conics circumscribed about 
the triangle. For given values of (or rather ratios of) a, b, c, the 
tangents to the conic at the vertices of the inscribed reference triangle, 
which thus form a triangle circumscribed about the conic, are then 
bA + aB = 0, bC + cB = 0, and aC + cA = 0. The lines aB = 
bA , bC = cB, and aC = cA connect the vertices of the inscribed tri­
angle with the corresponding vertices of the circumscribed triangle. 
Bobillier showed that the sides of the circumscribed triangle intersect 
the corresponding sides of the inscribed triangle in three collinear 
points-a case of Desargues' theorem. The proof of this is easily 
given in terms of his abridged notation and of linear dependence, antici­
pations of which had already appeared in Lame's Examen . Similarly 
for the tetrahedron A = 0, B = 0, C = 0, D = 0, the planes through 
the vertices tangent to a circumscribed quadric cut the opposite 
faces of the tetrahedron in four lines which are generatrices of a hy­
perboloid. By similar methods he proved the theorems of Pascal and 
Brianchon, 47 as well as numerous other properties of conic sections. 
Bobillier contributed not only to Gergonne's Ann.ales, but also to the 
newer Correspondance mathematiq_ue et physiq_ue. The latter journal, 

• It is interesting to note that these years virtually coincide with the crucial period in 
non-Euclidean geometry . 

• "Essai sur un nouveau mode de recherche des propriet& de l'etendu," A nnalu de 
mathemaliques, XVIII  ( 1 827-1828), p. 320. 

a " Demonstrations nouvelles de quelques propriet& des lignes du second ordre," A nnalu 
de mathematiques, XVIII ( 1828), p. 359. See also Loria, "Perfectionnem�ts . . .  ," MalM­
matica, XVIII { 1942), 136 ff. An excellent and extensive account of Bobillier's work is 
available in Coolidge, History of Conic Seaions, p. 84-85. 
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founded by L.-A.-J. Quetelet (1796-1874) and Garnier, carried numer­
ous articles on analytic geometry. One of these, by Bobillier, extended 
to three dimensions the idea of foci for equations of second degree." 

Bobillier seems to have been the first one to study the straight line 
and the conic by referring them to a triangle. The quantities a, b, c, 
which in his treatment determined a line or a circumscribed conic, can 
be looked upon as coordinates, but this coordinate concept does not 
seem to have been clear in his work. Homogeneous coordinates are 
implied at every turn, but this system is not explicitly formulated. 
One of the most striking characteristics of the new upsurge in analytic 
geometry was the simultaneity of new discoveries, and homogeneous 
coordinates are an instance of this . They are not due to one individ­
ual, but to as many as four men-if one may include Bobillier among 
them. Had Bobillier not died at the early age of thirty-five, he might 
have become the leading analytic geometer of all times ; but as it was, 
this honor did liot fall, as one would have expected, to a Frenchman. 
The long predominance of France in the field of coordinate geometry­
from Fermat and Descartes down to the time of Monge-finally was 
challenged by Germany, where homogeneous coordinates were in­
vented independently (and nearly simultaneously) by three mathema­
ticians. 

The Napoleonic invasions seem to have affected German mathe­
matics in somewhat the same way that the Revolution modified the 
French pattern. Schools of technology were developed as centers of 
research, in line with the feeling (which Bonaparte clearly shared) that 
the level of mathematical attainment was closely related to the welfare 
of the state. Whereas analytic geometry before 1827 had been very 
much a French science, it was destined to find its greatest representa­
tive in Germany, where French influence had been strongly felt. A 
German translation of Lacroix's textbook had appeared as early as 
1805. Synthetic geometry, as well as analytic, received renewed im­
petus in Germany, and the battle between the analysts and purists 
continued on a second front. The A nnales had been the focal point of 
geometrical research and controversy in France, and A. L. Crelle 
(1780-1855) became the "Gergonne of Germany" by the establish­
ment in 1826 of the Jouma/,fur die reine und angewandte Mathematik. 
Although Crelle's Jouma/, began under technological influences, it soon 
became so abstract in its emphasis that waggish references to it omitted 
one letter in the title, changing the "und angewandte" to "unange­
wandte." 

Cauchy's determinants had not met with favor in France, but in 
• Corru�. tnali. d f1111s., IV {1828), p. 137 ,157, 216. 
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Germany they were most effectively employed by C. G. ]. Jacobi 
{1804-1851) . In Crelle's Journal for 1827 Jacobi called attention to 
Euler's formulas for the rotation of axes in three dimensions, and he 
showed how they could be improved by applying the determinant 
notation. However, Jacobi's interest in analytic geometry was 
quite transitory and he shortly became one of its bitterest opponents. 
This is greatly to be regretted inasmuch as determinants would have 
served greatly in the development of the subject. As it was, Jacobi 
applied them, together with the now universal double-subscript nota­
tion, to problems in the calculus where his name has been immortalized 
in the familiar "J acobians. "  

The year 1 827 is of considerable importance in the history of ana­
lytic geometry in Germany for reasons far removed from Jacobi's work. 
It is sometimes said that Descartes arithmetized geometry, but this is 
not strictly correct. For almost two hundred years after his time co­
ordinates were in essence geometric. Cartesian coordinates were line 
segments, and polar coordinates were vectorial radii and circular arcs. 
Even the areal coordinates of Carnot were largely geometric. The 
arithmetization of coordinates took place not in 1637 but in the crucial 
years 1 827-1829. Bobillier should be remembered as anticipating the 
new point of view to a certain extent, but otherwise the change came 
with a certain suddenness in 1827 with the Barycentrische Calcul of A. 
F. Mobius {1790-1860) . Originally an astronomer, Mobius neverthe­
less seems to have studied carefully the works of the French geometers. 
In his highly original book, Mobius, like Bobillier, studied figures by 
means of a triangle of reference ; but his coordinates were no longer 
lines. As the title indicates, the coordinates of a point, with respect to 
a triangle in the plane of which the point lies, are three numbers pro­
portional to weights so chosen that if they are placed at the vertices of 
the triangle, the given point will be the center of gravity of the system. 
The barycentric coordinates of the centroid of the reference triangle 
A ,  B, C, with sides a, b, c, for example, are ( 1 ,  1 ,  1 )-or, more generally, 
any three equal numbers ; for the incenter the coordinates are (a, b, c) ; 
for the orthocenter (tan A ,  tan B, tan C) ; for the circumcenter (a 
cos A ,  b cos B, c cos C) . Mobius' work is striking not only for the use 
of three coordinates in two dimensions, but also for the subordination 
of the idea of length to numerical (or mechanical) considerations. 
One can, of course, reconcile his system with the division of lines in 
given ratios. For example, the point with barycentric coordinates 
(a, b, c) with respect to the triangle A ,  B, C can be located by finding the 
point M which divides BC in the ratio c : b, and then finding the point 
which divides A M  in the ratio a + c :a. In either case, the idea of 
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number takes the place of that of geometry, for it is here (as in the 
work of Bobillier) only the ratios of the lines or weights which have 
significance. 

One of the chief advantages of barycentric coordinates (or of other 
homogeneous systems) is that it gives analytic significance to the ideal 
elements which Poncelet had been using in pure geometry ; and Mobius 
made use of this fact. Where the coordinates of the vertices A ,  B, C 
are respectively (1 ,  0, O) , (O, 1 ,  O) , and (0, 0, 1) ; and the midpoints of 
the sides are given by (O, 1 ,  1 ) ,  ( 1 ,  0, 1 ) ,  and (1 ,  l ,  O) ; the points at 
infinity on the medians are written as ( - 1 , 1 ,  1 ) ,  ( 1 ,  - 1 ,  1 ) ,  and ( 1 ,  
1 , - 1) .  The equations of the lines BC, CA , and AB are respectively a = 0, b = 0, and c = 0 ;  and the lines through the vertices parallel to 
the opposite sides are b + c = 0, c + a  = 0, and a + b = 0 ;  and from these 
equations it is obvious that the intersections of the above pairs of par­
allel lines satisfy the relationship a + b + c = 0, and hence this is the 
equation of the line at infinity in the plane. 

A few great mathematicians, notably Gauss and Cauchy, recog­
nized the Barycentrische Calcul for what it was--a work of great 
originality and significance ; but the unusual language and notation 
which were adopted (and which Cauchy himself criticized) obstructed its 
success. For the familiar phraseology in which (a, b, c) would be called 
the coordinates of a point with respect to the triangle ABC, Mobius 
used the circumlocution Aa + Bb + Cc is the "barycentric expression" 
of the point. Moreover, although Mobius employed his method with 
strikinc success in the solution of elementary problems--such as finding 
necessary and sufficient conditions that four given points lie in a plane 
or on a circle-he did not stress its role as a general coordinate sys­
tem applicable to the study of curves. This had been true of Bobil­
lier ; and much the same thing can be said of a third independent dis­
coverer of homogeneous coordinates, Karl Wilhelm Feuerbach (1800-
1834) . The Grundriss su analytischen Untersuchungen du dreieckigen 
P-yramide of Feuerbach did for three dimensions much the same thing 
that Mobius in the very same year (1827) had done in the plane, but 
his approach was geometrical instead of mechanical. It is interesting 
to note that whereas in plane geometry he had adopted synthetic and 
trigonometric methods, in three-space he turned to the elegant ana­
lytic methods of Lagrange. In doing so, Feuerbach ran across a strik­
ing generalization of the results of Lagrange : If five points are given 
(no. three of which are collinear and no. four of which are coplanar) , and 
if the algebraic distance of each point from an arbitrary plane is multi­
plied by the signed volume of the tetrahedron determined by the other 
four points, then the algebraic sum of these products is zero. In-
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trigued by this and other properties of the triangular pyramid, Feuer­
bach developed a new instrument for the study of "tetrahedrometry"­
a set of coordinates which are numbers proportional to the volumes of 
the triangular pyramids formed by a given point and the faces of a 
tetrahedral frame of reference. If units are properly chosen, his co­
ordinates are quickly related to barycentric, but his work was not 
based upon the idea of weight or center of gravity. In fact, the co­
ordinate concept was not uppermost in his mind. Feuerbach's 
Untersuchungen was only introductory to a longer work, Analysis der 
dreieckigen Pyramiile, which was never published ;" but in neither book 
were the new coordinates systematically developed. The author was 
concerned instead with new theorems on the pyramid and with the de­
termination of the forty-four elements of the tetrahedron, given any 
six independent parts. In this respect he differed radically from a 
fourth independent discoverer of homogeneous coordinates, ] ulius 
Plucker (1801-1868) , a man who approached the subject from an en­
tirely new angle and one for whom the resul.ts were of little concern as 
compared with the methods. 

No single person has contributed more to analytic geometry, both as 
to volume and power, than did Plucker. No previous mathematician 
-not even Descartes, Fermat, Newton, Euler, or Monge-had been 
primarily an algebraic geometer. Monge was, indeed, a geometer ; but he 
was equally capable in, and concerned with, synthetic, coordinate, and 
differential geometry. Plucker, on the other hand, was in a real sense 
the first specialist in analytic geometry. Where his predecessors in 
each case were responsible for a few papers or a volume devoted to the 
subject, Pliicker published half a dozen large quarto volumes, averag­
ing over three hundred pages per volume, each one devoted entirely to 
analytic geometry. Devoting the greater part of his life single­
mindedly to coordinate methods, he contributed also scores of im­
portant papers (well over six hundred pages in all) to the learned 
periodicals of his time in Germany, France, England, and Italy. In 
spite of the bulk of his work, Pliicker's aim was not to amass results 
through an exploitation of existing principles ; he sought instead to 
rebuild analytic geometry anew. Each of his volumes bears a subtitle 
or carries a preface in which the author refers to a "new method," or 
even a "new geometry, " which he is about to present. As Descartes 
seems to have realized that he was blazing a new trail, so too Pliicker 
had a clear conception of the transformation which he was working in 
analytic geometry. And yet in all his work Pliicker modestly felt 

• See Albert Kiefer, Die Einfuilsn1ng der lwmogenen Koortlinalen tlurclJ K. W. Fewrbad 
(Strassburg, 1910). 
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that he was but building along the lines which Monge had suggested. 
Plucker had taken his doctorate at Bonn ; and he studied also at 

Berlin and Heidelberg. In 1823 he spent some time at Paris,50 at­
tending lectures given by geometers of the school of Monge, and here 
he innocently walked into the crossfire between Gergonne and Ponce­
let. Plilcker was not born an analyst. His first paper61 was on a 
favorite topic of the time-the tangents to conics-and he treated the 
subject synthetically ! Plucker sent the paper to Gergonne, and the 
latter exercised his editorial prerogative so freely that when the article 
appeared in the Annales for 1826, Plucker said that he recognized it 
only because it carried his name. Gergonne had adapted the material 
to his custom of publishing dual theorems in parallel columns. In 
addition, and without Plucker's knowledge, he had added, as though 
it were part of the original manuscript, a reference to Poncelet's 
TraiU of 1822, a work which Plftcker had not yet seen. Poncelet, 
believing naturally that Plucker was familiar with the material in the 
Traill, published a violent note charging the latter with plagiarism. 
Plucker defended himseU, supported by Gergonne ; but Poncelet re­
newed his accusations. Although the brunt of �e attack was then 
turned against Gergonne, Plucker seems to have been deeply hurt ; 
and it may be largely the ruthlessness of Poncelet's attack which drove 
into the enemy camp the greatest of all champions of analytic ge­
ometry-the man who during the next score of years "invented . . . as 
much (or more) new geometry as was created by all the Greek mathe­
maticians in the two or three centuries of their greatest activity. ' '111 

Plucker reported that his introduction to analytic geometry had 
taken place in 1825 with the reading of the sixth edition of Biot's text­
book. While drawing on paper three intersecting circles and their 
common chords, he noticed that the chords were concurrent.  This 
theorem, which Plucker ascribed to Monge and which Gaultier had 
also given, he sought to prove analytically without recourse to the 
tedious algebraic elimination which was generally used at that time. 
In his search he was thus led to discover independently the method of 
abridged notation which Lam� had proposed. Writing the equations 
of the circles as C = 0, C' = 0, C" = 0, and their common chords (real 

" An excellent account of his life and a summary of his work is found in Wilhelm Emst, 

Jfllius Plflcker (Bonn, 1933). Plucker's mathematical and scientific papers have been col­
lected in Gesammelte vnssenschaftliche A bhandlungm (2 vols., Leipzig, 1895-1896), of which 
the first volume contains those on mathematics. 11 "Th9bn� et problbnes sur les contacts des sections coniques," Annalu de matW­
matiques, XVII ( 1826), p. 37-59. His doctoral thesis of 1823 had been on aspects of the 
calculus, especially Taylor's series. An analysis of the 1826 manuscript is found in A .  
&-hoenflies, '"Uber den wissenschaftlichen Nachlass Julius Pliickers." Mafllemaluclse A tsna­
ln, LVII ( 1904), p. 385-403. 11 Bell Deoelofmlml of Mathematics. p. 1 5. 
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or ideal) as C' - C" = 0, C" - C = 0, C - C' = 0, Plucker saw that 
two of the equations of the chords imply the third, and hence the 
theorem is proved. 61 This is the ingeniously simple proof which is 
now found in most elementary analytic geometry textbooks. 

