

BIOMARKERS AND TOXICITY MECHANISMS 09 – Mechanisms Nuclear Receptors

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Content of the presentation - 2023

- Section 1 Slides in the beginning (No. 1-36) were discussed during the lecture to illustrate
 - Mechanism of action of NRs
 - Effects of endocrine disrupters on various levels of hormone action (synthesis, transport, action at receptor, metabolism/clearance)
 - Examples of the most studied and well recognized outcomes related to ED – i.e. feminization (caused by estrogens and antiandrogens)
- Section 2 Other slides
 - Not presented during the lecture but kept for illustration of other examples

SECTION 1 SLIDES PRESENTED & DISCUSSED

Various signalling types ... now focus on nuclear receptors

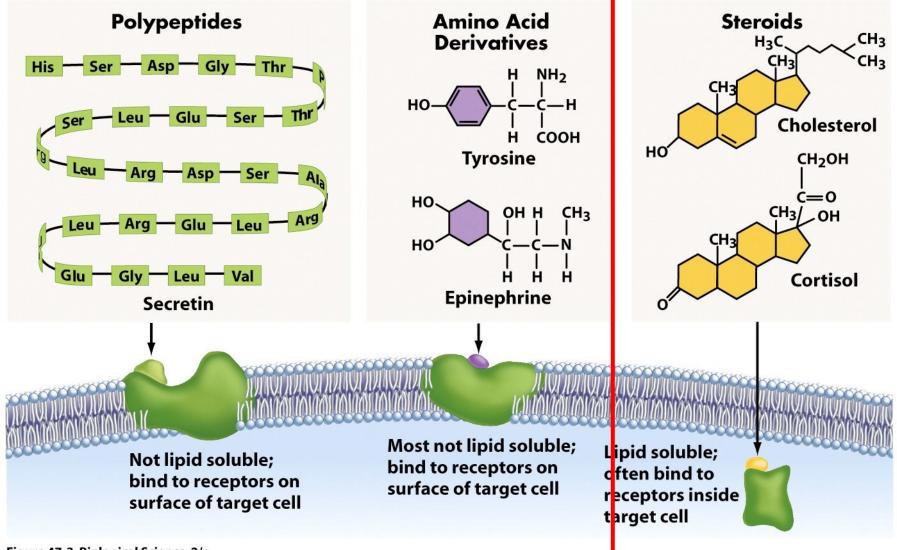


Figure 47-3 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

NUCLEAR (Intracellular) RECEPTORS in summary

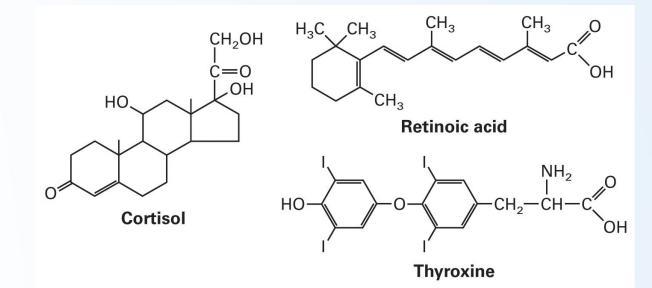
- Important physiological functions, and
- Important roles in pathologies and chemical toxicity
 - Endocrine disruption
 - Dioxin-like toxicity,etc.
- All NRs share similar structure and mechanisms of action
 - Act as direct transcription factors on DNA
- Natural ligands are small lipophilic hormones (steroids, thyroids, retinoids)
 - Role in toxicity NR are modulated (activated/inhibited) by structurally close xenobiotics

Natural ligands of NR

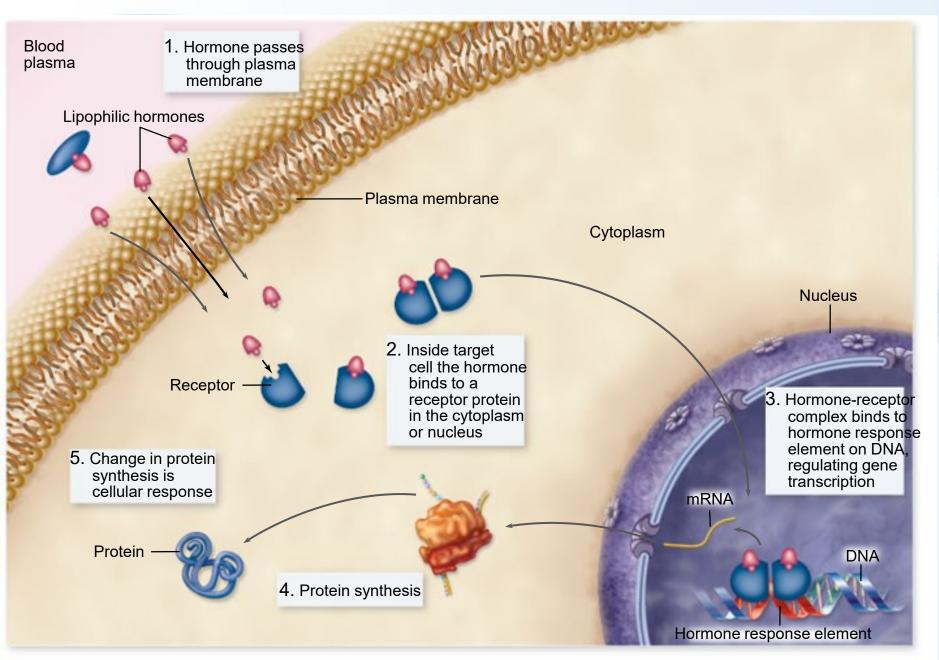
Small, lipid-soluble molecules

 Diffuse through plasma and nuclear membranes and interact directly with the transcription factors they control.

- STEROID HORMONES:

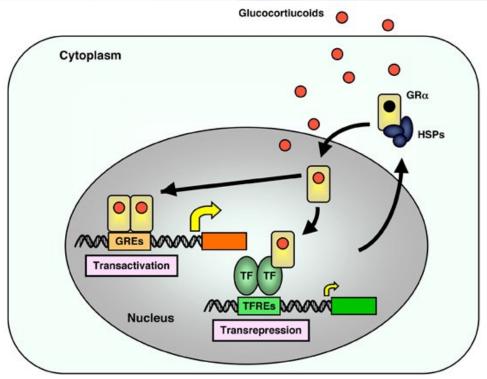

- sex steroids (estrogen, progesterone, testosterone)
- corticosteroids (glucocorticoids and mineralcorticoids)

OTHER HORMONES and ligands

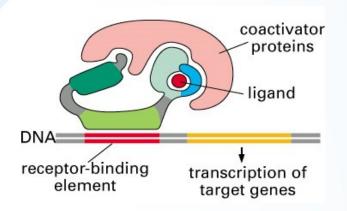

Thyroid hormone, vitamin D3, retinoic acid, ligands of AhR

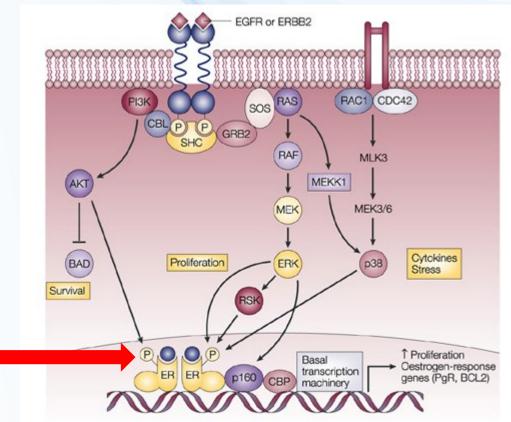
- Small molecules - gases

e.g. NO (signaling for immune reactions)



NR signalling is complex ... examples of complexity (1)

