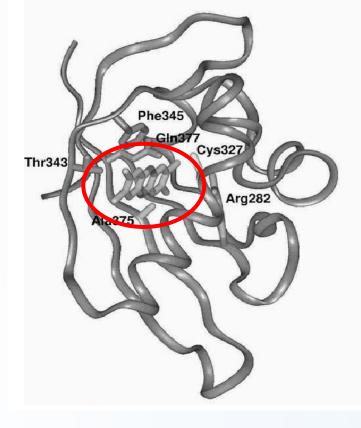


BIOMARKERS AND TOXICITY MECHANISMS 09b –Nuclear Receptors AHR – Arylhydrocarbon Receptor

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

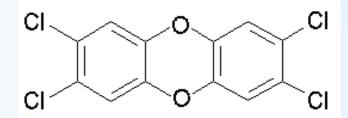


INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

AhR (Arylhydrocarbon receptor)

Derisonet d., Crem Bd. Interact. 141: 3

AhR structure


2,3,7,8-TCDD (dioxin) bound to AhR

Centrum pro výzkum toxických látek v prostředí

AhR

- Also known as "dioxin-receptor" (and its modulation leads to so called "dioxin-like" activity or toxicity)
- Ligand-activated transcription factor
 - Similar to all NRs
- AhR has effects on many different genes
- important mediator of toxicity of POPs primary target of planar aromatic substances
 - regulator of xenobiotic metabolism and activation of promutagens
- Crossactivation/crosstalk with other NRs
- Strongest known ligand TCDD
 - (not endogeneous !)

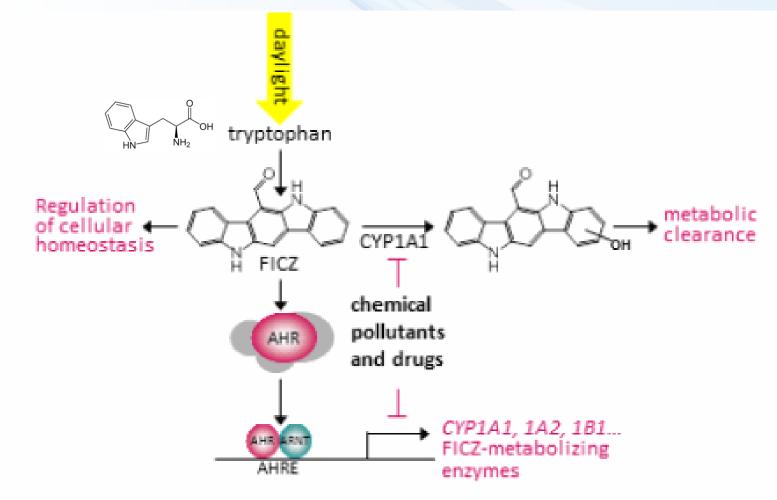
AhR regulated genes

- Many genes contain xenobiotic response elements (XRE) or dioxin responsive elements (DRE) in their promoter region:
 - Detoxification genes phase I enzymes (CYP 1A1, CYP 1A2, CYP 1B1) and phase II enzymes (UDPglucuronosyltransferase, GST-Ya, NADP(H):oxidoreductase)

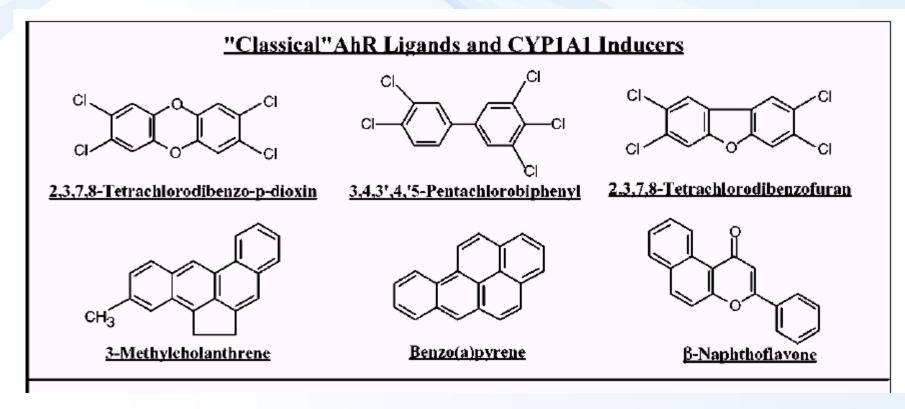
Detoxification after toxicant exposure ... also with possible toxic consequences (oxidative stress, activation of promutagens accelerated clearance of hormones)

- Other genes regulation of cell cycle and apoptosis
 - Bax (apoptosis control), p27Kip1, Jun B (MAP-kinase), TGF-b (tumor growth factor)
 - \rightarrow Various adverse toxic effects