Simultaneity of discovery is far from unusual in the history of 
mathematics, and there are numerous instances of this in the de­
velopment of analytic geometry. The independent invention of the 
subject by Descartes and Fermat is but one of these. During the 
years 1827-1829 Plucker invented several important aspects of the 
subject, in each case apparently without knowledge of the work of at 
least two rivals. His use of abridged notation, is one of these, for it 
had been used earlier by Lame and Fregier, and simultaneously by 
Bobillier and Gergonne. It is to Gergonne that the use of �. instead 
of Lame's multipliers m, and m ', is due. So widely has Gergonne's 
symbol been adopted that the formation of the equation C1 + �c. = 0 
often is referred to as "lambdalizing. "H But Plucker is nevertheless 
the real hero in this connection, for he made by far the widest and 
most effective use of such notations. It is therefore not without 
justice that it has become customary to speak of "Plucker's abridged 
notation, "  and to refer to the parameter, in combinations like C1 + 
pC1 = 0, as "Plucker's µ.. " 

One of the striking applications of abridged notation was made by 
Plucker in connection with the well-known "Cramer paradox." Be­
tween 1750 and 1827 little had been added to the subject of higher 
plane curves, but Plucker was here about to open a new era. Cramer 
had noticed, as had Euler at about the same time, that although a cubic 
curve generally is determined uniquely by 1 /1n(n + 3) = 9 points, 
nevertheless two cubic curves intersect in n1 = 9 points. Why should 
nine points sometimes determine a cubic uniquely and sometimes not ? 
Cramer and Euler realized that somehow the interdependence of 
points was involved. Plucker gave a clearer answer to the problem61 
by proving that if all but one of the 1/1(n + l) {n + 2) - 1 = 1/1n(n + 
3) points which determine a curve of order n = 3 are given, then all of 
the one-parameter family of curves of order n through these points 
pass also through a group of 1/1(n - l) {n - 2) points which are deter­
mined by the given points. Thus if eight points are specified, a ninth 
point is thereby determined such that all cubics through the eight 

11 "Mbnoire sur les contacts et sur les intersections des cercles," Annalu tk """111-
maliqius, XVIII ( 1827), p. 29-47. 

" See De Vries, op. cit., p. 10. 
11 "Recherches sur les courbes alpbriques de tous Jes deans," Annalu tk �. 

X IX ( 1828), p. 97-106. Cf. also A. Brill and M. Noether, "Die Entwickelung der Theorie 
der algebraischen Funk:tionen in ilterer und neuerer Zeit, ' '  Ja.hresberic'/r' tier Dermc/rn 
Mat'/rematiker· Vereinigung, I I I  ( 1892-1893), p. 107-566. 
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points have also the ninth point in common. Plucker easily proved 
the theorem as follows : Let M = 0 and M' = 0 be two distinct curves 
of nth order passing through the 1/1 (n + l) (n + 2) - 2 = 1/1 n(n + 
3) - 1 given points. Then, according to Lame's principle, M + 
µM' = 0 is the equation of curves of degree n through the given points, 
a particular member of the family being specified by a value assigned 
to p.. But all of these curves intersect each other in the same points, 
n1 in number ; and hence the 1/1n(n + 3) - 1 points initially given 
determine a concomitant set of n1 - [1/1n(n + 3) - 1 )  = 1/1(n -
l ) (n - 2) additional points which necessarily lie on any curve through 
the given points. The curve of fourth order, for example, has an equa­
tion containing :fifteen coefficients or, to use Plucker's expression, four­
teen "necessary constants." If, then, fourteen points are given, the 
quartic curve through these can be written as M + µ.M' = 0, where 
M = 0 and M' = 0 are two distinct quartics through thirteen of the 
given points and where ,.,. is so chosen that the coordinates of the four­
teenth point satisfy the equation M + µ.M' = 0. This quartic-and 
also other quartics through the thirteen points-will pass also through 
the other three points in which M = 0 and M' = 0 intersect ; so that 
the thirteen points determine an additional three points associated 
with, or dependent upon, the thirteen. No set of fourteen or more 
points selected from the combined set of sixteen points would determine 
a unique quartic curve. 

Somewhat similar explanations of the dependence of points were 
given at about the same time by Gergonne, Jacobi, and Lame. Ger­
gonne, for example, had announced that if two curves of order m = 
p + q have p(p + q) of their points of intersection on a curve of order 
p, the remaining q(p + q) points will lie on a curve of order q. As an 
example of this he gave a beautifully simple analytic proof of Pascal's 
theorem : Let the three odd-numbered sides of the hexagon inscribed 
in a conic be taken as a (composite) cubic curve and the other three 
sides as a second such curve. Now six of the nine points of intersec­
tion of the two cubics lie on a curve of order p = 2 ;  and hence, by 
Gergonne's theorem, the other three intersections lie on a curve of 
order 3 - 2 == 1 ,  a straight line.68 Plucker's proof of the same theorem 
so well illustrates his use of abridged notation that it may be ap­
propriately repeated here : Let the equations of the sides of the hexa­
gon be p = 0, q = 0, r = 0 and p' = 0, q' = 0, r' = O. Then the 
equation pqr + µ.p'q'r' = 0 represents all cubics through the nine 
points of intersection of the lines. Six of the points of these cubics 
necessarily lie on the circumscribed conic and, by a suitable choice of ,.,., 

11 See De Vries, ofJ. cil., p. 11 .  
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a cubic can be determined which has a seventh point in common with 
the conic. But a proper cubic intersects a conic in at most six points ; 
and hence the cubic in question must be composite, consisting of the 
conic and a straight line. Consequently the three remaining inter­
sections-the intersections of opposite sides of the hexagon-are col­
linear .17 

Following Gergonne's custom, Plucker published, in parallel col­
umns, both the theorem on Cramer's paradox and its dual. He stated 
the latter as follows : All the curves of mth class which touch the same 
m + 1 m + 2  . m + 1 m + 2  

1 · 2 
- 2 fixed lines also touch m2 -

1 · 2 
+ 2 other 

fixed lines. In the same year (1828) he presented also, in the Anna.ks, 
analogous theorems for surfaces : All surfaces of mth order [class ] 

hich thr h [ ch ] 
m + 1 m + 2 m + 3 

3 
. 

. 

w pass oug tou 
1 · 2 · 3 

- given pomts 

. m + l m + 2 m + 3  
[lines] also pass through [touch ] m• -

1 · 2 · 3 
- 3 com-

mon fixed points [lines ] ." Although PHicker's work was most in­
fluential in clarifying Cramer's "veritable paradox," it should be noted 
that more rigorous formulations of the problem continued to appear for 
almost another hundred years. 19 

It was Plucker, more than anyone else, who elevated abridged nota­
tion to the status of a principle. In 1828 he built the first volume 
(consisting of 270 pages) of his important Analytisch-geometrische 
Entwicklungen about this one idea. Emphasizing (in the preface) 
that this was a new way of handling analytic geometry-in which all 
elimination is eliminated-Plucker remarked that the results are only 
the details of a general method. His manner of treatment is purely 
analytic, he wrote, in the sense in which the term was used since 
Monge ; and by this he means that there is an exact correspondence 
between analytic expressions and geometric constructions.80 Pluck­
er's guiding star was the firm conviction that what synthetic geometry 
has accomplished can be done as well-or better-by means of co­
ordinates. He was determined to win back the territory which Ponce­
let had won for synthesis through the principles of continuity and 
duality ; and this he accomplished in the next year or two. 

" See Felix Klein, Vorluungen ilber die EnlTDieldung tier Matltematill im 19 Jo'llilst41'4erl 
(2 vols., Berlin, 1926-1927), I, p. 122. 

" "Recherches sur Jes surfaces �briques de taus les degres," A nnolu tk motWmalipu, 
XIX ( 1828), p. 129-137. 

11 Coolidge, History of Geomarie Mdllotls, p. 133. ascribes to Luigi Berzolari in 1914 the 
first "satisfactory" answer to the paradox. 

• Cf. Wissensc'/r.oflliihe Abhontll#ngen, I, p. 61� . 
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In his contributions to Gergonne's Annales, Plucker had used only 
Cartesian coordinates ; but in 1829 he wrote an article for Crelle's 
Journal,, "Uber ein neues Coordinatensystem."  Homogeneous co­
ordinates, which he here announced, were not so new as he believed ; 
they had been invented three times previously-by Mobius, Feuer­
bach, and Bobillier. But where his predecessors had made very 
limited use of the new system, Plucker had a clearer view of the 
methodological principles involved. He did for homogeneous co­
ordinates what he had done for abridged notation-he applied them 
systematically to the study of curves in general. The paper of Plucker 
opens with a statement that is reminiscent of Carnot's multitude of 
types of coordinates : "Any particular procedure for fixing the posi­
tion of a point, with respect to points or lines considered as known in 
position, corresponds to a system of coordinates."  Plucker took as 
his coordinate frame three lines, no two of which are parallel ; and he 
chose as the "triangular coordinates" of a point M the signed dis­
tances (p, q, r) of M from the three reference lines, measured along 
lines making given angles with the reference lines. Later he system­
atically adopted perpendicular distances, in which form his coor­
dinates correspond to those now known as trilinear. To convert 
these coordinates to barycentric coordinates, one divides them re­
spectively by a, b, and c, the lengths of the sides of the reference tri­
angle. Whereas the equation of the line at infinity in Mobius' co­
ordinates was a + b + c = 0, in Plucker's system it was ap + bq + 
er = 0. 

Plucker, the analyst, noted with particular satisfaction that by 
means of his new coordinate system he arrived at two of Poncelet's spectacular synthetic discoveri�that all the points at infinity in a 
plane lie on a line ; and that concentric circles have double imaginary 
contact at infinity. For concentric similar conics he noted agree­
ment with Poncelet's observation that the double contact at infinity is 
real or ideal according as the curves are hyperbolas or ellipses. Yet 
of more importance to analytic geometry as a whole was Pliicker's 
introduction of the homogeneous equation, f(p, q, r) = 0, of a plane 
curve.11 He studied the properties of the conics, for example, through 
the equation Ap1 + 2Bpq + 2Cpr + Dq1 + 2Eqr + Fr1 = 0. This 
made the study of the behavior of the curves at infinity quite analogous 
to the investigation for ordinary points. He showed how to trans­
form the equation of a curve from Cartesian to homogeneous co-

ordinates, and vice versa. The special case X = �· Y = �' where 

11 Wusenscllafllic'he AbluJndlHgn, I, p. 124. 
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(X, Y) are Cartesian coordinates and (x, y, t) are homogeneous, ap­
peared in 1831 in volume II of Plucker's Analytisch-geometrische Ab­
llandlungen. Here, too, the system is generalized to multilinear co­
ordinates (p, q, r, s, t, . . . ) where s, t, . . .  are linearly related to p, q, r. 

Homogeneous coordinates, especially those of Mobius, had done 
much to arithmetize geometry ; but in 1829 Plucker introduced a still 
more revolutionary point of view which broke completely from the 
idea of coordinates as line segments. Again Plucker appreciated the 
significance of the change, for in the titles of his papers in Crelle's Journal he used the phrases "Ueber ein neues Princip" and "Ueber ein 
neues Art. "81 In the early days of analytic geometry the parameters 
a, b, c in the equation ax + by = c1 were understood to designate line 
segments, in keeping with the idea of dimensionality. Gradually, 
however, the coefficients came to have more and more the status of pure 
numbers. Just as geometrical homogeneity was disappearing, homo­
geneous coordinates were introduced ; but these led, not to a return to 
geometric concepts, but to complete arithmetization. Beginning with 
the equation of the line Ay + Bx + C = 0, Plucker wrote it in the 
homogeneous form aA + bB + cC = 0. The three coefficients (A , 
B, C) determine a straight line, just as the homogeneous coordinates (a, b, c) determine a point. There is therefore an analogy between the 
two sets of quantities ; if (a, b, c) are called coordinates, the same 
phraseology may be applied to (A , B, C) . Pliicker took advantage of 
this situation and called the latter "line coordinates. "  The coordi­
nates of the line at infinity, for example, are (0, 0, C) , and coordinates of 
lines through the origin are of the form (A , B, 0) . To conform to the 
Cartesian convention that unknowns (i. e . ,  variables) are denoted by 
letters near the end of the alphabet, Plucker rewrote his equation as 
au + lm + cw = 0. If (a, b, c) are the coordinates of a varying point 
and u, 11, w are fixed, the equation represents the line common to all of 
the points ; if (u, "• w) are coordinates of a varying line and a, b, c are 
fixed, the equation represents the point common to all the lines. 
Just as a first-degree equation in point coordinates represents a line, 
so in line coordinates such an equation represents a point. Here 
Pliicker discovered an immediate analytic counterpart of the geo­
metric principle of duality, about which Gergonne and Poncelet had 
quarreled ; and it now became clear that the justification which pure 
geometry had sought in vain was supplied at once by the powerful 
methods which analysis had at hand. The interchange of the words 
"point" and "line" merely corresponds to an interchange of the words 
"constant" and "variable" with respect to the quantities a, b, c and 

•• Crelle's J"""'4l, V ( 1829), p. 268-286; VI ( 1829), p. 107-146. 
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u, 11, w. But the algebraic processes remain the same ; and hence every 
theorem appears immediately in two forms, one the dual of the other. 