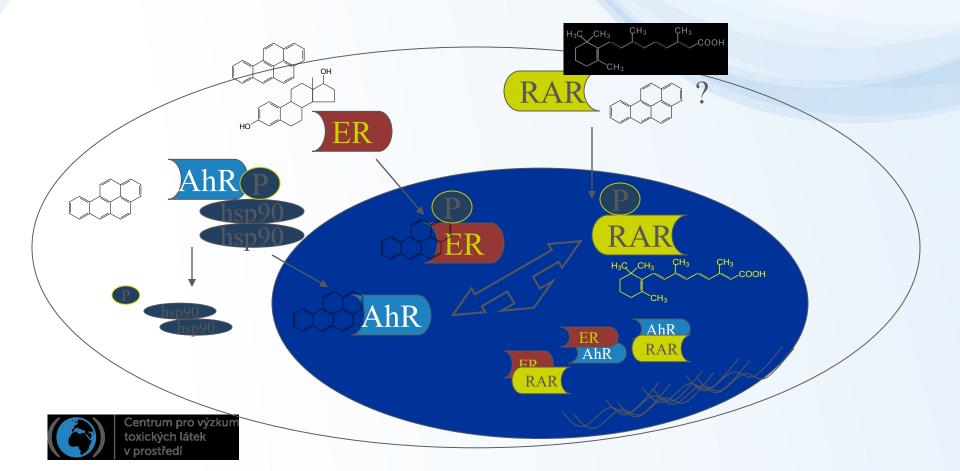

- 1. Receptor activation is dependent not only on "ligand" (**glucocorticoid**) but also on "inhibitor" protein (Heat Shock Proteints - **HSPs**)
- 2. Dimerization (after the activation) is often needed for proper action (binding to **GREs** *glucocorticoid responsive elements*)
- 3. Receptor with ligand can activate its own targets (GREs) as well as "repress" other binding sites (TFREs)



NR signalling is complex ... examples of complexity 2

4. **"Co-activator" proteins** are needed for proper action on DNA

5. Nuclear receptor action are (also) controlled - stimulated / suppressed by other signalling pathways (e.g. phosphorylation by protein kinases)



NR signalling is complex ... examples of complexity 3

6. Interaction (crosstalk) among various NRs

"antiestrogenicity" of AhR ligands
fast clearance of retinoids after AhR activation
Immunosuprresions after ER activations

NR signalling is complex ... examples of complexity 4

- Regulation of transcription activity mechanisms may vary
 - Steroid receptors often dimerize with a partner to activate gene transcription
 - Receptors for vitamin D, retinoic acid and thyroid hormone form heterodimers and then bind to responsive elements on DNA
 - Second component of the heterodimer is RXR monomer (i.e, RXR-RAR; RXR-VDR)

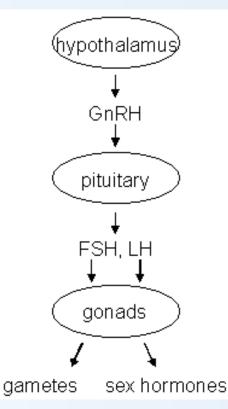
NR dimers

- <u>Heterodimeric receptors</u> exclusively nuclear;
 - without ligand represses transcription (by binding to their cognate sites in DNA)
- Homodimeric receptors
 - mostly cytoplasmic without ligands → hormone binding leads to nuclear translocation of receptors

Why are NR important?

→ common mediators of Endocrine Disruption

Endocrine disruption


 Interference of xenobiotics with normal functioning of hormonal system

Known consequences

- → Disruption of homeostasis, reproduction, development, and/or behavior, and all other hormone-controlled processes:
 - Shift in sex ratio, defective sexual development
 - Low fecundity/fertility
 - Hypo-immunity, carcinogenesis
 - Malformations
 - etc.

Toxicants interact with hormonal system at different levels

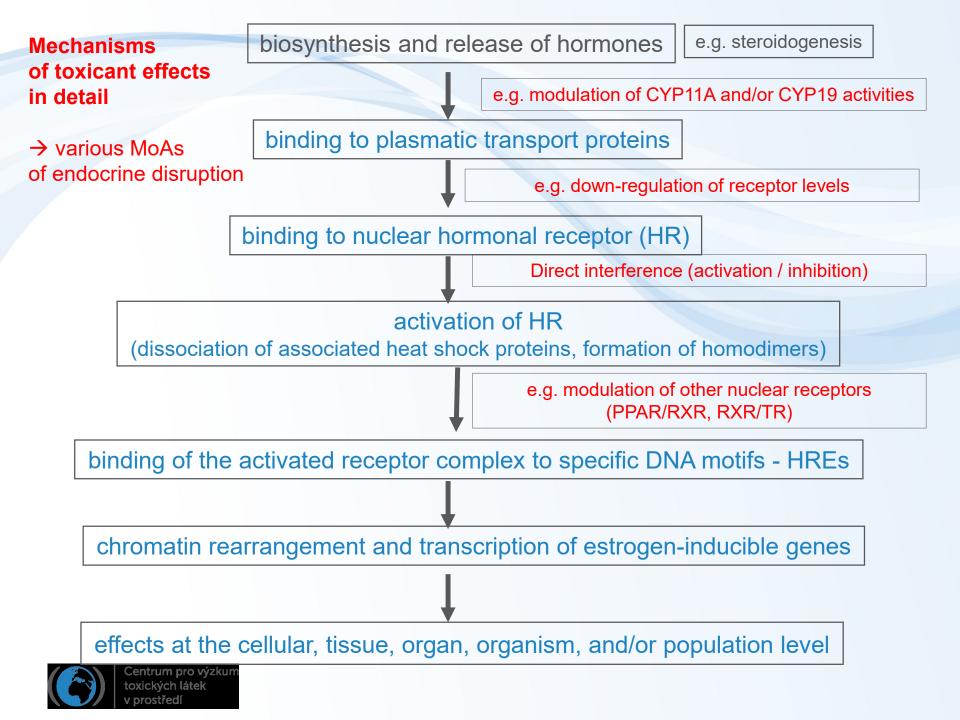
Transport

Interaction with receptors

Metabolization

Consequences (both negative!)

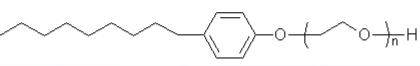
Synthesis

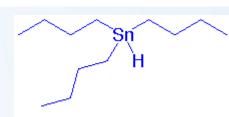

Possible mechanisms of endocrine disruption

- Disruption of the "master" hormones (FSH/LH)
- Decrease of HR cellular levels
- Nonphysiological activation of hormone receptor (HR)
- Binding to HR without activation
- Changes in hormone metabolism (clearance)

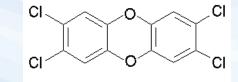
Fate and action of HORMONES activating NRs

- Circulation in the blood bound to transport proteins
- Dissociation from carrier at target cells
- Passing through cell membrane
- **Binding** to an intracellular receptor (either in the cytoplasm or the nucleus)
- Hormone-receptor complex binds to hormone
 responsive elements in DNA
 - \rightarrow Regulation of gene expression
- → De-regulation at any level described above = TOXICITY




Endocrine disrupters in the environment? 2,3,7,8-TCDD

EDCs...

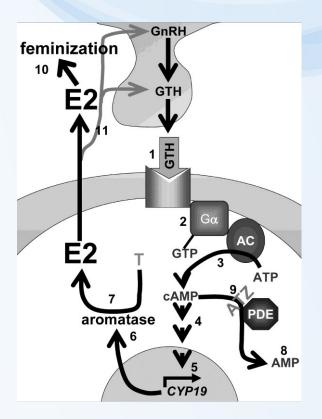

- Persistent Organic Compounds (POPs and their metabolites)
- steroid hormones and their derivatives from contraception pills
- alkylphenols
- organometallics (butyltins) alkylphenols
- pharmaceuticals
- Pesticides
- + number of unknowns ...

Tributyl-tin

.OH

Н

Ē

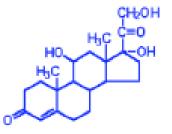

ethinylestradiol

Examples – modulations of (synthetic) enzyme activities

Phytoestrogens promote synthesis of estrogens → feminization

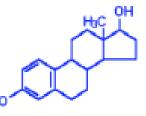
Centrum pro výzkum toxických látek v prostředí Crosstalk with other signalling pathways (such as **cAMP**), which can be target to toxicants

STEROIDs - most studied ligands detailed view

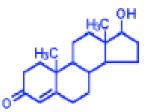


Steroid hormones - a review

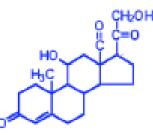
Steroid hormones are derived from cholesterol metabolism in mitochondria


Cortisol

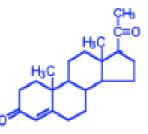
The dominant glucocorticoid in humans. Synthesized from progesterone in the zona fasciculata of the adrenal cortex. Involved in stress adaptation, elevates blood pressure and Na* uptake. Immunomodulation.


Estradiol

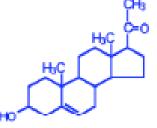
An estrogen, principal female sex hormone, produced in the ovary, responsible for secondary female sex characteristics. After menopause estrogen is H produced from testosterone in the adrenal glands.