Duality for space was justified by Plucker in 1831,  in a paper in 
Crelle's Journal with the characteristic title, "Note sur un theorie 
g&l&ale et nouvelle des surfaces courbes. "81 Here the equation ts + 
uy + f1X + w == 0 is thought of as representing a point or a plane ac­
cording as (t, u, 11) are regarded as "plane coordinates" or (s, y, x) are 
thought of as point coordinates. It is odd to note that although 
Plucker was largely responsible for homogeneous coordinates, he seems 
here to have preferred non-homogeneous coordinates. In two di-

mensions also he frequently used the ratios 
u 

and !. instead of (u, 11, w) , 
w w 

and hence these two quantities (the negative reciprocals of the inter­
cepts of the line) have come to bear the name "Pliicker coordinates. "  

A natural consequence of Plucker's invention of line coordinates was 
his analytic development of the idea of the class of a curve and its 
tangential equation. The notion of a curve as the envelope of its 
tangent lines was not new ; it had been proposed by DeBeaune, and in 
1692 Leibniz had given his rule for finding envelopes. Brianchon and 
Poncelet had noted the advantage of developing point and line con­
ceptions of a curve simultaneously. Monge had given the crucial 
theorem that through a given point there are n(n - 1) tangents to a 
given curve of order n; but his theorem was overlooked." Gergonne 
in 1826 applied the principle of duality to curves and introduced the 
word "class" of a curve to indicate the number of possible tangent 
lines ; but he made the mistake of assuming that the order and class of 
a curve were the same. Mobius in 1827 had determined the condi­
tion 4'(u, 11, w) = 0 that a line ux + "Y + ws = 0 should be tangent to a 
curve f(x, y, s) = O ;  and this condition is equivalent to the line equa­
tion of the curve. Mobius, however, did not express the idea that 
(u, 11, w) are coordinates of a line and that the degree of 4' determines 
the class in the same sense that the degree of f indicates the order. 
This clear general principle is due essentially to Plucker in 1830.16 A 
point has only a line equation, and a line has only a point equation ; 
but all other curves have both point and line equations. That is, 
Plucker developed analytically the notion of a curve as the locus gener­
ated by a point and enveloped by a line ; the point moves continuously 
along the line while the line rotates continuously about the point. 

11 Or see Wissenschaftlielse Abhandlungen, I, p. 224-234. 
" See De Vries, op. cit., p. 13. 
• See Crelle's Journal, VI ( 1830), p. 107. The geometer Michel Chasles, however, in 

1829 wrote to Quetelet that he bad bad the idea of line and plane coordinates independently 
of Pliicker. See Pliicker's Wissenschaftlidie Abllandlungen, I, 600; or A. ScJ>oerd!ies and M. 
Dehn, l!Afl/illwung sn die analytisclle C:"""'1trie (2nd ed., Berlin, 1931), p. 58. 



252 HISTORY OF ANALYTIC GEOMETRY 

The elaboration of this idea forms the basis of volume II of his Ent­
wicklungen of 1831.  He noted that the conic sections are always of 
class two, because the equation f/J = 0 in this case takes the form au2 + 
burJ + ct11 + d.urJ + evw + fw1 = 0 ;  and he studied this equation in the 
way that previous writers had considered the general point-equation of 
the conic sections. Combining abridged notation and tangential co­
ordinates, Plucker wrote A = 0 and A '  = 0 as equations of two curves 
of class two, and he noted that A + µA '  = 0 represents loci of the same 
class which have the same four common tangents. Similarly the proof 
of the Pascal theorem (given above) is easily converted by tangential 
coordinates into a proof of the dual (Brianchon) theorem. 

The next book-length contribution of Plucker was his System d.er 
analytischen Geometrie of 1835. The author here again emphasizes 
the Mongian idea of the concordance of analytic and synthetic forms, 
but he approaches the subject from a different point of view. The 
book therefore carries a typical supplementary phrase in the title, 
auf neue Betrachtungswei.sen gegrund.et. The new principle this time is 
that known as the "enumeration of constants,"  the basis of "enu­
merative geometry. " The application of duality to the singularities 
of curves had indicated that these come in couples-double point and 
bitangent, cusp and stationary tangent (point of inflection) ; and 
Plucker's discovery of line coordinates led him to the study of line 
singularities. Point singularities had been studied in the preceding 
two centuries, and it had long been known that, for a given curve, 
the number of such points is limited by the degree of the equation. 
Maclaurin long before, in Geometria organica, had shown that a curve 
of degree n has at most 1/,,(n - l ) (n - 2) double points ; Plucker 
showed that it has at most 1/2n(n - 2) (n2 - 9) double tangents.18 
Poncelet had found that singularities and the class of a curve are also 
related ; whereas a curve of order n generally is of class n(n - 1) ,  a 
double point causes a reduction by two in the class. But Pliicker, in 
Crelle's Journal for 1834, had gone on to make a discovery which 
Cayley considered "the most important one beyond all comparison in 
the entire subject of modern geometry. "  This discovery made it pos­
sible to set up not only upper bounds for the number of point and line 
singularities of a curve, but to write down equations relating the actual 
number of singularities to the order and class of the curve. These 
equations are the famous "Plucker equations. "  Those most com­
monly used are 

m = n(n - 1) - 28 - 3" 
' = Sn(n - S) - 68 - 8" 

• Wissnuclla/lff&Tle Abllandl11ngm, I, p. 298. 
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and the two correlative equations 

n = m(m - 1) - 2T - 3, 
" = Sm(m - 2) - 67- - 8, 

where m is the class, n the order, I the number of nodes, " the number 
of cusps, , the number of stationary tangents, and T the number of bi­
tangents. From these equations, for example, it becomes obvious 
that a curve of order two can have no singularities and hence must be of 
class two. A cubic can have not more than one cusp or one node ; 
a quartic without nodes can have as many as four cusps, and one with­
out cusps can have three double points. 

In his System of 1835 Plucker used his equations to give a new clas­
sification of cubics and quartics, a phase of analytic geometry which 
had to some extent been forgotten since Euler and Cramer. In re­
suming this type of investigation, Plucker said that he wished to com­
plete the work of Newton and Euler on cubics by making their study 
as systematic as that of conics. In this connection he took advantage 
of abridged notation to write cubics in the form pqr + p.S = 0, where 
p = 0, q = 0, r = 0, and s = 0 are straight lines.87 Of the 146 pos­
sible quartic curves Plucker listed 135. In another volume, T'heorie 
der algebraischen Curven, published four years later, he carried his re­
sults further, especially through the use of imaginary elements. After 
Pliicker's time, operations on imaginaries came to be regarded as a 
necessary part of algebraic geometry. The Pliicker equations hold, 
of course, only if all ideal elements-imaginary, infinite, and infinite 
imaginary--are included together with the real ones. For example, 
after stating the century-old theorem that a line through two points 
of inflection of a cubic passes also through a third point of inflection, 
Plucker added the observation that of the nine possible points of in­
flection of a cubic, only three are real. In such work the principle of 
continuity of Kepler, Desargues, and Poncelet had reached analytic 
maturity. 

With the help of imaginary coordinates Plucker was able to general­
ize some of the properties of conics to higher plane curves. Poncelet 
as early as 1818 had deduced ( by algebraic methods ) that conic 
sections have four foci, two real on the principal axis and two imaginary 
on the transverse or conjugate axis.88 Plucker, in his Entwicklungen 
of 1831 and in Crelle's Journal for 1832, continued and extended this 
work." The foci of the conics, for example, have the property that 
the tangents from these points to the curve have slopes of ±�that is, 

• See Wissensc'lsaflliclse Abhandluneen. I, p. 586-590. 
• A nMlu tk matllhnaliquu, VIII ( 1817-1818), 222-223. 
• See also Wissenschaflliche A bhandlHgen, I, 290 f. 
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they pass through the circular points of Poncelet. Plucker therefore 
defined a focus of a higher plane curve as a point with this property. 
A directrix similarly is a chord of contact of the two circular lines 
through a focus. Plucker showed that a curve of class m has, in 
general, m 1 foci, of which only m are real. 

A number of Plucker's papers in Gergonne's Annales and Crelle's 
Journal had dealt with three dimensions, but his first four volumes 
had been limited to plane analytic geometry. In 1846, however, he 
published his System def' Geometrie des Raumes in which he applied 
his methods to surfaces and skew curves. The phrase in neuer ana­
lytischer Behandlungsweise, which was characteristically included in the 
title, refers largely to the extension to space of principles previously 
applied in the plane : abridged notation and Plucker's p. ;  homogeneous 
(tetrahedral) coordinates ; duality (or "reciprocity,"  as he called it) 
and the tangential equation of a surface in plane coordinates ; and 
the enumeration of constants. Following out work begun by Lame 
in 1818, Pliicker studied the ensemble of quadricsf + p.g = 0 through 
the curve of intersection of two quadrics f = 0 and g = 0, using Car­
tesian and tetrahedral coordinates. As in the plane case of the Cramer 
paradox, he considered the conditions under which nine given points 
in space are independent in the sense that they determine a unique 
quadric surf ace. Plucker classified quadrics in a manner similar to 
that of Cauchy ; and, looking upon them as envelopes of their tangent 
planes, he studied the general tangential equation of second degree. 
He studied also the rectilinear generators of the lined quadrics and the 
properties of skew curves drawn upon quadric surfaces. An essentially 
newer idea, contained in the work of 1846, is the view that the four 
conditions determining a line in space correspond to four coordinates 
of a line. Here there is an implication of an analytic geometry of four 
dimensions, a notion which Plucker anticipated but did not develop. 
Recurring to a favorite theme, he pointed out that every geometric 
relation is to be regarded as a pictorial representation of an analytic 
relation which nevertheless has its own independent value. The 
principle of reciprocity is no exception, and hence, conceived of purely 
analytically, it is not bound to the dimensions of space. As in the 
transition from the plane to three dimensions one introduces another 
variable, so it is possible to extend the discussion of duality analytically 
to a greater number of variables.'IO For four variables [or dimensions ] 
the first-degree equation becomes pP + qQ + rR + sS + tT = 0, 
a form quite analogous to the dual homogeneous form in two or three 
dimensions. 

11 System tkr Geomelrie du Raumes, p. 322. 



THE GOLDEN AGE 255 

The V orrede of the System der Geometrie des Raumes again emphasizes 
that it is the method which is important, and that it is this aspect of his 
work which will remain in science. Following this hope-eminently 
justified-for a measure of mathematical immortality, Pliicker crypti­
cally added that he was laying his pen down, after twenty years of work 
of this type, and that he would not again take up such research. 
What was it that caused the most original and prolific analytic, ge­
ometer of all times to abandon the subject to which he had devoted 
himself exclusively for so long a time ? What led him to cut himseH 
off from the ranks of mathematicians for the next twenty years ? 
It is not possible to give a categorical answer, but one can discern 
several possibilities. Pliicker was aware of the significance of what 
he was doing ; but in his own country-as well as in Italy, and even 
to some extent in France--there was a reluctance on the part of his 
contemporaries to grant him the recognition he had earned. Jakob 
Steiner {1796-1863) , the "greatest geometer since Apollonius, "  ruled 
the hearts and minds of his day ; and he took an intense dislike to 
analytic methods. It is not easy to define "analysis" as applied to 
geometry, but in any case the term would seem to connote a certain 
amount of technique or "machinery." Analysis sometimes is referred 
to as a tool, a term never applied to synthesis. Steiner, however, felt 
that geometry could best be learned by concentrated thought, and he 
objected even to such "props" as the models and diagrams which syn­
thetic geometers employed. Calculating, he said, replaces, while 
geometry stimulates, thinking.71 So antagonistic was Steiner to the 
analytic point of view that he is said to have threatened to give up 
contributing to Crelle's Journal, if it continued to publish material by 
Plucker.72 Mobius seems to have remained neutral with respect to 
the controversy, for he was both synthesist and analyst. Jacobi, 
however, aligned himsclf with the synthetic camp and polemically 
opposed Pliicker. If his "Zwistigkeit" with Poncelet in 1826 was in­
fluential in turning him from an early interest in pure geometry, it is 
equally possible that his confilct with Steiner was a factor in 
Plucker's abandonment of analytic geometry. There is, however, 
another explanation available which would appear more plausible. 
From 1825 until 1846 Pliicker had taught mathematics-first at Bonn, 
then at Berlin, and finally at Halle. In 1847 he became professor of 
physics at Bonn ; and it is said that there was some criticism of the 
fact that a chair in physics should be held by a pure mathematician. 
Whatever the reason, Plucker abandoned geometrical research for 

n See Struik, o(J. cil., II, p. 246. 11 See Cajori, His""1 of MaUletnatiu, p. 311 .  
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experimental investigation. Beginning with 1847 he published a long 
series of papers, mostly in Poggendorff's Annalen,71 devoted to dis­
coveries--some made in collaboration with Hittorf-in magnetism 
and spectroscopy. Among other contributions, he announced that 
chemical substances are identifiable by the characteristic spectral lines 
which they emit, an anticipation of the work of Bunsen and Kirchhoff. 