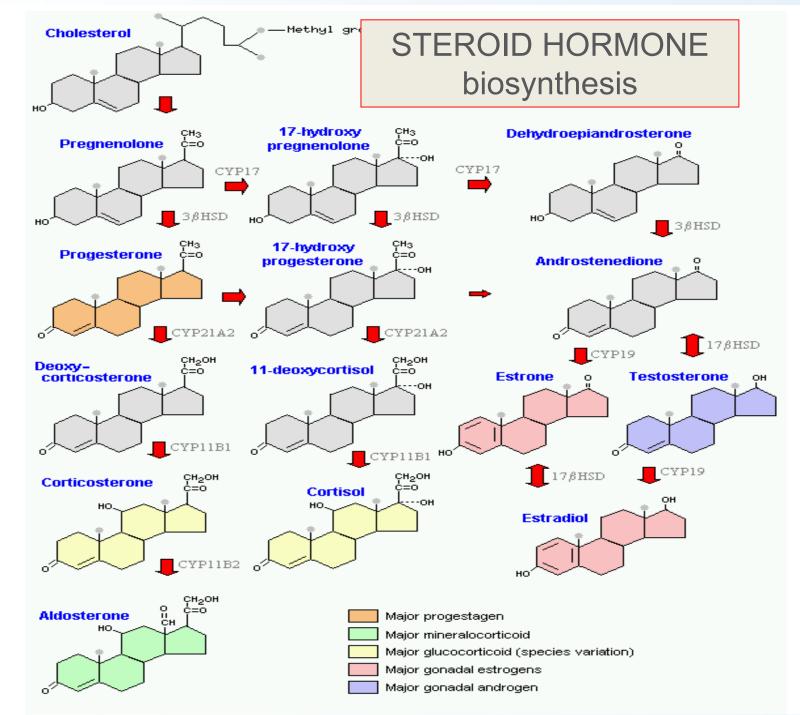

Testosterone

An androgen, male sex hormone synthesized in the testes from progesterone. Responsible for secondary male sex characteristics.

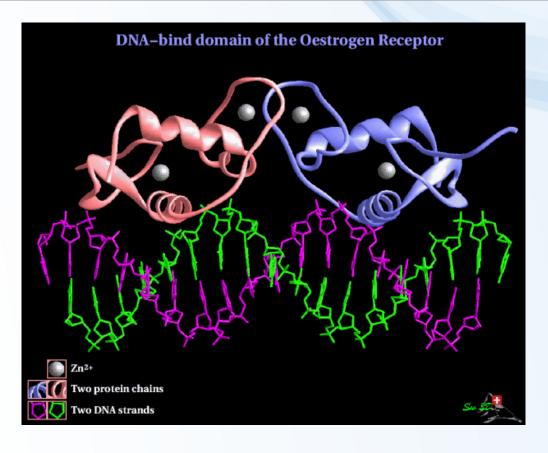

Aldosterone

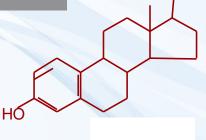
Principal mineralocorticoid. Produced from progesterone in the zona glomerulosa of adrenal cortex, raises blood pressure and fluid volume, increases Na* uptake.

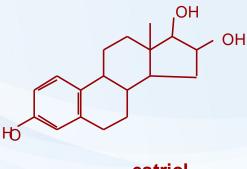

Progesterone


Produced from pregnenolone and secreted from the corpus luteum. Responsible for changes associated with luteral phase of the menstrual cycle, differentiation factor for mammary glands

Pregnenolone


Made directly from cholesterol, the precusor molecule for all C₁₈, C₁₉ and C₂₁ steroids


ESTROGEN RECEPTOR – ER the most studied target of EDCs



Centrum pro výzkum toxických látek v prostředí

OH

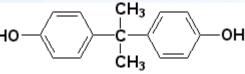
• Synthesis in ovaries

17-β-estradiol

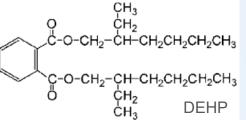
estriol

Functions

- key roles in female hormone regulation and signalling
- responsible for metabolic, behavioural and morphologic changes occurring during stages of reproduction
- involved in the growth, development and homeostasis in a number of tissues
- control the bone formation, regulation of homeostasis, cardiovascular system and behaviour
- regulate production, transport and concentration of testicular liquid and anabolic activity of androgens in males
- DISRUPTION OF ESTROGEN SIGNALLING
 → many documented effects in aquatic biota & laboratory organisms



Environmental estrogens (xenoestrogens, exoestrogens)


>> Highly diverse group of substances

>> Do not necessarily share structural similarity to the prototypical estrogen 17β-estradiol
>> may act as AGONISTS and/or ANTAGONISTS (depending on situation and concentration!)

Natural products genistein naringenin coumestrol zearalenone HD OH HD COH COH COH COH COH COH COH

bisphenol A

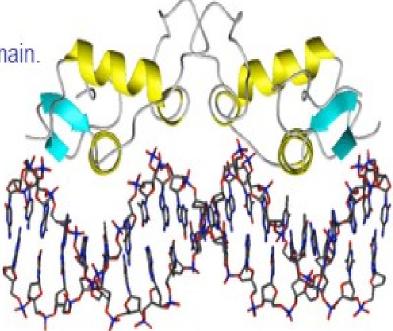
Pharmaceuticals

Ethinyl estradiol Diethylstilbestrol gestodene norgestrel

Various POPs DDT kepone PCBs/OH-PCBs PAHs and dioxins

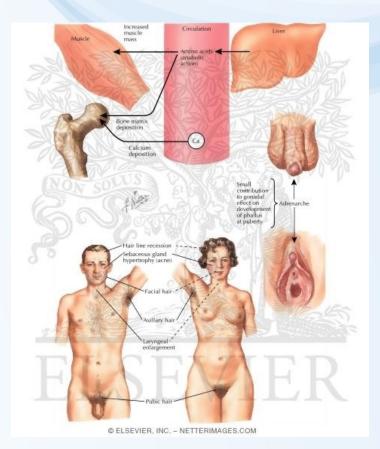
Exoestrogens - Relative Potencies to bind to ERa (REPs)

REP – a measure of toxic potency of a compound (similar also at other NRs)


Chemical group	Substance	REP
Endogenous hormones	Estradiol	1
	Estriol	6,3.10 ⁻³
	Testosteron	9,6.10 ⁻⁶
Phytoestrogens	Cuomestrol	6,8.10 ⁻³
	Genistein	4,9.10 ⁻⁴
Pesticides	o,p´-DDT	1,1.10 ⁻⁶
PCBs	2,4,6-trichlorbiphenyl-4'-ol	1.10 ⁻²
	2,5-dichlorobiphenyl-4'-ol	6,2.10 ⁻³
	3,3',5,5'tetrachlorobiphenyl-4,4'-diol	1,6.10 ⁻⁴
alkylphenoles	4-tert-oktylphenol	3,6.10 ⁻⁶
phthalates	butylbenzylphthalate	4.10 ⁻⁶

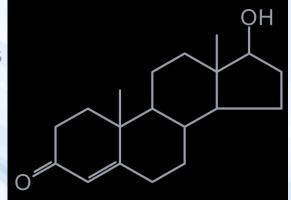
REP (RElative Potencies) of selected compounds related to 17- β -estradiol derived from reporter yeast assay

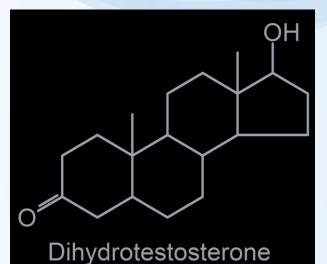
ANDROGEN RECEPTOR (AR) role in toxicity confirmed ... but less explored than ER


Androgen receptor DNA binding domain.

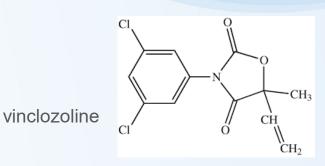
Androgens

- Role of androgens in males is similar to that of estrogens in females
 - development of male sexual characteristics
 - stimulating protein synthesis, growth of bones
 - cell differenciation, spermatogenesis
 - male type of behaviour




Androgens – endogenous ligands

- Endogenous ligands androgen hormones
 - Two key androgens
 - testosterone (T)
 - dihydrotestosterone (DHT)
 - <u>Other androgens</u> androstanediol, dehydroepiandrosterone, androstenedione
- T: synthesis in testis (Leydig cells)
 - in lesser extent in adrenals
- DHT: Formed extratesticulary from T
 - In several tissues (seminal vesicles, prostate, skin)
 higher affinity to androgen receptor than T
 - Daily production 5-10% of testosterone

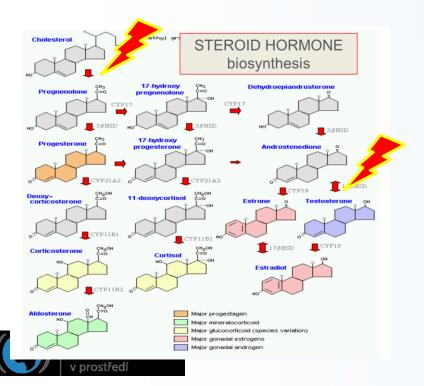

Testosterone

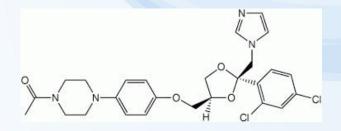
Several mechanisms how "xenoandrogens" disrupt natural androgen signalling and action

1) Binding to AR

- Mostly competitive inhibition (xenobiotics mostly do not activate AR-dependent transcription)
- Only few compounds able to activate AR in the absence of androgen hormones but they are anti-androgenic in the presence of strong androgens like T or DHT
 - metabolites of fungicide vinclozoline
 - some PAHs

2) FSH/LH (gonadotropins) signalling disruption – less explored

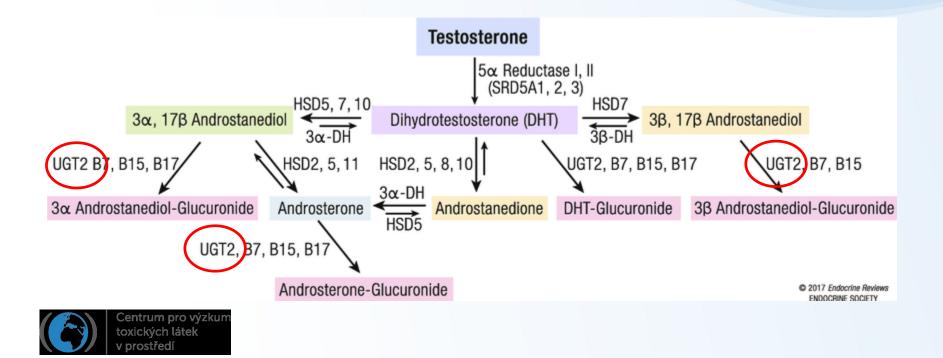

- FSH/LH expression regulation via negative feedback by testosterone
- Suppression → alterations of spermatogenesis



Mechanisms of androgen signalling disruption

3) Alterations of de novo testosterone synthesis

- Inhibition of P450scc needed for side chain cleavage of cholesterol or inhibitions of 17-beta-hydroxylase and other CYPs
 - fungicide ketoconazol



Mechanisms of androgen signalling disruption

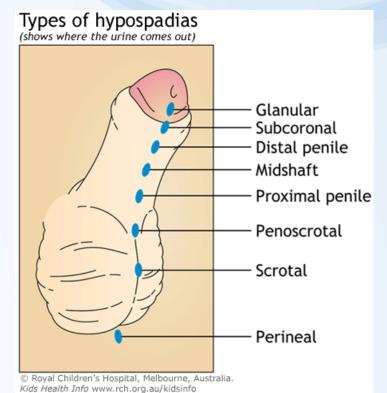
4) Testosterone metabolic clearance

- Chemicals inducing detoxification enzymes for Testosteron most relevanat are UDP-glucuronosyltransferases (UGTs)
 - Documented e.g. for pesticides endosulfan, mirex, o-p'-DDT
 - (degradation → lower T concentrations → anti-androgenicity)

Effects of male exposures to **antiandrogens**

- Exposure during prenatal development:
 - malformations of the reproductive tract
 - reduced anogenital distance
 - **hypospadias** (abnormal position of the urethral opening on the penis) •
 - vagina development
 - undescendent ectopic testes
 - atrophy of seminal vesicles and prostate gland

Exposure in prepubertal age:

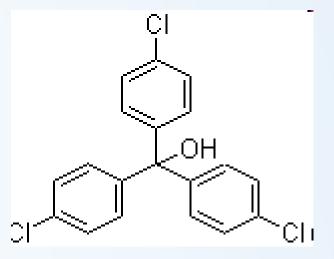

- delayed puberty
- reduced seminal vesicles
- reduced prostate

Exposure in adult age:

- oligospermia
- azoospermia
- loss of sexual libido

Centrum pro výzkum toxických látek prostředí

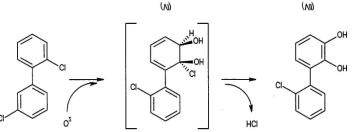
AR-binding – effective concentrations Reference: active ligand dehydrotestosteron DHT: EC50 ~ 0.1 μM


Compound	IC_{50} (μ M)
Benz[a]anthracene	3.2
Benzo[a]pyrene	3.9
Dimethylbenz[a]anthracene	10.4
Chrysene	10.3
Dibenzo[a,h]anthracene	activation in range 0.1-10µM
Bisphenol A	5
vinclozolin metabolites	9.7
hydroxyflutamide	5
Aroclor typical values	0.25-1.11
Individual PCBs typical values	64 - 87
tris-(4-chlorophenyl)-methanol	0.2

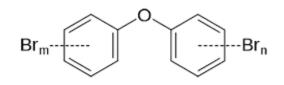
Antiandrogenic compound

tris-(4-chlorophenyl)-methanol

- Ubiquitous contaminant of uncertain origin
- Probable metabolite of DDT-mixtures
- Levels in human blood serum cca. 50nM (antiAR effective EC50 – cca. 200nM)



Disruption of transport of thyroid hormones in blood


- SPECIFIC TRANSPORTERS in blood
 - regulating free T4 and T3 levels
 - 3 types :
 - Thyroid-binding prealbunin (transthyretin) (20-25%)
 - Albumin (5-10%)
 - Thyroid binding globulin (TBP, 75%)
- NUMBER OF EDCs → act on transport proteins
 - OH-PCBs, brominated and chlorinated flame retardal and DDT, dieldrin
 - **OH-PCBs** equal affinity to **TBP** as T4 and T3 (!!!)
- Increased levels of "free T4" in blood
 - negative feedback to TSH release
 - \rightarrow increased depletion
 - ightarrow increased weight, changes in thyroid gland
 - Documented after exposures to POPs in vertebrates

Polybrominated diphenyl ethers (PBDEs) – flame retardants

Disruption of retinoid signalling by xenobiotics

- Polluted areas
 - mostly decrease of retinoid levels
 - Documented in aquatic birds, mammals and fish
- Disruption of retinoid transport: PCBs
- Effects on retinoid receptors:
 - RAR, RXR binding and/or transactivation
 - pesticides (chlordane, dieldrin, methoprene, tributyltin...)
 - Effect on ATRA mediated response TCDD, PAHs
- Disruption of retinoid metabolism:
 - PCDD/Fs, PAHs, PCBs, pesticides
 - changes of serum concentrations of retinol and RA
 - mobilization of hepatic storage forms

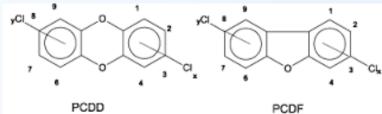
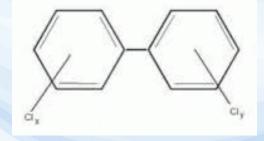
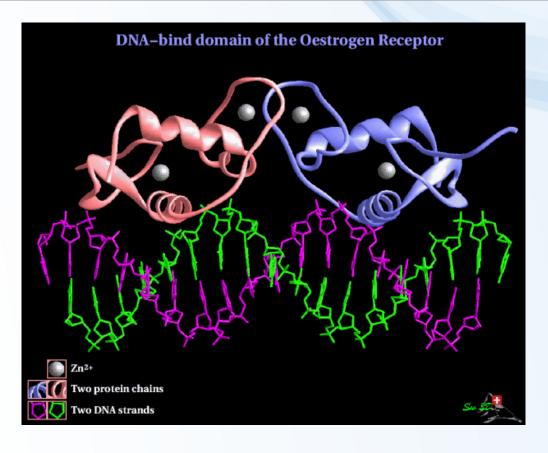
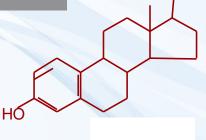
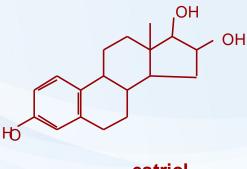