The direction of his physical research may have been suggested by 
the electrical discoveries of Faraday, for Plilcker had been in touch with 
British scientists and mathematicians, among whom he found ardent 
admirers. It is paradoxical to note that England, the stronghold of 
synthetic methods throughout the eighteenth century, should have 
seized the initiative in continuing the analytic geometry of Pliicker. 
While Monge and Lacroix were engineering the analytical revolution 
in France, coordinate geometry in England had scarcely developed 
beyond the work of Newton and Maclaurin. Wallis' Conics had fallen 
out of use at Cambridge ; and while analytic geometry was always 
present to some extent from 1800 to 1820, it was largely through its 
relationship to problems on mensuration.74 The only work on co­
ordinate geometry commonly read there at the beginning of the nine­
teenth century was a thirty-page section on "The application of algebra 
to geometry" appended to James Wood, The Elements of Algebra.71 
This brief account presents the subject about as it was in the days of 
L'Hospital. Coordinates are defined as geometrical lines, and the 
rotation transformation is described without the use of trigonometric 
symbolism. Simple examples on conics are given, together with the 
characteristic of the equation of second degree. A few other curves 
are included, with reference to Euler and Waring. A section "On 
the construction of equations" is highly reminiscent of Descartes' 
GlomAtri£. The sharp contrast between British and Continental 
methods in the calculus, about 1800, is well known ; and evidently the 
situation with respect to analytic geometry was much the same. It 
was probably the "Analytical Society," formed to promote (in the 
calculus) the "principles of pure d'ism in opposition to the dot-age 
of the university," which indirectly brought about a change in an­
alytical geometry. In 1816 the Society translated Lacroix's Elements 
of the Calculus, and it was not long before the Leibnizian differential 
methods superseded the fiuxions of Newton. But Lacroix's Calculus 
presupposed some of Lacroix's analytic geometry ; and it was not long 

" See Wissenscllaflliell• Abllartdlungen, v. II. 
H W. W. R. Ball, A Hillary of Illa Study of Matllemalic.s at Carnbritlge {Cambridge, 1889), 

p. 129. 
" The 6th and 9th editions {Cambridge, 1815 and 1830, respectively), which I have used, 

are virtually identical. See p. 276-305. 
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before textbooks appeared to fill the need. One of the first of these 
was A System of Algebraic Geometry {London, 1823) by Dionysius 
Lardner (1793-1859) . The unfortunate state of the subject at the 
time in England is evidenced. by the author's remark that "Hitherto, 
no treatise whatever on Algebraic Geometry has appeared in Great 
Britain."711 Lardner called attention also to the fact that Sir John 
Leslie (176&-1832) was at the time seeking to lead a counter revolution 
back to the ancients. Leslie had written a book with the title Geo­
metrical Analysis and Geometry of Curve Lines {Edinburg, 1821) ; but 
the word . .  analysis" here is used in the sense of Plato and Pappus to 
indicate .. an inverted form of solution." The works of Lardner and 
Leslie are but two of those which betray that Britain, too, shared in the 
widespread controversy between analysts and synthesists. 

The material in Lardner's Algebraic Geometry is much like that in the 
earlier texts of Lacroix and Biot, showing that England in 1823 no 
longer was a century behind the times. This is confirmed by a number 
of similar books which appeared within the next few years : Principks 
of Analytical Geometry, by H. P. Hamilton in 1826 ; Analytical Geometry of 
Three Dimensions, by John Hymers in 1830 ;77 and A Treatise on 
Algebraical Geometry, by S. W. Waud in 1835. All of these18 resemble 
Continental textbooks of the early part of the century ; and the book by 
Waud in particular is an excellent and thorough treatment which would 
be acceptable in elementary classes of today. But while Great Britain 
finally could point to satisfactory textbook material, she had pro­
duced. no outstanding analytic geometer since Waring. Yet when 
Plucker abandoned the field in 1846, his mantle descended upon an 
Englishman, Arthur Cayley {1821-1895) , who, despite time devoted 
to legal practice, rivals Euler and Cauchy in volume of output. 

Cayley had a convenient medium of publication in the Cambridge 
Mathematical Journal. This periodical, established in 1837 and later 
appearing under the title Cambridge and Dublin Mathematical Journal, 
did for Great Britain somewhat the same thing as Gergonne's Annales 
had done for France and Crelle's Journal was doing for Germany. 

Cayley was not a specialist in analytic geometry. Most of his 900-
odd mathematical papers are on the algebra of invariants ; but it was 
just on the algebraic side that Plucker was weakest. One notes with 
surprise that Plucker failed to take advantage of determinants ; and 

" Preface, p. liii. 
n I have not seen these works and cite them on the basis of Ball's Mat!Nmaliu al Cam­

bridge. However, I have used Hamilton's A n  A nalytical Systan of Conit: Seasons (3rd ed .•  
Cambridge, 1834), a work which resembles the treatment on the Continent . 

.,. Mention might also be made of an English translation of a French work : L. B. Fran­
coeur, A CompleU Course qf Pt1.re M� (transl. by R. Blakeloclc) , 2 vols.. Cambridp. 
1829-1830. 
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the beautifully symmetric formulas of Lagrange and Monge did not 
stir him to generalizations in this direction. In the period of Plucker's 
greatest activity, following 1826, Jacobi used determinants effectively 
in analysis, and one wonders if their feud soured the geometer on this 
subject. Whatever the reason, it probably was the lack of the deter­
minant notation which kept Plucker from developing the analytic 
geometry of n dimensions. The introduction of multidimensional 
geometry is still another example of simultaneity of discovery, for three 
men took this step independently of each other at about the same 
time.71 The quaternions of William Rowan Hamilton (1805--1865) and 
the Ausdehnungslekre of Hermann Grassmann (1809-1877) , both 
dating from 1844, were actually a part of vector and tensor analysis. 
Hamilton wished to build up, without Cartesian coordinates, a calculus 
of vectors in ordinary space ; and so he fixed his attention upon the 
four-parameter operation which transforms one vector into another. 
The view of Grassmann was less restricted, for his basic elements, or 
"extensive magnitudes, "  involved an indefinite number of dimensions.  
The Ausdehnungslehre, however, resembled the Barycentrische Calcul 
of Mobius, both in its great originality of conception and a forbiddingly 
novel terminology. Grassmann's ideas, too, were slow to receive 
recognition. Cayley, on the other hand, in 1843 approached the 
question of higher dimensionality from the point of view of algebraic 
geometry.80 Possessed of a strong aesthetic feeling with regard to 
mathematics, Cayley took pleasure in solving in new and ever more 
elegant ways the elementary problems connected with points, lines, and 
planes ; and determinants afforded him an excellent means of extending 
the symmetric formulas of Lagrange. His "Chapters in the analytical 
geometry of (n) dimensions" opens with the statement, "I take for 
granted all the ordinary formulas relating to determinants." Applying 
the square array of Cauchy (enclosed within double vertical bars) 
to the symmetric results of Monge, he wrote the area of a triangle and 
the two-point equation of the straight line in the forms, now usually 
given in textbooks, of determinants of order three. In the same 
way the volume of a tetrahedron and the equation of the plane through 
three points are written as determinants of order four. In an exactly 
analogous manner one can extend this work to n dimensions by means 

n Ludwig Sch1ifil ( 1814-1895) also seems to have developed the idea independently, but 
his work was almost ten years later than that of the others. See H. S. M. Coxeter, Replar 
Polylot>es (London, 1948), p. 141.  Multi-dimensional algebraic geometry was also de­
veloped in 1854 in the well-known Habililationschri/I of G. F. B. Riemann ( 1826-1866). Schlifli contributed also to the classification of cubic surfaces, e. g., in Philosophical Trans­
adions, CLill ( 1863), p. 193-241. 

• See Cambridge Mal'hemalics Journal, IV ( 1843-1845), p. 1 19-127. The articles of Cay­
ley are conveniently referred to also in his CollecUd Malhemalical Papers (Cambridge, 1889-
1897). See v. I, p. �2. Cf. also VI, 456. 
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of determinants of order n + 1 .  Cayley put in determinant form also 
Plucker's final idea before his desertion, the four coordinates of a line 
in three-space : If (a, (3, 'Y· 8) and (a', (3', 'Y', 8 ') are the homogeneous 
point-coordinates of two points determining the line, Cayley expressed 
the coordinates of the line through the points as the determinants of 
the matrix 

l a fJ 
'Y 

8 1 a' fJ' -y' 8 '  

Cayley has been compared to Euler and Cauchy in range and 
analytical power, and for the prolific production of new views and 
theories. There is "hardly a subject in the whole of pure mathematics 
at which he has not worked. "81 It will not be possible here to give a 
systematic account of these contributions, even of those limited to 
analytic geometry. One of his discoveries, however, is so striking as 
to deserve mention here : Cayley noted in 1849 that whereas quadrics 
contain either no straight lines or an infinite number, there is a defi­
nite finite number of lines upon a cubic surface. George Salmon 
(1819-1904), a man who was deeply influenced by the work of Cayley, 
later determined that there were just twenty-seven lines. 81 These 
are not necessarily all real ; but since the time of Plilcker imaginary 
elements had become an integral part of algebraic geometry. Cayley 
wrote, "The notion, which is really the fundamental one (and I 
cannot too strongly emphasize the assertion) underlying and pervading 
the whole of modern analysis and geometry, is that of imaginary 
magnitude in analysis and of imaginary space in geometry."81 Tri­
linear coordinates, too, enjoyed a great popularity in England at the 
time, and this is reflected in Cayley's attitude toward elements at 
infinity. Writing for the ninth edition of the Encyclopaedia Britannica, 
he said (in the article on "Geometry") that, "The whole tendency 
[in modern methods] is toward generalization . . . The treatment of 
the infinite is in fact another fundamental difference between the two 
methods. Euclid avoids it, in modern mathematics it is systematically 
introduced, for only thus is generality obtained."  Cayley's article 
on "Curve" (in the eleventh edition) contains similar views, as well 
as an extensive historical account of the development of the principle 
of duality and the "Pliickerian dual generation of a curve."  In the 
latter article the Plucker equations are treated at great length. So 

11 See A. R. Forsyth, "Obituary notices" in Procudings of tie London Ra,al Socidy, 
LVIII ( 1895), i-xliii. esp. p. ui. Cf. also Ch. Hermite, Comptes rendus, CXX. {1895), p. 
234. 

• See Archibald Henderson, The TTDefll'Y""&oen Lines UfHm tie Ctlbi& Surjaee (Cam­
bridge, 1911 ). 

11 Colkcletl Mathematical Pa�s. XI, p. 434. 
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fascinated was Cayley by this subject that he attempted to extend 
them to surfaces and skew curves, as well as to the higher singularities 
of plane curves. 

Simultaneously with Cayley in England, the German mathematician 
L. 0. Hesse (181 1-1874} also used determinants effectively in geometry 
-as well as in analysis, where his name is celebrated in the well-known 
Hessians. Plucker through abridged notation had avoided algebraic 
elimination ; but Hesse through determinants showed how to make 
elimination simpler. Except for the use of double indices, adopted 
from Cauchy and Jacobi, the work of Hesse resembles that of La­
grange in its emphasis on elegant symmetries of calculation. In 
Crelle's Journal, for 1848 he adopted the now fa.mmar form (xi, Xt, 
xa) for homogeneous coordinates in a plane and the convenient double 
index notation for the coefficients in the general equation of second 
degree, notations which lend themselves readily to work with deter­
minants. Hesse also was largely responsible for the adoption of deter­
minants in textbooks. His two popular texts, V orlesungen Uber die 
analytische Geometrie des Raumes of 1861 , and Vorlesungen aus der 
analytische Geometrie der geraden Linien, des Punktes und des Kreises 
of 1865, except for the wide use of determinants, might almost be said 
to have done for analytic geometry in the sense of Pliicker what the 
texts of Lacroix and Biot had accomplished for analytic geometry in the 
sense of Monge. Here one finds abridged notation, homogeneous co­
ordinates, quadric surfaces in point and plane coordinates, polar theory 
-all in best modern form. Numerous textbooks of similar character 
appeared also in other countries, especially England. Salmon, for 
example, published A Treatise on the Conic Sections (1848) , Higher 
Plane Curves (1852} , and A Treatise on Analytical Geometry of Thr� 
Dimenmms (1862} , all of which have passed through numerous editions 
and are still widely used. In the latter work Salmon called attention 
to an aspect of analytic geometry which had developed inconspicuously 
over a long period-the idea of spherical coordinates. 

In a broad sense the analytic geometry of the sphere goes back to the 
geography of Hipparchus and the Greek theory of spherics ; but the 
first methodical treatment was that of Christof Gudermann (1798-
1882} in 1830. In this year Gudermann published a paper, "Ueber die 
analytische Spharik, " in Crelle's Journal, and a book, Grundriss der 
analytischen Spharik, both dealing with coordinates on a sphere.14 
He took as a frame of reference two quadrants VX and VY which cut 
each other at V in  any angle (corresponding to oblique coordinates in a 

" See Loria, "Perfectionnements • . .  , "  Malltematica XXI (1945), p. 66-83, whose ac­
count I here follow. 
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plane) . To find the coordinate of a point M of the sphere, he joined 
M to X and Y by arcs of great circles and found the intersections P 
and Q of these arcs with VX and VY. Then the "axial coordinates" 
" = VP, y = VQ are uniquely determined, except for points on the 
arc X Y. Gudermann suggested also a system of "central coordinates" 
on the sphere-analogous to polar coordinates in the plane-in which 
the position of M is determined by the great-circle arc VM and angle 
MVX. He solved the fundamental problems relating to points and 
great circles, and even considered some simple curves drawn on the 
sphere. Evidently inspired by the work of Plucker, he later gener­
alized his scheme (in Crelle's Journal, for 1838) by defining trilinear 
coordinates, using numbers proportional to the sines of the arcs drawn 
through a point perpendicular to the sides of a spherical triangle of 
reference. Mobius in 1846 also published a paper on spherical an­
alytic geometry in which he applied his barycentric calculus to the 
surface of a sphere. 

In Great Britain, T. S. Davies (1794-1851) in 1833 also presented a 
thorough treatment of spherical coordinates, especially in polar form.• 
Davies tracesattempts togivespherical coordinates back toone by James 
Skene in Aberdeen in the Gentlemen's Diary for 1795 ; but he makes no 
mention of Gudermann and recognizes no general. development before 
his own. Using 6 as polar angle and ,; as radius vector (or polar dis­
tance) , Davies gave the equation of the circle with center (A, ir) and 
radius p as cos p = cos A cos ,; + sin A sin ,; cos(B - ir) . If the circle 
is a great circle, the equation becomes cot ,; = - tan  A cos (6 - «) ; 
and if the center is the pole of the equator, the equation is cos p = 
cos ,;. Similarly he found the great circle through two points ; the 
intersections of two great circles, the angle between them ; the great 
circle through a point and making a given angle with a given great 
circle ; and the circle through three points. He gave formulas for the 
transformation of coordinates, and for various projections : ortho­
graphic, stereographic, and gnomonic ; and he studied a variety of 
curves, including the spherical ellipse, hyperbola, and parabola, 
spherical epicycloids, and various spirals, especially the lox.odrome. 
In the next decade C. Graves (1812-1899) presented an extensive 
treatment of rectangular spherical coordinates.118 He gave such for­
mulas as distance between two points ; the normal distance from a point 
to a great circle ; the angle between two great circles ; the equation of 
the great circle through a given point perpendicular to a given great 

• "On the equations of loci traced upon the surface of the sphere, as expressed by spheri­
cal coordinates," Transaditm.s of the RoyaJ SorAet, of &linburgls, XII ( 1&13-1834), 269-362, 
379-428. 

• I have not seen this work but cite it on the basis of Loria, "Perfectionnements . . " 
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circle ; and the equation of the great circle tangent to a given spherical 
curve. He included transformations of rectangular spherical coordi­
nates and also transformations from polar to rectangular coordinates 
on the sphere. Salmon noticed that in Graves's rectangular system on 
a unit sphere, the projection upon the plane tangent to the sphere 
at the origin leads to a corresponding system of Cartesian coordinates. 
Thus the Gudermannian equation of a spherical curve corresponds 
to the Cartesian equation of its central projection on the tangent plane 
at the origin. Spherical and Cartesian coordinates can also be re­
lated through stereographic projection. Cayley, too, studied spherical 
analytic geometry, using a system of tripolar coordinates ; and long 
after (1895) he considered the nine-point circle of a spherical triangle.87 

Spherical coordinates are a special case of analytic geometry on sur­
f aces in general, but the development of the latter was quite different. 
Euler had represented plane curves parametrically, and the extension 
to space is so immediate that it is difficult to ascribe it to any one 
individual. Lagrange's transformation from spherical or polar co­
ordinates (.P, q, r) to rectangular coordinates (x, y, s) becomes, for r 
constant, a parametric representation of the spherical surface. In this 
sense the parameters p and q may be called the spherical coordinates 
of a point on the sphere. It is this approach which was generalized 
by Carl Friedrich Gauss (1777-1855) , the greatest mathematician of 
modern times, to lead to general curvilinear coordinates. In his 
classic work of 1827, Disquisition.es generales circa superficies curvas, 
he used three differential equations in two parameters to define a 
surface, and he referred to the parameters p and q which determine two 
systems of geodesic lines on the surface as "curvilinear coordinates. "  
This work, however, was a part of differential, rather than algebraic, 
geometry. 

Gauss used the name ' 'curvilinear coordinates' '  to designate a system 
on an arbitrarily given surface ; but the phrase can be used as well to 
indicate various systems of coordinates either in a plane or in space of 
three dimensions. Two equations x = j(.P, q) and y = g(.P, q) suffice 
to set up a correspondence of values between p and q on the one hand 
and x and y on the other ; so that p and q may be thought of as curvi­
linear coordinates of a point (x, y) in the plane. Polar coordinates are 
a special case in whichf is p cos q and g is p sin q. In 1874 C. A. Laisant 
(1841-1920) gave another example, x = r cosh w, y = r sinh ur-a. 
system which he called hyperbolic polar coordinates.88 Similarly, in 
space of three dimensions, three equations x = f(u, v, w) , y = g(u, 

" Colleded MalhematWl Papers, XIII, p. 548. 
• Essai s11r lu foneiions lsyperboliqllu (Paris, 1874), p. 71-83. 
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11, w}, s - h(u, 11, w) set up a correspondence between the "curvilinear" 
coordinates (u, 11, w) and the Cartesian coordinates (x, y, s) . La­
grange's equations furnish but a special instance of this, and the types 
of curvilinear coordinates are limitless in number. Possibly the most 
important single form of curvilinear coordinates is that proposed by 
Lam� in 1837 and named by him "elliptic coordinates. "89 For space 

t 
of three dimensions these are defined as follows : The equation 

x 
a' + >. 

+ b' � >. + c' � >. - 1 represents an ellipsoid, an hyperboloid of one 

nappe, or an hyperboloid of two nappes according as >. is a value 
chosen between -a and - b, or between - b and - c, or between - c 
and 

+ 
m .  If one chooses three values of >., one in each of the above 

intervals, these three numbers determine three quadrics which inter­
sect each other (orthogonally} in eight points, one in each octant and 
symmetric in pairs with respect to the principal planes of the system. 
These numbers, >.i, >.:1, A., may therefore be regarded as coordinates of 
the points so determined. Similarly, with respect to the equation 

y' s' 
P + >. + q + >. - 2x + >., one can choose three values of >., one in each 

of the intervals - m to -p, -p to - q, and -q to 
+ 

m ,  to obtain 
three paraboloids which intersect in four points ; and the three values 
>.1, �. A. are known as parabolic coordinates of the points. Similar 
systems of curvilinear coordinates can be applied in two dimensions 
through the use of confocal conics in place of the quadrics. In such a 
system the idea of coordinate is divorced from geometric significance 
as thoroughly as in the work of Mobius and Plucker, where also co­
ordinates were mere numbers. Analytic geometry more and more 
was being arithmetized. 

Lam� was a civil and railroad engineer who had been led to curvi­
linear coordinates through his work on the conduction of heat in 
ellipsoids ; and in 1859 he published a volume on the role such co­
ordinates can play in mechanics, heat, and electricity. His forecast 
(in Lefons su.r les coordonnAes curvilignes et leurs applications) of their 
significance is worth quoting, for it is an inspiring tribute to those men 
who, through their analytic geometry, have participated in the march 
of science : 

Should anyone find it singular that we have been able to found a Course 
of Mathematics on the sole concept of a system of coordinates, he may be 
• "Sur les surfaces isothermes," JOllmal du �. II ( 1837), p. 166. Cf. a1ao 

IV ( 1839), p. 134;  VIII ( 1843), p. 397. 
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reminded that it is precisely these systems which characterize the phases 
and stages of science. Without � invention of rectangular coordinates, 
algebra might still be where Diophantus and his commentators left it, 
and we should lack both the infinitesimal calculus and analytic mechanics. 
Without the introduction of spherical coordinates, celestial mechanics 
would be absolutely impossible ; and without elliptic coordinates, illus­
trious mathematicians would have been unable to solve several important 
problems of this theory . . . Subsequently the reign of general curvilinear 
coordinates supervened, and they alone are capable of attacking the new 
problems [of mathematical physics] in all their generality . Yes, this de­
finitive epoch will arrive, but tardily : those who first recognized these new 
implements will have ceased to exist and will be completely forgotten-un­
less some archaeological mathematician revives their names. Well, what 
of it, provided science has advanced ?90 

At the time that Lam� penned these words in praise of coordinate 
geometry, the foremost champion of the subject was sulking in his 
tent. It is true that Plilc.ker was contributing to science through his 
work in physics ; but one wonders whether he did not now and then 
cast a fond eye in the direction of the field of his earlier triumphs. 
Was he roused once more to activity by the challenge of Lam�? Or 
was he encouraged to return to his first love by the ardor with which 
Cayley pursued his ideas ? Or was he perhaps induced by the death 
(in 1863) of his arch opponent, Steiner, to give up his self-imposed role 
of mathematical exile ? Whatever the cause may have been, Plucker 
in 1865 turned back to the work he had broken off so abruptly in 
1846. 

During the period of Plucker's geometrical retirement, the notion 
of space of more than three dimensions had been developed {especially 
by Cayley) from a formal point of view, with little regard for geometric 
interpretation.111 In 1846 Plilck:er himself had hinted at such a purely 
algebraic generalization. In 1865, however, he returned to his faith that 
analytic operations and geometric constructions run parallel to each 
other, and he shattered the naive notion that it is impossible to imagine 
a space of more than three dimensions. When considering the stuff 
of which a space is composed, one is inclined to think first of points. 
In spite of duality, it seems to be more natural to look upon a curve as a 
locus of points rather than as an envelope of tangent lines-even 
though the curve may be a caustic, actually generated by rays of light 
instead of by a moving point. In space of two dimensions this does 

" Quoted from Bell, Dnelopment of Mathematics, p. 487. ta In a provocative little book, Ari and G111metry (Cambridge, Mass., 1946), p. 121, Wm. 
M. Ivins has written, "Cayley and Grassmann invented conceptual spaces of more than three 
dimensions" ;  but this is misleading. Even as late as 1883 Cayley insisted that multi-di­
meoaiooal geometry is a part of pure mathematics only and not of the realm of conception. 
See Forsyth, ofl. cit., p. xxxii. 
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not much matter. There are as many points as there are lines. For 
ordinary space of three dimensions. however. the situation is quite 
different. A point in this case has three independent coordinates. and 
there are as many planes as points ; but a line is determined by four 
conditions. Before his retirement Plftcker had referred to the four 
parameters of a line as "coordinates

1
1 1  but not until 1865 did he seize 

upon this idea as the basis for a "new geometry of space. "  He de­
veloped the idea that space need not be thought of as a totality of in­
finitely many points ; it can equally well be visualized as composed of 
infinitely many straight lines. As Bell has vividly expressed the 
change. "Instead of our fammar solid space looking like an agglomera­
tion of infinitely fine birdshot it now resembles a cosmic haystack: of 
infinitely thin. infinitely long straight straws. ' '111 That is, the dimen­
sionality of a space depends upon the type of element out of which, in 
our mind's eye, it is visualized as built. Any figure which formerly 
had been regarded as a locus of points can instead be taken as a space 
element, and the number of dimensions is indicated by the number of 
parameters determining such a locus. 

The cordial relations between Plucker and the British geometers is 
evidenced both by the fact that his new geometry of space first appeared 
in the publications of the Royal Society of London, 111 and by the re­
sponse in England to his ideas. Cayley, for example. in 1868 developed 
analytically the notion of a plane as a space of five dimensions, the 
elements of which are conics."' In this same year appeared also the 
first volume of Plucker's last work, the Neue Geometrie des Rau.mes 
gevundet auf die Betrachtung der geraden Linie als Raumelement. 
In this he built up his line geometry as one ordinarily does point 
geometry. A single equation in the coordinates of ordinary point­
space is called a surface ; one equation in the four coordinates of his 
line-space Pliicker called a "complex.1 1  Two equations in ordinary 
space determine a curve ;  and in his new space Plucker called the locus 
corresponding to two equations a "congruence. "  Three equations in 
point-geometry lead to a single element of the space, a point ; but in 
line-geometry there is still another intermediate configuration possible, 
a one-parameter family of lines being known as a "range. "  Plucker 
set himself the task of building up the properties of the new space in a 
manner corresponding to his treatment of ordinary space. The 
quadratic line complex, for example, has properties resembling those 

n Men of M�, p. 400. 
11 Proeutlinfs, XIV ( 1865), p. 63-58; and Plsilosopltkal Tra1Utldionl, CLV (1866), p. 

726-791. Or see WusensclsafllielN AbluJMlungen, I, p. 462-640. 
•• "On the curves which satisfy gi'ftll conditions," Pltilorofl/ffeal Tn&n.soclions, CLVIII 

( 1868), p. 75-143 ; or see CoUeaol Malhematical PafMrs, VI, p. 191-291. 



266 HISTORY OF ANALYTIC GEOMETRY 

of the quadric surface, and he undertook to study this in detail. He 
did not live to complete this work, but he had gone over the ground 
with his students, especially Felix Klein (1849-1925) and R. F. A. 
Clebsch (1833-1872) , who saw to the final publication. 