Figure 1. General molecular structure of polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurans (PCDF)



SECTION 2 OTHER SLIDES (for records only)


ESTROGEN RECEPTOR – ER the most studied target of EDCs



Centrum pro výzkum toxických látek v prostředí

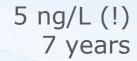
OH

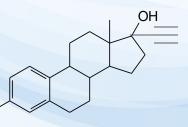
• Synthesis in ovaries

17-β-estradiol

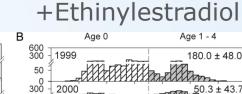
estriol

Functions


- key roles in female hormone regulation and signalling
- responsible for metabolic, behavioural and morphologic changes occurring during stages of reproduction
- involved in the growth, development and homeostasis in a number of tissues
- control the bone formation, regulation of homeostasis, cardiovascular system and behaviour
- regulate production, transport and concentration of testicular liquid and anabolic activity of androgens in males
- DISRUPTION OF ESTROGEN SIGNALLING
 → many documented effects in aquatic biota & laboratory organisms



Kidd, K.A. et al. 2007. <u>Collapse of a fish population</u> following exposure to <u>a synthetic estrogen</u>. *Proceedings of the National Academy of Sciences* 104(21):8897-8901

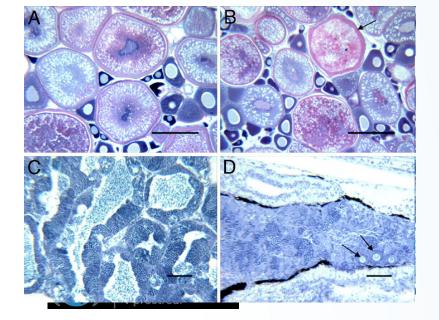


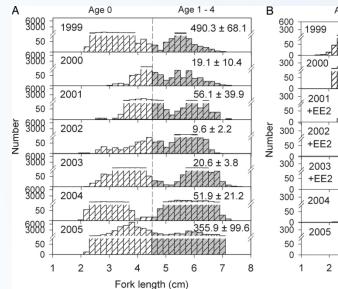
Controls

HC

 117.7 ± 20.0

 0.7 ± 0.2

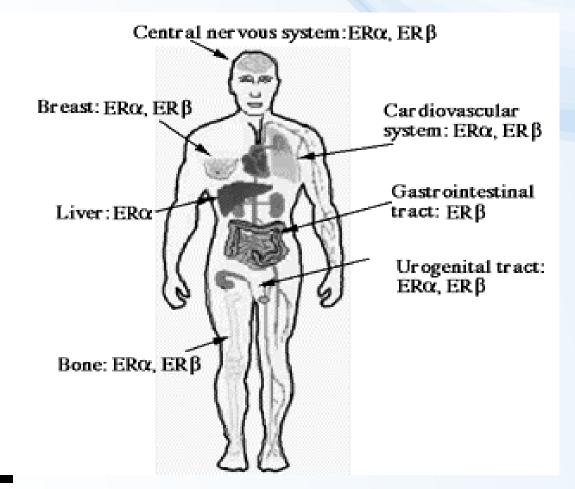

 2.6 ± 0.8


 0.1 ± 0.05

 0.1 ± 0.01

llh-

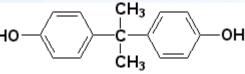
Fork Length (cm)



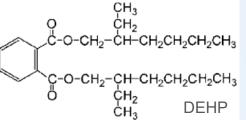
ESTROGEN RECEPTORS - subtypes

ER- α (in breast, ovary, brain, liver, bone and cardiovascular system, adrenals, testis and urogenital tract) ER- β (in kidneys, prostate and gastrointestinal tract)

(ER- γ in fish)



Environmental estrogens (xenoestrogens, exoestrogens)


>> Highly diverse group of substances

>> Do not necessarily share structural similarity to the prototypical estrogen 17β-estradiol
>> may act as AGONISTS and/or ANTAGONISTS (depending on situation and concentration!)

Natural products genistein naringenin coumestrol zearalenone HD OH HD COH COH COH COH COH COH COH

bisphenol A

Pharmaceuticals

Ethinyl estradiol Diethylstilbestrol gestodene norgestrel

Various POPs DDT kepone PCBs/OH-PCBs PAHs and dioxins

Exoestrogens - Relative Potencies to bind to ERa (REPs)

REP – a measure of toxic potency of a compound (similar also at other NRs)

Chemical group	Substance	REP	
	Estradiol	1	
Endogenous hormones	Estriol	6,3.10 ⁻³	
	Testosteron	9,6.10 ⁻⁶	
Phytoestrogens	Cuomestrol	6,8.10-3	
	Genistein	4,9.10 ⁻⁴	
Pesticides	o,p´-DDT	1,1.10 ⁻⁶	
PCBs	2,4,6-trichlorbiphenyl-4'-ol	1.10 ⁻²	
	2,5-dichlorobiphenyl-4'-ol	6,2.10 ⁻³	
	3,3',5,5'tetrachlorobiphenyl-4,4'-diol	1,6.10 ⁻⁴	
alkylphenoles	4-tert-oktylphenol	3,6.10-6	
phthalates	butylbenzylphthalate	4.10 ⁻⁶	

REP (RElative Potencies) of selected compounds related to 17- β -estradiol derived from reporter yeast assay

How to assess ESTROGENICITY?

Number of in vivo and in vitro methods available

Assay (ref.)	Exposure type	Detects ER-dependent agents?	Detects non- ER-dependent agents?	Distinguishes agonist versus antagonist?	Pharmaeokinetic and metabolism included?
Receptor-based assays					
Receptor binding assay (27)	Cell lysate	Yes	No	No	No
Receptor activation assay (32-34)	Cells in vitro	Yes	No	Yes*	No
In vitro estrogen-regulated response assays				• •	
MCF-7 cell proliferation assay (41)	Cells in vitro	Yes	Limited	Yes"	No
Induction assays (46,48)	Ceils in vitro	Yes	Limited	Yes*	No
DNA synthesis assays (47)	Cells in vitro	Yes	Limited	Yes"	No
In vivo estrogen-regulated response assays					
Uterotrophic response assay (49)	Whole animal	Yes	Limited	Yes*	Yes
Vaginal cornification assay (50)	Whole animal	Yes	Limited	Yes"	Yes
Vaginal opening (11)	Whole animal	Yes	Limited	Yes*	Yes
Uterine fluid imbibition (11)	Whole animal	Yes	Limited	Yes*	Yes
Uterine epithelial hypertrophy (51)	Whole animal	Yes	Limited	Yes ^a	Yes
Inhibition of steroid synthesis assays					
In vitro ovarian steroid assay (55)	Minced tissue	No	Yes	Yes	No
Ex vivo ovarian steroid assay (56)	Whole animal	No	Yes	Yes	Yes

"Detection of antagonists requires use of additional groups with test material + estradiol,

Janošek, J., Hilscherová, K., Bláha, L., and Holoubek, I. (2006). Environmental xenobiotics and nuclear receptors-Interactions, effects and in vitro assessment. *Toxicology in Vitro* 20, 18-37.

IN VIVO ASSAYS FOR ESTROGENICITY

- uterotropic assay
- vaginal cornification assay

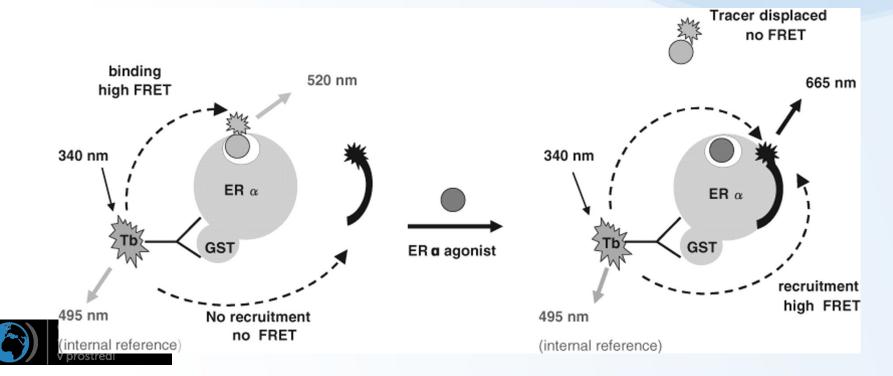
Estrogen exposure

 production of estrogen-inducible proteins (e.g. vitellogenin and zona radiata protein)

→ also discussed at "biomarkers" part

- standard (in vivo) test procedures for reproductive and developmental toxicity
 - using mice, rats, fish, amphibians etc.

Centrum pro výzkum oxických látek / prostředí

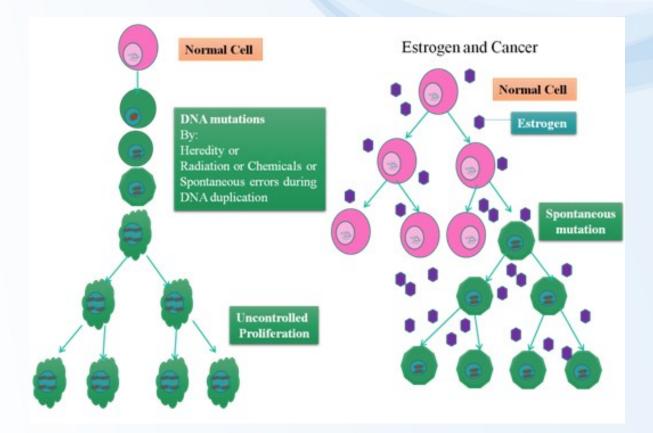

In vitro assays for estrogenicity

Level 1 – interaction of toxicant with the protein (receptor)

INTERACTION (BINDING) to the receptor

competitive ligand binding assays

- Various variants (e.g. displacement of radioactive substrate, fluorescence resonance energy transfer (*FRET*) techniques etc.
- → information only about "binding potency" but the effect remains unknown (? Activation / suppression / no effect ?)


In vitro assays for estrogenicity

Level 2 - effects at cellular level

 \rightarrow interference with receptor biological activity

Cell proliferation assays

Estrogens induce proliferation

In vitro assays for estrogenicity

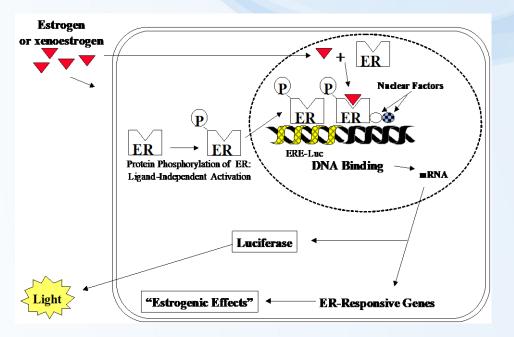
Level 2 - effects at cellular level

 \rightarrow interference with receptor biological activity

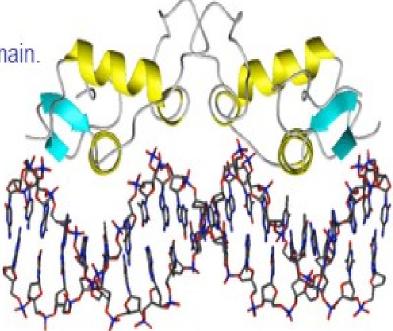
- Endogenous protein expression (or enzyme activity) assays
 - reporter gene assays

Cell assays in vitro

•Cells (e.g. breast carcinoma) naturally carrying functional ER.

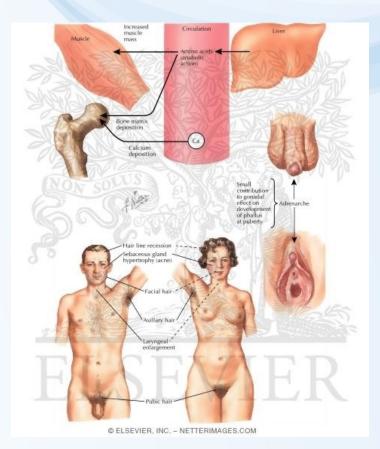

•Genetic modification - stable transfection with firefly **luciferase gene**: under the control of ER

•Estrogens in media \rightarrow light induction



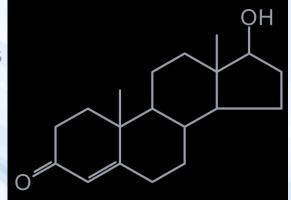
Centrum pro výzkum toxických látek v prostředí

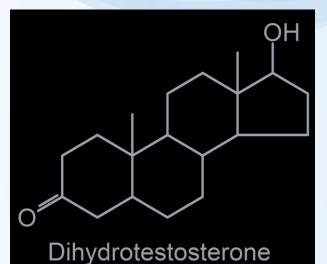
ANDROGEN RECEPTOR (AR) role in toxicity confirmed ... but less explored than ER


Androgen receptor DNA binding domain.

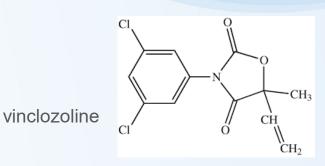
Androgens

- Role of androgens in males is similar to that of estrogens in females
 - development of male sexual characteristics
 - stimulating protein synthesis, growth of bones
 - cell differenciation, spermatogenesis
 - male type of behaviour




Androgens – endogenous ligands

- Endogenous ligands androgen hormones
 - Two key androgens
 - testosterone (T)
 - dihydrotestosterone (DHT)
 - <u>Other androgens</u> androstanediol, dehydroepiandrosterone, androstenedione
- T: synthesis in testis (Leydig cells)
 - in lesser extent in adrenals
- DHT: Formed extratesticulary from T
 - In several tissues (seminal vesicles, prostate, skin)
 higher affinity to androgen receptor than T
 - Daily production 5-10% of testosterone

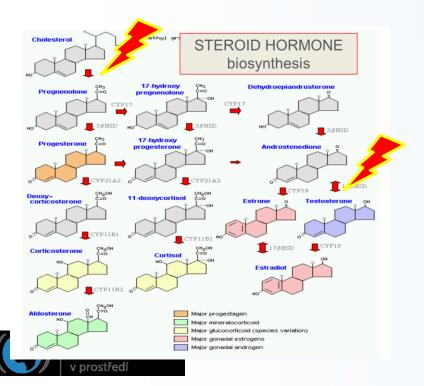

Testosterone

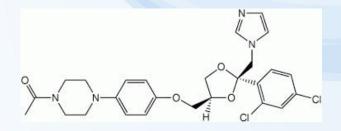
Several mechanisms how "xenoandrogens" disrupt natural androgen signalling and action

1) Binding to AR

- Mostly competitive inhibition (xenobiotics mostly do not activate AR-dependent transcription)
- Only few compounds able to activate AR in the absence of androgen hormones but they are anti-androgenic in the presence of strong androgens like T or DHT
 - metabolites of fungicide vinclozoline
 - some PAHs

2) FSH/LH (gonadotropins) signalling disruption – less explored

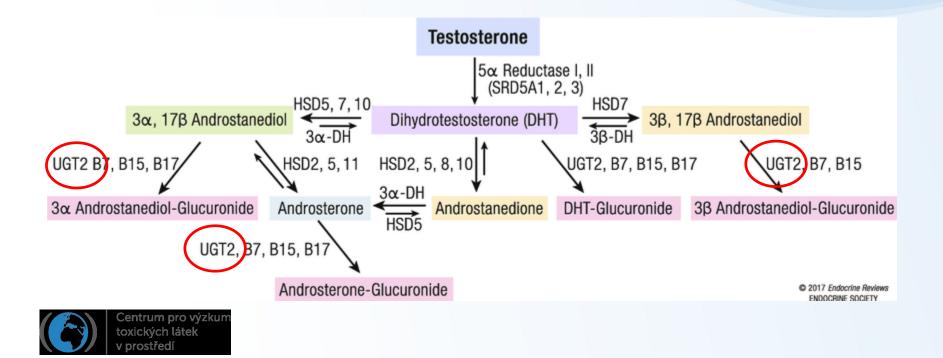

- FSH/LH expression regulation via negative feedback by testosterone
- Suppression → alterations of spermatogenesis



Mechanisms of androgen signalling disruption

3) Alterations of de novo testosterone synthesis

- Inhibition of P450scc needed for side chain cleavage of cholesterol or inhibitions of 17-beta-hydroxylase and other CYPs
 - fungicide ketoconazol



Mechanisms of androgen signalling disruption

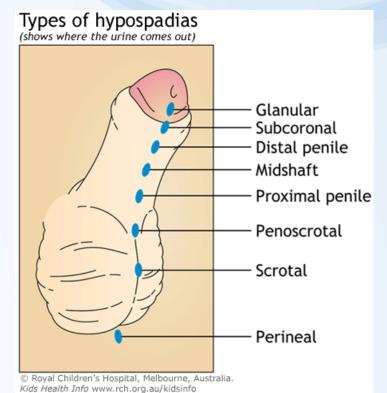
4) Testosterone metabolic clearance

- Chemicals inducing detoxification enzymes for Testosteron most relevanat are UDP-glucuronosyltransferases (UGTs)
 - Documented e.g. for pesticides endosulfan, mirex, o-p'-DDT
 - (degradation → lower T concentrations → anti-androgenicity)