The death of Pliicker did not bring an end to the development of 
analytic geometry ; for, like many great men, he had enthusiastic 
disciples. Plucker had begun his study under the students of Monge 
who, upon the death of the great French geometer in 1818, had con­
tinued to develop the subject along lines their teacher had suggested. 
Half a century later, in 1868, Plucker in tum passed away, leaving 
analytic geometry again transformed ; and succeeding generations 
of students have added enormously to the growth of the subject. 
It has been estimated91 that from 1870 to 1890 the rate of development 
in geometry was doubled, with analytic methods predominating. 
Nor is there any likelihood that an end has yet been reached. As 
Wieleitner has conservatively estimated, perhaps in one or two hundred 
years from now, analytic geometry will be as different from ours as is 
ours from that of Descartes and Fermat.91 However, specialization 
from Plucker onward has increased to such an extent that a general 
account of the history of elementary analytic geometry may reason­
ably stop short of anything since his death. While "history shows 
that the general tendency [in geometry as a whole, and in analytic 
geometry as well ] has been more and ever more generalization,"97 
the contributions of individuals have tended in the opposite direction. 
To follow the work of even a few of Plucker's students-such as Klein 
and Sophus Lie (1842-1899) in the theory of groups and invariance or 
Clebsch in the invariants of algebraic forms-would lead to fields far 
beyond the scope of a survey.88 But it may not be inappropriate to 
mention here one of the implications of analytic geometry with respect 
to the foundations of mathematics. The train of thought leading to 
analytic geometry arose when Greek mathematicians insisted on 
seeking for geometrical, rather than arithmetical, solutions of equations 
such as x1 == 2. In the work of Monge and Plucker, however, co­
ordinate geometry was emancipated from the constructions of pure 
geometry-it was arithmetized. Auguste Comte (1798-1857) was 
much impressed by this arithmetizing tendency and its bearing upon 
positivistic philosophy. He went so far as to place analysis alone in 

• See Cajori, History of MatlltmuJliu, p. 278-279. 
" "Zur Erfindung . . . , ' '  p. 426. 
" Coolidge, History of Geometric Mellotls, p. 422-423. Cf. Loria, "Perfectionnemeats • .  , ' '  

Mathematica, XXI ( 1945), p. a:Hm. 
• The reader who wishes to pursue further such lines of development should consult the 

admirable works of Bell (especially his D� of M�) and Coolidge (ia 
particular the History of Geomarical Mdhod.s). 
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the category of abstract mathematics, pure geometry being put (along 
with mechanics) , under the heading of concrete mathematics ; and 
he called analytic geometry the most decisive step in mathematical 
education. 11 Yet although Comte emphasized the parallels between 
analytic expressions and geometric constructions, he gave no serious 
consideration to the fundamental assumption upon which such an 
association must be based-the postulate, tacitly accepted since the 
days of Descartes, that to each point of a line there corresponds a real 
number, and conversely. 100 This problem had been considered by 
Riemann in 1854, but it was especially in 1872 that the Cantor­
Dedekind axiom placed the arithmetization of analytic geometry upon 
a sound logical foundation. The work of Richard Dedekind (1831-
1916) and Georg Cantor (1845-1918) ,  however, was essentially a part 
of the development of the calculus, 1°1 which continued, in many re­
spects, to overshadow coordinate geometry. Even in the case of the 
theory of curves many of the later contributions were also far removed 
from algebraic geometry in the strict sense . Such pathological ex­
amples as space-filling curves, and curves everywhere continuous but 
without a tangent anywhere, brought much of the subject under the 
more general heading of the theory of functions. Except in the case 
of elementary mathematics, it has become increasingly difficult to 
distinguish clearly between the various fields, such as algebra and ge­
ometry. The association of number and magnitude, out of which 
analytic geometry arose, is now on a sounder basis than ever before. 
To trace the history of the subject beyond 1872 would carry one far 
from the field of elementary Cartesian geometry, and hence this year, 
only four years after the death of Plucker, may be taken as a sort of 
terminal date ; but in closing it is appropriate to add a word on the 
historians of analytic geometry. 

Chemistry has been claimed, with excessive arrogation, as a French 
science, largely because of the "chemical revolution" of Lavoisier. 
If there is indeed some basis for this Gallic claim, there is far more 
obvious justification for an assertion that analytic geometry is a 
French contribution to mathematics. The closest medieval and early 
modern anticipations were due to two Frenchmen, Oresme and Vi�te ; 
the inventors, Descartes and Fermat, were both French ; and French 

• See Tu P1'ilosotill1 of Mat'/temalics (transl. by W. M. Gillespie, New York, 1851 ), p. 
202-203, and TraiU ilhnenlaire tk gi,,,,U,,U analytipe 4 deus u 4 trois tlimensitms (Paris, 
1843), p. 9. 

111 See, e. g., Tobias Dantzig, Nx,,.,,,,, IM Lanpage of St:Una (3rd ed., New York, 1939), 
p. 178. 111 See C. B. Boyer, Tu Concepts of tle Cablx.s (New York, 1939), p. 286-290. The 
work of Cantor and Dedekind was paralleled at about the same time by that of M&ay and 
Weierstrua, providing another striking instance of the simultaneity of discoveria. 
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also were the central figures who participated in the "analytical revolu­
tion" of Monge. Although the foremost specialist in the subject was 
German, nevertheless Plilcker was introduced to the subject by French 
teachers and textbooks. Yet nothing illustrates the international 
character of mathematics so well as the fact that, although the subject 
is largely French in origin, the historiography of it is due mostly to 
other lands. Brief summaries are found in nearly every language, but 
the most extensive general accounts of the development of Cartesian 
geometry are by an Italian, two German scholars, and an American. 
Much of the inspiration and the material for this volume has been 
drawn from the works (cited in the bibliography) of Loria, Tropfke, 
Wieleitner, and Coolidge ; and so in conclusion the author wishes to 
refer the reader to these sources and to express his admiration for the 
work of these and other men who have enriched not only mathematics 
itself but also the story of its development. 
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[Neugebauer, 0., and A. Sachs], Mathematical cuneform texts (American 
Oriental Series, vol. XXIX) . New Haven, Conn., 1945. 

Illustrates the earliest applications of algebra to geometry. 
[Chase, A. B.,  L. S. Bull, H. P. Manning, and R. C. Archibald], The Rhind 

mathematical papyrus. 2 vols.,  Oberlin, 1927-1929. 
Illustrates the application of number to geometry in Egypt. 

[Heath, T. L. ], Apollonius of Perga, Treatise on come sections. Cambridge, 
1896. 

This excellent English edition of the Conics includes an introduction which presents 
an extensive history of the conic sections before Apollonius. 

[Heath, T. L. ], The works of Archim«les. Cambridge, 1897. 
Important for the knowledge of the Crmiu in antiquity, including Archimedes' 
graphical solution of cubic equations. 

[Thomas, Ivor ] ,  Selections illustrating the history of Greek mathematics. 2 vols., 
Cambridge, Mass., 1939-1941.  

A convenient source book of fragments pertaining to the Greek equivalent of analytic 
geometry. 

[Ver Eecke, Paul ], Pappus of Alexandria, La collection mathlmatique. 2 vols. 
Paris and Bruges, 1933. 

A readily available edition of an important source of inspiration in the development 
of analytic geometry. 

[Wieleitner, Heinrich], "Der 'Tractatus de latitudinibus formarum' des 
Oresme," Bibliotheca Mathematica (3) , XIII (1913), 1 15-145. 

Includes valuable commentary and analysis of the work of the most important 
medieval precursor of analytic geometry. See also the article on Oresme by Wieleit­
ner listed in part II of this bibliography. 

Vi�te, Fran90is, Opera mathematica {ed. by van Schooten, Lugduni bata-
vorum, 1646) . 

Contains applications of algebra to geometry by the most important early modern 
precursor of Descartes and Fermat. For French translations of parts of his work 
see BulleUino tli Bibliografia e tli Storia tlelle Sciense Matemaliche e Fisiche, I ( 1868). 
223-276. 

Fermat, Pierre de, Oeuwes. Ed. by Paul Tannery and Charles Henry, 4 vols. 
and supp.,  Paris, 1891-1922. 

Contains the Latin, and also French translation, of the Introtluctirm to loci, as well as 
of other works bearing upon analytic geometry. The Latin of the Introduction to 
loci is found also in the Varia opera mathemalica of Fermat (Tolosae, 1679). 

Descartes, Rene, The geometry. Transl. by D. E. Smith and Marcia L. 
Latham, with a facsimile of the first edition, 1637. Chicago and London, 
1925. 

A convenient edition and translation, with notes. For other aspects of the geo­
metrical work of Descartes, see his Oeuwes (ed. by Charles Adam and Paul Tannery, 
12 vols. and supp., Paris, 1897-1913). 
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Roberval, G. P. de, "Divers ouvrages," Mhnoires de l'Acadlmie Royak des 
Sciences def>Uis 1666 jusqu'a 1699, VI (Paris, 1730) , 1-478. 

Pages 94-246 contain work on the derivation of the equations of loci and on the 
graphical solution of cubics and quartics. 

Van Schooten, Frans, Geometria a Renato Des Cartes. 2nd ed. , 2 vols. , Am-
stelaedami, 1659-166 1 .  

One of the most important works in the history of analytic geometry. Besides 
very extensive commentary on Cartesian geometry by Van Schooten, the 2nd edition 
contained the Elements of curved lines of Jan de Witt, sometimes called the first 
textbook of analytic geometry. Van Schooten's work included also significant addi­
tions to analytic geometry by Debeaune and others. A third edition appeared in 
1683. The first edition of Leyden, 1649, did not contain the work of de Witt. 

Sluse, Ren� de, Mesolabum. 2nd ed. ,  Leodii Eburonum, 1668. 
This "book of means" was an important link in the Cartesian graphical solution 
of equations. Cubics and quartics are solved by intersecting conic sections. The 
first edition appeared in 1659. 

Wallis, John, Opera. 3 vols. , Oxonii, 1693-1 699. 
This is the best edition of Wallis' works. The important Treatise on conie sections 
is also found in the more readily accessible Opera malhematica (2 vols., Oxonii, 
1656-1657). 

Huygens, Christiaan, Ouerwes completes. 22 vols. , La Haye, 1888-1950. 
Important for correspondence with mathematicians of the time, especially Sluse. 
Huygens was one of the early Continental writers to understand negative coordinates. 

La.hire, Philippe de, Nouveaux 'lbnens des sections coniques, ks lieux glo 
mltriques, la construction ou ejfection des 'quations. Paris, 1 679. 

The most important analytic work of a man otherwise known as a great synthetic 
geometer. It is in the strict Cartesian tradition and appeared again in 1701.  

Ozanam, Jacques, TraiU des ligms du premier genre; traiU des lieux g'o­
mltriques; trait' de la construction des 'quations. Paris, 1687. 

This rather uninspired work is in harmony with the ideas of Descartes and closely 
resembles the work of Lahire. 

Craig, John, Tractatus mathematicu.s de figurarum cunJilinearum quadraturis el 
locis geometricis. Londini, 1 693. 

Contains the important Noua meth«lus tldmninandi loco geomdrica with the equiva­
lent of the modern characteristic for determining the nature of a conic section. 

Leibniz, G. W., Mathematische Schriften. Ed . by C. I. Gerhardt. Gesammelte 
Werke. Ed. by G. H. Pertz. Third series, Mathematik, 7 vols., Halle, 
1849-1863. 

Especially useful for Leibniz' correspondence with the Bernoulli brothers. 
Bernoulli, Jacques, Opera. 2 vols.,  Genevae, 1744. 

Important for the graphical solution of equations and for the use of polar coordinates. 
Bernoulli, Jean, Opera omnia. 4 vols. , Lausannae and Genevae, 1742. 

Contains anticipations of solid analytic geometry. 
Guisn�, N.,  A pplication de l'algebre a la geometrie. Paris, 1705. 

A popular analytic geometry of the first half of the eighteenth century. 
Newton, Sir Isaac, Opera quae exstant omnia. Ed. by Samuel Horsley, 5 vols., 

Londini, 1779-1785. 
This edition, and the Ofnlsct1la malhematiea, philosophica et philologica (3 vols., 
Lausannae and Genevae) are convenient for those who read Latin. Many of the 
treatises of importance in the history of analytic geometry are available also in 
English : The method of ftunons (London, 1736), for polar coordinates ; UniNrsal 
arithmelicle (London, 1769 etc . ) ,  for the graphical solution of equations ; En"meraUon 
of lines of the 3rtl order (London, 1760), on graphical representation. An extensive 
account of the last-mentioned is found also in W. W. R. Ball's article, "On Newton's 
classification of cubic curves," London Mathematical Socidy, Prouetlinis, XXII 
( 1890), 104-143. 

L'Hospital, G. F. A. de, Traill analytique des sections conigues. Paris, 1707. 
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The most popular text on analytic geometry of the eighteenth century, this work 
appeared in numerous editions. 

Varignon, Pierre, "Nouvelle formation de spirales, " Mhnoires de l'Acadlmie 
des Sciences, 1704, pp. 69-131 .  

An early instance of the u se  of polar coordinates. 
Rolle, Michel, "De l'evanoiiissement des quantitez inconnues dans la goom�­

trie analytique, "  Mhnoires de l'Acadlmie des Sciences, 1709, pp. 419--450. 
One of the first uses in print of the name analytic geometry. The article is on the 
graphical solution of equations. 

Reyneau, Ch. R., Analyse dlmontrle. 2 vols. ,  Paris, 1708. 
A work resembling that of L'Hospital, but not so well known. 

Parent, Antoine, Essais et recherches de mathhnalique et de physique. 2nd ed., 
3 vols. ,  Paris, 1713. 

One of the first instances of the systematic use of solid analytic geometry. This 
work first appeared in 1705. 

Maclaurin, Colin, A treatise of algebra. London, 1748. 
Important for the "use of algebra in the resolution of geometrical problems." This 
posthumous work was planned as early as 1729. For a twenty-page account of the 
life and work of Maclaurin see his Accot1nt of Sir Isruu Newlon s fliilosophical dis­
cuoeries (London, 1748). 

Stirling, James, Lineae tertii ordinis Neutonianae. Londini, 1717. 
Stirling added so much new material to the little work of Newton that this is virtually 
a new book. 

Rabuel, Claude, Commentaires sur la glomltrie de M. Descartes. Paris, 1730. 
A prolix traditional treatment. 

Clairaut, A. C., Recherches sur ks courbes a double courbure. Paris, 1731 .  
A classic, composed when the author was only sixteen years old. I t  is the first 
book devoted entirely t� solid analytic geometry. 

Hermann, Jacob, "De superficiebus ad aequationes locales revocatis, "  Com-
mentarii A cademiae Petropolitanae, VI ( 1732-1733) , 36-67. 

An important contribution to the early history of solid analytic geometry, composed 
about the same time as the first works on the subject by Clairaut and Euler. On 
plane analytic geometry see an article by Hermann, " De locis solidis ad mentem 
Cartesii concinne construendis," in the same journal, IV ( 1729), 15-25. 

Wolff, Christian, A treatise of algebra; with the application of it to a fJariety of 
problems in arithmetic, to geometry, trigonometry, and conic sections. Transl. 
from the Latin, London, 1739. 

An ezcellent ezample of the nature of Cartesian geometry at that time. 
De Gua de Malves, J. P., Usages de l'analyse de Descartes. Paris, 1740. 

One of the most important works on higher plane curves, following the work of 
Newton and Stirling. 

Caraccioli, J. B . ,  De lineis curvis. Pisis, 1740. 
One of the best treatises of its day on higher plane curves, both algebraic and trans­
cendental. Treatment is in part analytic, in part synthetic. 

Chelucci, Paolino, Institutiones analyticae earumque usus in geometria. Romae, 
1738. 

Shows bow slowly analytic geometry developed in Italy at first. The geometric 
uses consist of the graphical solutions of cubic equations by means of conics. 