Effects of male exposures to **antiandrogens**

- Exposure during prenatal development:
 - malformations of the reproductive tract
 - reduced anogenital distance
 - **hypospadias** (abnormal position of the urethral opening on the penis) •
 - vagina development
 - undescendent ectopic testes
 - atrophy of seminal vesicles and prostate gland

Exposure in prepubertal age:

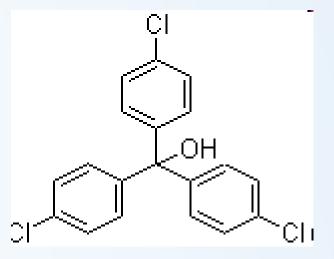

- delayed puberty
- reduced seminal vesicles
- reduced prostate

Exposure in adult age:

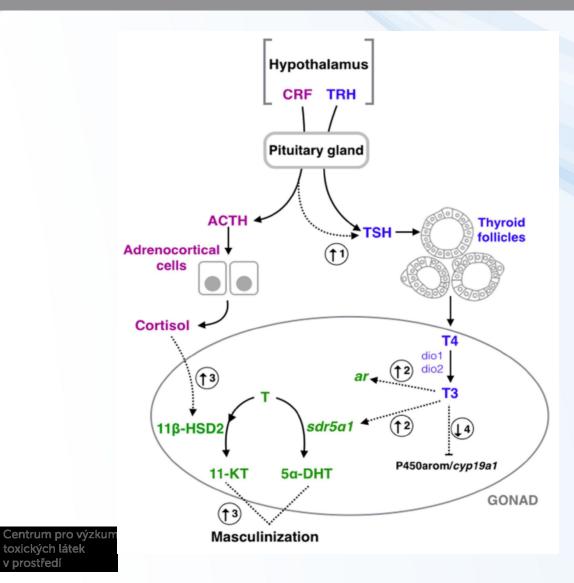
- oligospermia
- azoospermia
- loss of sexual libido

Centrum pro výzkum toxických látek prostředí

AR-binding – effective concentrations Reference: active ligand dehydrotestosteron DHT: EC50 ~ 0.1 μM


Compound	IC_{50} (μ M)			
Benz[a]anthracene	3.2			
Benzo[a]pyrene	3.9			
Dimethylbenz[a]anthracene	10.4			
Chrysene	10.3			
Dibenzo[a,h]anthracene	activation in range 0.1-10µM			
Bisphenol A	5			
vinclozolin metabolites	9.7			
hydroxyflutamide	5			
Aroclor typical values	0.25-1.11			
Individual PCBs typical values	64 - 87			
tris-(4-chlorophenyl)-methanol	0.2			

Antiandrogenic compound

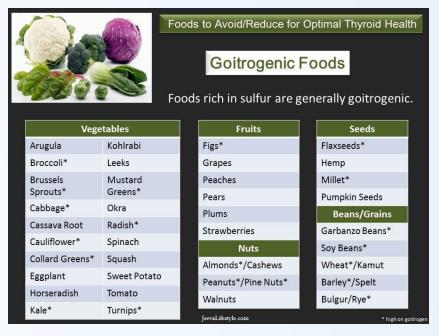

tris-(4-chlorophenyl)-methanol

- Ubiquitous contaminant of uncertain origin
- Probable metabolite of DDT-mixtures
- Levels in human blood serum cca. 50nM (antiAR effective EC50 – cca. 200nM)

THYROID SIGNALLING

Thyroid hormones

- Crucial roles in metabolism, development and maturation
 - Regulation of metabolism
 - increasing oxygen consumption
 - modulating levels of other hormones (insulin, glucagon, somatotropin, adrenalin)
 - Important in cell differenciation
 - Crucial role in development of CNS, gonads and bones
- EDC compounds interfering with thyroid signalling "GOITROGENS"
- Many food (vegetables) contain goitrogens



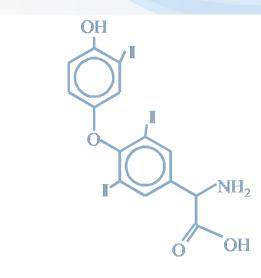
HYPOTHYROIDISM

Centrum pro výzkum toxických látek v prostředí

Thyroid hormones

NH₂

OH


Thyroxine (T4)

Also called tetraiodothyronine Contains 4 iodide ions

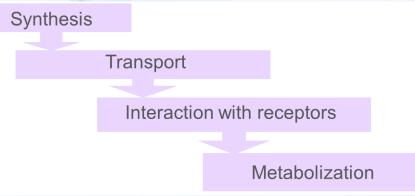
OН

Triiodothyronine (T3)

Contains 3 iodide ions -Most T3 produced by deiodination in target tissues (deiodinases)

T4 – prohormone 5'-deiodination \rightarrow active form, T3

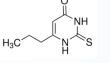
entrum pro výzku

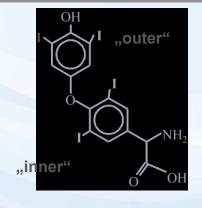


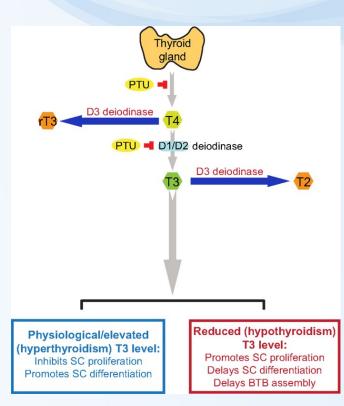
Thyroxine (T_4)

3,5,3'-Triiodothyronine (T₃)

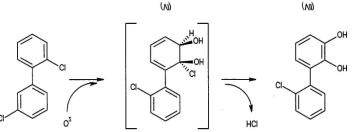
Multiple mechanisms of thyroid signalling disruption


- Xenobiotics are known to affect
 - Synthesis & activation (deiodinases)
 - Transport in blood
 - *(Direct effects on nuclear receptors ThR less important)*

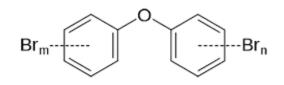

Disruption of enzymes involved in Thyroid metabolism


- Thyroid peroxidases
 - iodination of tyrosyl residues
 - coupling of iodinated tyrosyl residues
- Thyroid deiodinases
 - D1, D2 activation of T4 into T3 via deiodination on "outer" ring
 - D3 deactivation into rT3 via deiodination on "inner" ring
- Many goitrogens affect expression, activities and outcomes of these key enzymes
 - PTU propylthiouracil
 →effect deiodinases

Thiocyanate ([SCN]⁻) or perchlorate (NaClO₄)
 →effect on iodine uptake



Disruption of transport of thyroid hormones in blood

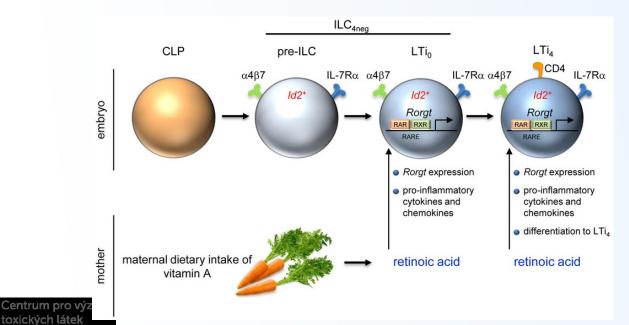

- SPECIFIC TRANSPORTERS in blood
 - regulating free T4 and T3 levels
 - 3 types :
 - Thyroid-binding prealbunin (transthyretin) (20-25%)
 - Albumin (5-10%)
 - Thyroid binding globulin (TBP, 75%)
- NUMBER OF EDCs → act on transport proteins
 - OH-PCBs, brominated and chlorinated flame retardal and DDT, dieldrin
 - **OH-PCBs** equal affinity to **TBP** as T4 and T3 (!!!)
- Increased levels of "free T4" in blood
 - negative feedback to TSH release
 - \rightarrow increased depletion
 - ightarrow increased weight, changes in thyroid gland
 - Documented after exposures to POPs in vertebrates