Agnesi, Maria Gaeta.na, lnstitusioni analitiche. Milano, 1 748. 
An analytic geometry quite characteristic of its time, and well known on the Con­
tinent. An English edition appeared at London in 1801 

Euler, Leonard, Opera omnia. Ed. by Ferdinand Rudio, 22 vols. in 23, Lipsiae 
and Berolini, 191 1-1936. 

The contributions of Euler to analytic geometry covered close to half a century. 
They began in the Commenlarii Academiae Petroflolitanae for 1728 with a paper on 
solid analytic geometry; and in the Nwi Commenlarii for 177&-1776 there is an 
article by Euler on the transformation of coordinates in three dimensions. The 
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most important sin&le work ol bis CID analytic pometry is the 11"'°"'""" ia nalJri• 
irsftrt"'1rt1m (2 vols., La11sannae, 1748), of which translations are available in Preach 
and German. For full bibliographic information CID Euler see Gustaf Ene:str&n. 
"Verzeichnis der Schrifteo Leonhard Eulers, " Ja1'1esbericlsJ der Delllsdln MalU­
maliker- Vereinig,,,.g, Ergarssurs"sbdnde, IV, 2 parts, 191CH913, an impressive list 
including 866 entries, not counting multiple editions. 

Cramer, Gabriel, I ntrodu.ction a l' analyse dn lignes courbes alg&riques. Geneve, 
1750. 

This large volume of 680 page was definitive in its field for over half a cmtmy. 
La Chapelle, L'AbbC, Traill des sections coniqua et autres t:DIW'bes anciennes. 

Paris, 1750. 
This book is Cartesian in spirit, but not at all like modern worb oa analytic geometry. 
Equations of curves are seldom given. 

Gallimard , J. E., Les sections coniques et aulres cour'bes anciennes. Paris, 1752. 
Like the work of La Chapelle, this book is based upon the geometry of Descartes, 
but does not resemble modern texts. The language of proportions is used instead 
of equations. 

Goudin, M. B.,  and A. P. Dionis du Sejour, Traill des cou.rbes algMlriques. Paris, 
1756. 

Important for the emphasis upon the transformation of coordinates and for the 
analytic tnatment of the straight line. See also Goudbi's TraiU la two/Willb 
""'"'"'nes a toutes les courbes (Paris, 1778), a 3rd edition of which appeared in lln1. 

Waring, Edward , Miscellanea analytw, de aequationilnu algebraicis, et cur­
mrum propridalibus. Cantabrigiae, 1 762. 

Probably the most important English work on analytic geometry in the second half 
of the eighteenth century. 

Riccati, Vincenzo, and Girolamo Saladini, lnstituliones analytWJ.e. 2 vols. in 3, 
Bononiae, 1 765-1 767. 

Includes a good account of analytic geometry characteristic of the period. 
Sauri, L'AbbC, Cours cmnplet de mathematiques, 5 vols., Paris, 1774. 

Includes a treatment of analytic geometry typical of the time. 
Frisi, Paolo, Operum. 3 vols. ,  Mediolani, 1782-1785. 

Title page of vol. I carries the modern name ".Analytic geometry." 

Bhout, Etienne, Cours de �s. Part Ill, with notes by A. A. L. 
Reynaud , Paris, 1 812.  

The compendia by B&out enjoyed quite a vope during the last quarter of the eight­
eenth century and influenced the Americao textbooks of the early nineteenth. 
The treatment of analytic geometry is typical of the time about 1775. 

Lagrange, J. L., Oeuwes. 14 vols., Paris, 1867-1892. 
The contributions to analytic geometry are found especially in vol. III, pp. 817-692. 
Important for arithmetizing coordinate geometry. Not a single diagram is used in 
bis classic treatment of the tetrahedsoa. 

Monge, Gaspard , Feuilles d'ana/,yse. Paris, 1795. 
Monge is the most important contributor to analytic pometry whoee works have 
Dot been collected. His FeMilles d'analyse, which appeared in five editions to 1850, is 
the most important single contribution he made, but by no means the only one. 
Like Euler, he added to the subject over a long period of time. His classic paper on 
developable surfaces was delivered in 1771 but was not published until 1785. This 
and many other articles will be found in the Mbnoires of the Acad&n.ie des Sciences. 
For other papers see also the Journal de l' F.cole Polyttchrsiqwe and the Corresl><mda.u 
s•r l' Ecole Impbiale Polytechnique. Monge and J. N. P. Hachette collaborated in a 
work on solid analytic geometry which went through several editions, A Hlicalin 44 
l'alg�t a la geometrie; traiU la s•rfaces du s«:cnul degri (3rd ed., Paris, 1813). 

Lacroix, S. F., Cours de mathematiques. Vol. IV, Traill llhnenta.ire de trigo­
nomltrie rediligne et sphlrique et appliaJ.tion de l' alg�bre 4 la glomltrie, Paris, 
1798-1799. 

The fint really modern teztbook treatment of plane analytic pometry. This boot 
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set the pattern for a host of elementary textbooks which appeared in the followin1 
century. Much of the material in this book had appeared about a year before in the 
same author's Traue d" calcw ( vol. I, Paris, 1797).  The 25th edition of the text­
book on trigonometry and analytic geometry appeared in 18971 Lacroix un­
doubtedly was the greatest textbook writer of modem times, if one allows for mul­
tiple editions. See also his Essais sur renseignement en genbal, et sur cel1'i 4u 
malhbnatiques en IHJ.rliculier (Paris, 1805). 

Lefran�s, F. L. [or Fran�s], &sai sur la ligne droite et les courbes du second 
degrl. Paris, 1801.  

A good textbook along the lines set by Lacroix. A 2nd edition appeared in 1804 
with the title Essais de g'°1narie analyti'l"e. 

Puissant, Louis, Recueil de dif1erses propositions de glomltrie, rlsolu.es ou dlmon­
trees par l'analyse alglbrique. Paris, 1801. 

An excellent textbook following the principles of Monge and Lacroix. Much­
enlarged editions appeared in 1809 and 1824. 

Biot, J. B . , &sai de glomltrie analytique. Paris, 1802. 
A textbook that rivalled Lacroix's in popularity. Plane and solid analytic geometry 
are integrated . This book was translated into many languages, and exerted a wide 
infiuence. It was used for many years at West Point. The 6th edition of 1823 
consists of about half again as many pages (some 450) as the 2nd edition of 1805. 

Carnot, L. N. M.,  Glomltrie de position. Paris, 1803. 
Only a portion of this important book is devoted to analytic geometry, but these 
pages (about 425-475) are significant for the imasination with which coordinates are 
used. Various systems are suggested, including polar, bipolar, and intrinsic co­
ordinates. 

Lhuilier, S. A. J.,  Ellmlns d'analyse glometrique et d'analyse alglbrique, ap­
pliqules a la recherche des lieux geometriques. Paris, 1809. 

Noteworthy for the systematic use of the normal form of the tine and the plane. 

Hachette, J. N. P., Ellments de glomltrie a trois dimensions. Paris, 1817. 
The author is to be remembered also for his editing of the Correspondant:e sMr l' &ole 
Imf>hiale Polytechniq1'e, (3 vols., 1813-1816). 

Amphe, A. M., "Sur les avantages qu'on peut retirer dans la thoorie des 
courbes, de la consideration des paraboles osculatrices, ' ' Journal de l' Ecole 
Polytechnique, cab. XIV (vol. 7, 1808) , 159-181.  

One of the early suggestions for the use of intrinsic coordinates. 

Garnier, J. G., G'omltrie analytique OU application de l'algebre a la glometrie, 
2nd ed., Paris, 1813. 

A good textbook, characteristic of its day. The 1st edition appeared in  1808. The 
author is to be remembered also as co-editor, with Quetelet, of Correspondance 
Mathhnalique el Physique. 

Gergonne, J. D., "Essai sur l'expression analytique des courbes independ­
amment de leur situation sur un plan, " Annales de Mathlmatiques pures et 
appliqules, IV (1813-1814) , 42-55. 

On intrinsic coordinates. Gergonne, founder and editor of the A nnales, displayed 
almost unrivalled enthusiasm for analytic geometry, and the numbers of his journal 
are full of excellent articles on the subject both by himself and by others. 

Gaultier, L., "Memoire sur les moyens generaux de construire graphiquement 
un cercle determine par trois conditions, et une sphere determinee par 
quatre conditions," Journal de l'Ecole Polytechnique, cah. XVI (vol. 9, 1813) ,  
124-214. 

The first systematic presentation, largely synthetic, of the radical uis and the radical 
plane. 

Bret, J. J. ,  "Thoorie analitique de la ligne droite et du plan," Annales de 
Mathlmatiques, V (1814-1815) ,  329-341 .  

Barty systematic use of the parametric form of the line in three dimensions. 
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Wood, James, The elements of algebra. (Part IV, The application of algebra to 
geometry, pp. 276-305.) 6th ed.,  Cambridge, 1815. 

A brief introduction to analytic geometry along the lines given by Descartes and 
Fermat. This account, one of the first in England since Wallis, shows how far 
behind developments on the Continent the country bad fallen. 

Lame, Gabriel, Examen des different.es 1Mt'hodes emplyees pour resoudre les 
problemes de glomltrie. Paris, 1818. 

Important for the use of abridged notation in connection with linear combinations 
of equations of curves. 

Cauchy, Augustin, Oeuores completes. 25 vols. ,  Paris, 1882-1932. 
Important for the classification of quadrics, the use of determinants, and for certain 
fonns of the line in three dimensions. 

Lardner, Dionysius, A system of algebraic geometry. London, 1823. 
Just about the first textbook on algebraic geometry, in the sense of Monge and La­
croiz, to appear in Great Britain. Includes a fifty-page historical introduction. See also his Trealise on algebraic geometry {London, 1831 ). 

Bobillier, Etienne, "Essai sur un nouveau mode de dmonstration des pro­
priet�s de l'etendue," Annales de mathhnatiques, XVIII (1827-1828) , 320-
339, 359-367. 

One of the most original early users of abridged notation. Important also for the 
adumbration of homogeneous coordinates. 

Poncelet, J. V . , Applications d' analyse et de geo1Mtrie, qui ont sem de principal 
fondement au Traill des proprieus projectirJes des figures. 2 vols. ,  Paris, 1862-
1864. 

Overshadowed by the author's famous projective geometry of 1822, the present 
work often is overlooked by historians. Composed half a century before it was 
published, it shows the important part that analytic considerations played in Pon­
celet's early thought. 

Plucker, Julius, Gesammelte wissenschaftliche A bhandlungen. Ed. by Arthur 
Schoenfties, 2 vols. ,  Leipzig, 189� 1896. 

Vol. I, containing Plucker's Gesammelle malliematisclse Abluindlungen, is one of the 
most important primary sources on the history of analytic geometry. Here are 
collected the papers of the one who was perhaps the greatest algebraic geometer of all 
times. The articles, many of which appeared originally in Gergonne's A nnales and 
Crelle's Journal, are full of important new ideas on abridged notation, homogeneous 
equations, line coordinates, and the singularities of algebraic curves. Pliiclr:er was 
also the most prolific analytic geometer of all time ; besides the score of papers, 
totaling over 600 pages in the above volume, he published the following works, 
averaging over 300 pages per volume : 
Analytiscli-geomelrisclie Entwicklungen {2 vols. in 1, Essen, 1828-1831). 
System tkr analytisclien Geometrie (Berlin, 1835). 
Th.eorie der algebraisclien CurTJen (Bonn, 1839). 
S1stem tkr Geomelrie des Raumes ( Diisseldorf, 1846). 
Neue Geometrie des Raumes {2 vols. in 1 ,  Leipzig, 1868-1869). 

Davies, T. S., "On the equations of loci traced upon the surface of the spheres 
as expressed by spherical coordinates," Transactions of the Royal Society of 
.Edinburgh, XII (1833-1834) , 259-362, 379-428. 

One of the most extensive developments of spherical coordinates of the time, in­
cluding a wide variety of formulas and equations. 

Comte, Auguste, Traill elementaire de geo1Mtrie analytique a deux et a trois di-
mensions. Paris, 1843. 

Much more discursive than the usual textbook, but written by a philosopher who 
was profoundly influenced by analytic geometry. See also his Pliiloso,liy of lllGIM­
matics {transl. by W. M. Gillespie, New York, 1851). 

Cayley, Arthur, CoUected mathematical papers. 13 vols. , Cambridge, 1889-
1897. 

Most of Cayley's 900-odd papers are on the algebra of invariants, but IOIDe are de-
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voted to important aspects of analytic geometry, especially the theory of curves 
ind surfaces, the geometry of n dimensions, and the use of determinants. See also 

his articles for the EneyclofHUtlia Britannica on "Geometry" (9th ed.) and "Curve" 
{ llth ed. ). 

Hesse, Otto, V orlesungen aw tier analytischen Geometrie tier geraden Linie, des 
Punkies und des Kreises in tier Ebene. 3rd ed., Leipzig, 1881.  

This book, the 1st edition of which appeared in 1865, may be said to have done for 
analytic geometry in the sense of Plucker what the texts of Lacroix and Biot did 
for analytic geometry in the sense of Monge. It represents the strictly formal type 
of approach, with extensive use of determinants. See also his Vorles11ngen t'lber tlie 
analytische Geometrie ties Ra•mes of 1861. 

Laisant, C. A., Essai sur lesfonctions hy(>erboliques. Paris, 1874. 
See pp. 71-83 for the use of elliptic and hyperbolic polar coordinates. 

Baltzer, Richard, Analytische Geometrie. Leipzig, 1882. 
One of the important textbooks of the 19th century. It is especially good for his­torical notes, particularly on the material of the "golden age." A thoroughly 
modern treatment. 

Briot, C. A. A., and J . C. Bouquet, Elements of anal.ytical geometry of two di­
mensions, 14th ed., transl. by J. H. Boyd, Chicago and New York, 1896. 

One of the most popular of the more extensive textbooks of the 19th century. Still a 
useful work. 

n. Secondary Works on the History of Analytic Geometry (arranged alpha­
betically). 