Polybrominated diphenyl ethers (PBDEs) – flame retardants

Effects of thyroid disruption

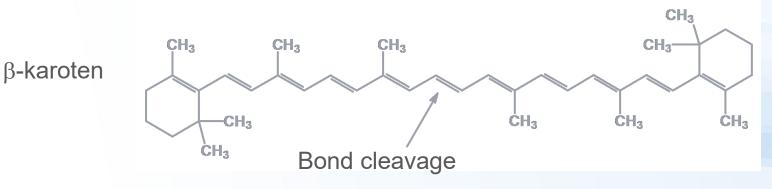
- Exposures to goitrogens during prenatal stages
 - severe damage of CNS (cretenism, delayed eye opening, cognition)
 - Megalotestis
 - Histological changes in thyroid gland (goitre)

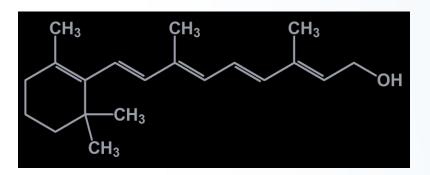
Exposures during development


- nervous system fails to develop normally
- mental retardation
- skeletal development

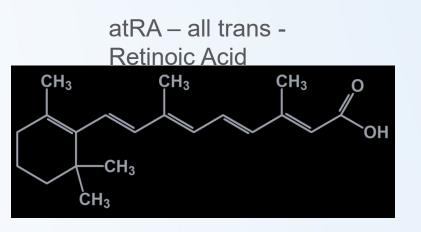
RAR/RXR receptors - vitamin A and its derivatives: RETINOIDS -

& their role in toxicity

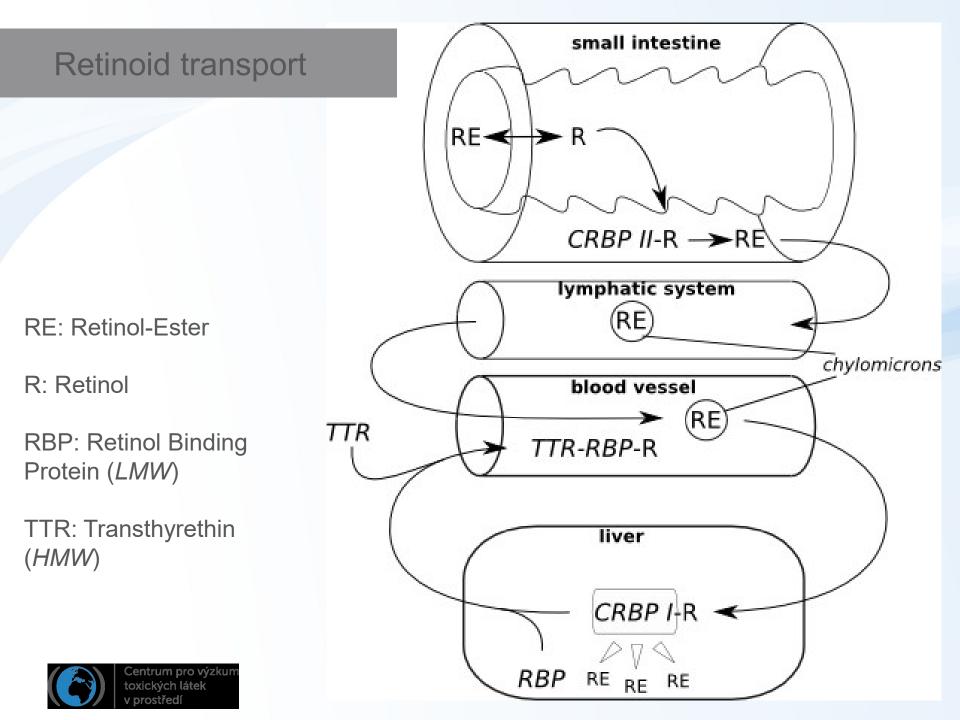


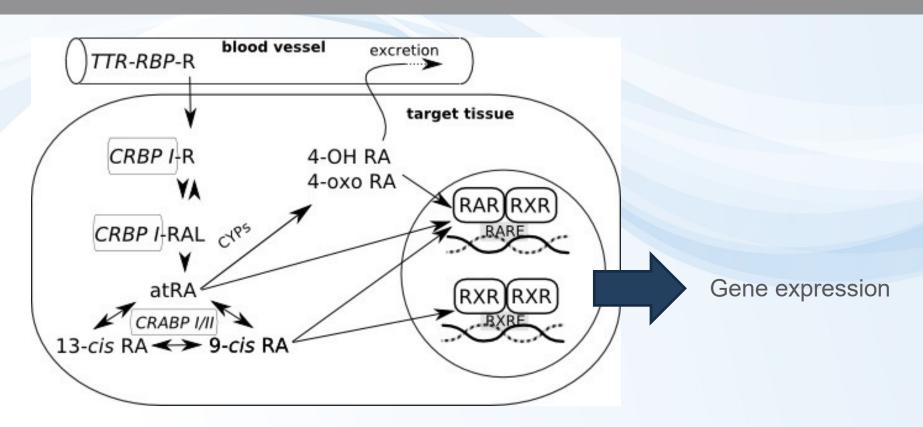

RETINOIDS

Sources: from diet - dietary hormones


Retinyl esters – animal sources Plant carotenoids


```
Retinol (vitamin A)
```


Retinoids and their functions

- Regulation of development and homeostasis in tissues of vertebrates and invertebrates
- Development of embryonic, epithelial cells (gastrointestinal tract, skin, bones)
- Necessary for vision
- Suppressive effects in cancer development
- Important for cell growth, apoptosis and differenciation
- Antioxidative agent
- Affect nervous and immune function

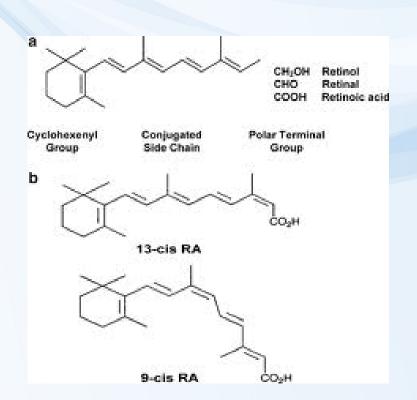
Retinoid fate in the cells

Retinoid binding proteins

CRBP – cellular retinol binding protein

- binding of retinol, immediate decrease of retinol concentration

CRBAP – cellular retinoic acid binding protein


- Controlling the ratio free retinol/free retinoic acid

RAR/RXR and RA

- Isoforms of RAR a RXR
 - Formation of homo- and heterodimers
 - 48 possible RAR-RXR heterodimers
 - \rightarrow sensitive regulation of gene expression
- RXR heterodimers with other receptors
 - − VDR, TR, PPAR ... \rightarrow see crosstalk
- RETINOIC ACID (RA)
- 3 basic subtypes
 - all-trans- (ATRA)
 - 9-cis- and 13-cis-retinoic acid
- All-trans RA (ATRA) binds selectively to RAR
- Cis RA bind to both receptor types

Disruption of retinoid signalling by xenobiotics

- Possible modes of action disruption of retinoid signalling:
 - Metabolization of retinoids by detoxication enzymes
 - Disruption of binding retinoids to transport proteins
 - Retinoids as antioxidants may be consumed by oxidative stress induced by xenobiotics
 - Interference during binding to RAR/RXR

Effects

- Decreased retinoid levels in organisms
 - Downregulation of growth factors
 - Xerophtalmia, night blindness
 - Embryotoxicity, developmental abnormalities

Increased ATRA concentration

• teratogenic effects

Disruption of retinoid signalling by xenobiotics

- Polluted areas
 - mostly decrease of retinoid levels
 - Documented in aquatic birds, mammals and fish
- Disruption of retinoid transport: PCBs
- Effects on retinoid receptors:
 - RAR, RXR binding and/or transactivation
 - pesticides (chlordane, dieldrin, methoprene, tributyltin...)
 - Effect on ATRA mediated response TCDD, PAHs
- Disruption of retinoid metabolism:
 - PCDD/Fs, PAHs, PCBs, pesticides
 - changes of serum concentrations of retinol and RA
 - mobilization of hepatic storage forms

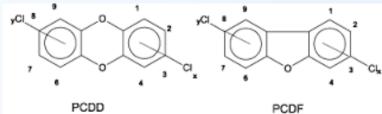
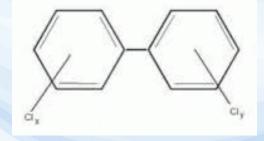



Figure 1. General molecular structure of polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurans (PCDF)