Archibald, R. C., Outline of the history of mathematics, 6th ed., Mathematical 
Association of America, 1949. 

Ezcessive brevity limits its usefulness, but bibliographic references are a good 
feature. 

Bell, E. T., The defJelo(>mmt of mathematics, New York, 1940. 
Especially good on the development of ideas in the nineteenth century. 

Berenguer, P. A., "Un ge6metra espaft.ol del siglo XVII," El Progreso Mate-
mdlico, v {1895) , 1 16-121. 

Claims Antonio Hugo de Omerique as a precursor of modern analytic geometry 
through his Analysis geometrica; but the claim can not be substantiated because the 
second, and more important, part of this work has been lost. 

Bopp, Karl, "Die Kegelschnitte des Gregorius a St. Vincentio," A bhand­
lungen sur Geschichte tier mathematischen Wissenschaften, XX (1907) , 87-314. 

Includes comparative remarks on the synthetic and analytic methods in the seven­
teenth century. 

Bortolotti, Ettore, "L'algebra nella storia e nella preistoria della scienza," 
Osiri.s, I (1936), 184-230. 

On the role of Bombelli in the representadon and construction of quantities geo­
metrically by line segments. 

Bortolotti, Ettore, L'algebra, opera di Rafael BombeUi da Bologna. Bologna, 
1929. 

Points out the use by Bombelli of coordinates and of the combination of algebra 
and geometry. This book is extensively reviewed in Scripta Mathematica, IV 
( 1936), 166-169. 

Bortolotti Ettore, Lesioni di geometria analitica. 2 vols. , Bologna, 1923. 
Vol . I contains a long "Introduzioae storica" (pp. ix-lCCdz) which is especially good 
on the Italian precursors of Descartes. 

Bortolotti, Ettore, Studi e ricerche sulla storia della matematica in Italia nei 
secoli X VI e X VII, Bologna, 1928. 

Especially useful for the analysis of the "Algebra geometrica" of Paolo Bonasoni, a 
precursor of ViMe. 

Bosmans, Henri, "La premi� &iition de la 'Clavis mathematica' d'Ought-



276 B IBLIOGRAPHY 

red, son influence sur la ·�etrie' de Descartes," A nnales de la Sociltl 
Scientiftque de Bruxelles, XXXV (1910-191 1 ) ,  24-78. 

Portrays Oughtred as a link from Vi�te to Descartes. 
Bosmans, Henri, "Pour une historic de la gb>metrie analytique, d 'apr� G. 

Loria," Mathesis (3) , VI (1906) , 260-264. 
Essentially a summary of Loria's paper with similar title. 

BOYER, C. B . ,  "Analytic geometry : the discovery of Fermat and Descartes, " 
The Mathematics Teacher, XXXVII ( 1944) , 99-105. 

Emphasizes that they discovered, not graphs, coordinates, or the analytic view, 
but the fundamental principle of analytic geometry. 

Boyer, C. B . ,  "Cartesian geometry from Fermat to Lacroix," Scripta Mathe­
matica, XIII (1947) , 133-153. 

Especially on the changes in attitude and purpose. 
Boyer, C. B . ,  "Historical stages in the definition of curves, " National Mathe­

matics Magazine, XIX {1945) , 294-310. 
Origins of some of the familiar curves in ancient and modem times. 

Boyer, C. B . ,  "Note on an early graph of statistical data," Isis, XXXVII 
{1947) , 148-149. 

On the slow penetration of graphical methods into fields other than geometry. 
Brill, A., and Noether, M., "Die Entwickelung der Theorie der algebraischen 

Funktionen in alterer und neuerer Zeit, ' '  Jahresbericht der Deutschen Mathe­
matiker- Vereinigung, III  (1892-1893) , 107-566. 

Touches frequently upon the history of analytic geometry and is an important sec­
ondary source. 

Brunschvicg, Lb>n, Les ltapes de la philosophie mathlmatique, Paris, 1912. 
Chap. VII is an analysis of the geometry of Descartes, but it should be read with 
care because it attributes to Descartes a degree of arithmetization which is absent 
from La ''°""'rie. 

Cajori, Florian, "Generalizations in geometry as seen in the history of de-
velopable surfaces," American Mathematical Monthly, XXXVI (1929), 
431-437. 

Especially on the contributions of Euler and Monge. 
Cajori, Florian, A history of mathematics. 2nd ed., New York, 1931 .  

Noteworthy for a summary of contributions to analytic geometry in th e  nineteenth 
century (pp. 309--328). . 

Cajori, Florian, "Origins of fourth dimension concepts," American Mathe­
matical Monthly, XXXI I I  ( 1926) , 397-406. 

Both analytic and synthetic aspects are included. 
Cantor, Moritz, Vorlesungen Uber Geschichte der Mathematik. 4 vols. ,  Leipzig, 

1900-1908. 
The most extensive history of mathematics before 1800. 

Carrus, S. , see Fano, G. 
Chasles, Michel, Aperfu historique sur l'origine et le dheloppement des mlt'hodes 

en glomltrie. 2nd ed. ,  Paris, 1875. 
A valuable, although somewhat outdated, work by a great geometer. Contains too 
strong a claim for Descartes as sole inventor (pp. 94-95). 

Chasles, Michel, "Sur la doctrine des porismes d'Euclide," Correspondanu 
mathhnatique et physique, X (new series IV, 1838) , 1-20. 

Sees, in the porisms "v&itablement une Gmn�trie analytique. " 
Coddington, Emily, A brief account of the historical deoelopment of pseudo­

spherical surfaces from 1827-1887. Lancaster, 1905. 
Mostly on diirerential geometry, but especially useful for the bibliography on sur­
faces . 
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Coolidge, J. L., A history of the conic sections and quadric surfaces. Oxford, 
1945. 

A valuable and attractive work. Includes analytic treatment from ancient to modem times. 
Coolidge, J. L. ,  A history of geometrical methods. Oxford, 1940. 

A worthy successor to Chasles' A f>er'1-'. Analytic geometry is not always separately 
handled, but the treatment is admirable. 

Coolidge, J. L., "The beginnings of analytic geometry in three dimensions, " 
American Mathematical Monthly, LV (1948) , 76-86. 

Excellent summary from Plato to Euler. 
Coolidge, J. L . ,  "The origin of analytic geometry," Osiris, I (1936), 231-250, 

Defends the thesis that analytic geometry was an invention of the Greeks, perhaps 
of Menaechmus. This appears also as a part of his His"1r' of geometrical methods. 

Coolidge, J. L., "The origin of polar coordinates," American Mathemati.usl 
Monthly, LIX (1952) , 7&-85. 

Attention is called to the work of Cavalieri. 
Cournot, A. A., De l'origine et des limites de la co"espondance entre l 'algebre et 

la glomltrie. Paris, 1847. 
More philosophical than historical, but contains some relevant material. 

Darboux, Gaston, Principes de gl"1Mtrie analytique. Paris, 1917. 
Contains numerous historical allusions. 

Darboux, Gaston, "A survey of the development of geometric methods," 
translated by H. D. Thompson, Bulletin, American Mathematical Society, 
XI (1905) ,  517-543. 

A good summary of geometrical work from Lagrange to Chastes, but leans heavily 
on the account by Fano, q. v. 

Dehn, Max, see Schoenfiies. 
Delambre, J. B. ,  Rapport historique sur Tes progres des sciences mathlmatiques 

depuis 1789 et sur leur ltat actuel. Paris, 1810. 
First-hand information on the figures who infiuenced the development of analytic 
geometry during a crucial period, notably Monge and Lacroix. 

DeVries, Hk. ,  "How analytic geometry became a science,"  Scripta Mathe­
matica, XIV (1948) , 5-15 . 

One of the most important accounts of the history of analytic geometry during the 
early nineteenth century. 

Dingeldey, F., and E. Fabry, "Coniques" and "Sys�mes de coniques," En.­
cyclopMie des sciences mathhnatiques, III, 17 and 18, 1-256. 

These two articles arc full of historical material. There are close to a thousand foot­
notes with innumerable bibliographic references. 

Duhem, Pierre, Eludes sur Llonard de Vinci. 3 vols., Paris, 1906-1913. 
Extensive account of the medieval precursors of Descartes. 

Duhem, Pierre, "Oresme," Catholic Encyclopedia, XI ( 1911) ,  296-297. 
Holds that Oresme "forestalls Descartes in the invention of analytic geometry." 

Dupin, Charles, Essai historique sur les services et les lravaux scienlifal.ues de 
Gaspard Monge. Paris, 1819. 

Generally good account, but inadequate o n  his place in analytic geometry. 
Enestrom, Gustav, "Auf welche Weise hat Viete die analytische Geometrie 

vorbereitet?," Bibliotheca Mathematica (3) , XIV (1914) , 354. 
Objects to the claim that Viete gave the equation of the tine. 

Enestrom, Gustav, "Die Briefwechsel zwischen Leonhard Euler and Johann 
I. Bernoulli," Bibliotheca Mathematica (3) , IV (1903) , 344-388. 

Includes, on pp. 354f, correspondence on space coordinates. 
Enestrom, Gustav, "Kleine Mitteilungen," Bibliotheca Mathematica (3) , XI 

(191 1 ) ,  241-243. 
Indicates that the object of Descartes' Geometry, the geometric construction of the 
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solutions of algebraic equations, makes any dependence upon the work of Oresme 
appear improbable. 

Enestrom, Gustav, "Ueber das angebliche Vorkommen krummliniger Koor­
dinaten bei Leibniz," Bibliotheca Mathmlatica (3) ,  X (1909-1910) ,  43--47. 

Points out that the history of curvilinear coordinates really begins with Gauss. 
Enestrom, Gustav, "Ueber die Bedeutung von Quellenstudien bei mathe­

matischer Geschichtsschreibung," Bibliotheca Mathmlatica (3) , XII {191 1-
1912) , 1-20. 

Shows how errors are spread by failure to examine sources, citing cases from Vi�e 
and Descartes. 

Enestrom, Gustav, "Ueber die verschiedenen Auflagen und Uebersetzungen 
von Descartes' 'Gb>metrie' ,"  Bibliotheca Mathmlatica (3) , IV (1903) , 21 1 .  

Lists about a dozen editions. 
Ernst, Wilhelm, Julius Placker. Bonn, 1933. 

A well-rounded account of hls life and work, including his analytic geometry. 
Fabry, E.,  see Dingeldey, F. 
Fano, G., and S. Carrus, "Expo� parall�le du developpement de la gb>m�trie 

synthetique et de la gb>metrie analytique pendant le 19i�me si�cle, " Ency­
clop,die des sciences mathlmatiques, III, 3, 185-259. 

A good comparative study, including the work of Monge, Gergonne, Lam�. Bobillier, 
. M6bius, Pldcker, and others. 

Forsyth, A. R., "Obituary notices," Proceedings of the London Royal SocUty, 
LVIII (1895) , i-xliii. 

Excellent summary of the life and work of Cayley, with numerous references. 

Funkhouser, H. G.,  "Historical development of the graphical representation of 
statistical data," Osiris, III (1937) , 269-404. 

Includes reference to the work of Oresme. See also his "Note on a tenth century 
graph," Osiris, I ( 1936), 260-262. 

Gelcich, E.,  "Eine Studie iiber die Entdeckung der analytischen Geometrie 
mit Beriicksichtigung eines Werkes des Marino Ghetaldi Patrizier Ragusaer 
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Gomes Teixeira, F.,  Traill des courbes sp,ciales remarquables planes et gauehes 
Transl. from the Spanish, 2 vols.,  Coimbre, 1908-1909. 
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Philosophical account of the elementary principles of Fermat and Descartes . 

Grevy, A., see Staude, 0. 
Giinther, Sigismund, "Le origini ed i gradi di sviluppo del principio delle co­

ordinate," Bullettino di Bibliografia e di Storia delle Sciense Mathmlatiche e, 
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A technical analysis, with frequent reference to the Greek text. 
Hill, J. E.,  "Bibliography of surfaces and twisted curves, "  Bulletin, American 

Mat'hematical Society, III { 1896-1 897) , 133-146. 
Includes reference to some of the work of the 18th century. 
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Emphasizes that the works of Descartes and Fermat were a natural continuation 
of the works of antiquity. 

Milhaud, Gaston, Descartes samnt. Paris, 1921 .  
Critical analysis of the development of the scientific and mathematical thought of 
Descartes. 

Milne, J. ]. ,  An elemmtary treatise on cross-ratio geometry flliJh historical notes. 
Cambridge, 191 1 .  See especially pp. 146-149 on the problem of Pappus. 

Milne, J. ]. ,  "Note on Cartesian geometry," Mathmiatical Gaulle, XIV (1928-
1929) , 413-414. 

On Descartes and the problem of Pappus. 
Montucla, Etienne, Histoi,re des mathbnatiq_ues. 2nd ed. ,  4 vols., Paris, 1799-

1802. 
Old but still somewhat useful. Too close in time to Descartes for proper perspective. 

Morley, F. V. ,  "Thomas Hariot," Scientific Monthly, XIV (1922) , 6(}-66. 
Claims analytic geometry for Harlot, but thls has been refuted. See Smith, op. cit., 
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Abhandlungen sur Gescltichte der Mathematischen Wissenschaften, XV (1902) , 
1-166. 
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time. 
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This is one of the most important histories of mathematics. The second volume 
of part II includes a valuable history of plane analytic geometry (pp. 1-46), of solid 
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Emphasizes that the coordinate concept of Oresme is different from that of Des­
cartes. 

Wieleitner, Heinrich, "Zur Entstehung der analytischen Raumgeometrie, ' '  
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ticle is reprinted under the same title in W. Dieck, Mathematisclaes Luebucl (5 vols., 
Sterluade, 1�1921), IV, 60-71.  

Wieleitner, Heinrich, "Zur Friihgeschichte der Riume von mehr als drei Di­
mensionen , ' ' Isis, VII (1925) , 486-489. 

Especially good for the ideas of Oresme. 
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