Physiological role of AhR

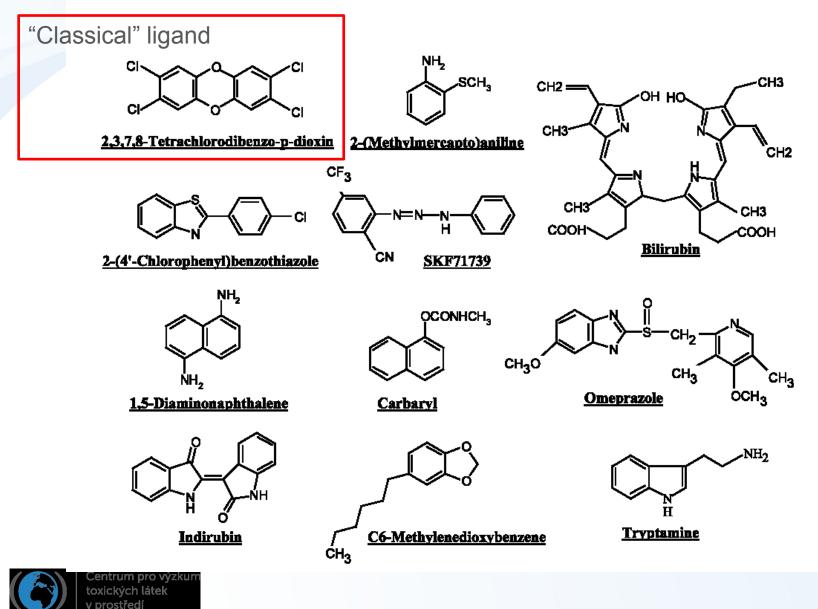

- Physiological role for AhR still not known completely (?)
 - Most likely "protection" against toxicants → induction of detoxification
- Many adverse effects documented in AhR-deficient mice
 - significant growth retardation;
 - defective development of liver and immune system;
 - retinoid accumulation in liver;
 - abnormal kidney and hepatic vascular structures.
 - resistant to BaP-induced carcinogenesis and TCDD-induced teratogenesis;
 - no inducible expression of CYP 1A1 and 2.

→ this implies presence of natural endogeneous ligand(s) (not only exogeneous toxicants can bind AhR)

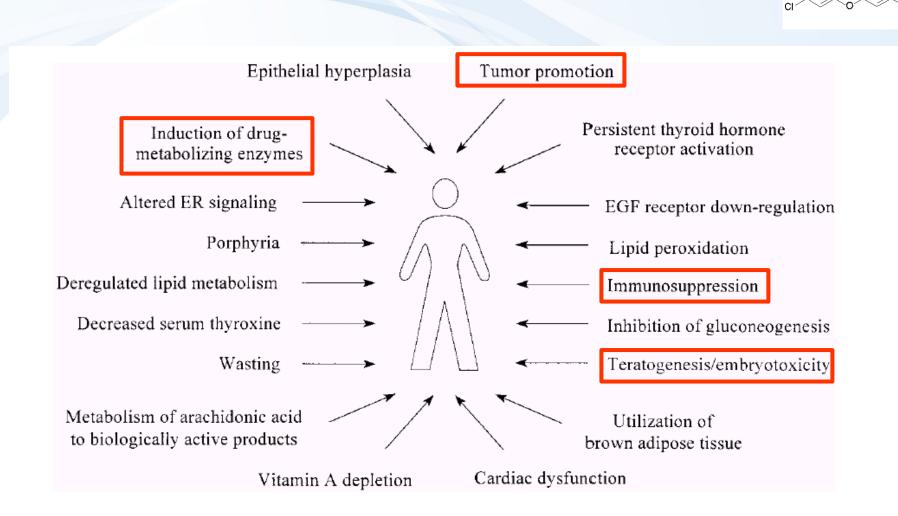

What is the natural (endogenous) physiological ligand of AhR?

Classical and "non-classical" AhR ligands

Classical = planar structures \rightarrow direct binding to AhR



Denison & Nagy, Annu. Rev. Pharmacol. Toxicol. 43:309



"Non-classical" AhR ligands – various structures

M.S. Denison et al. / Chemico-Biological Interactions 141 (2002) 3-24

Biological responses to TCDD & AhR ligands

Figure 1 Biological responses to TCDD. A wide variety of cellular processes have been shown to be affected by TCDD.

Schmidt & Bradfield, Annu. Rev. Cell Dev. Biol. 12:55

CI.

Toxic equivalency factors (TEF)/TEQ concept

- Toxicity of compounds with similar toxicological properties as TCDD (activating AhR) may be evaluated by TEF/TEQ concept
 - TEF = Toxic Equivalency Factor ("characteristic" of the Chemical)
 - TEQ = Toxic Equivalent (sum of TEFs x concentrations)
- **TEFs are consensus values based on REPs (relative potencies)** across multiple species and/or endpoints.
 - TEFs are based upon a number of endpoints, from chronic in vivo toxicity to in vitro toxicity with the former having the greatest importance in determining overall TEF.
- **TEQs provide a simple**, single number that is indicative of **overall toxicity of a sample** (water, sediment, food) containing a mixture of dioxins and dioxin-like compounds.
- The total potency of a mixture can be expressed in TCDD TEQ concentration
 - i.e. TEQ = concentration corresponding to the effect that would be induced by TCDD

 $TEQ = \Sigma \{compound_1 \times TEF_1 + \dots \}$

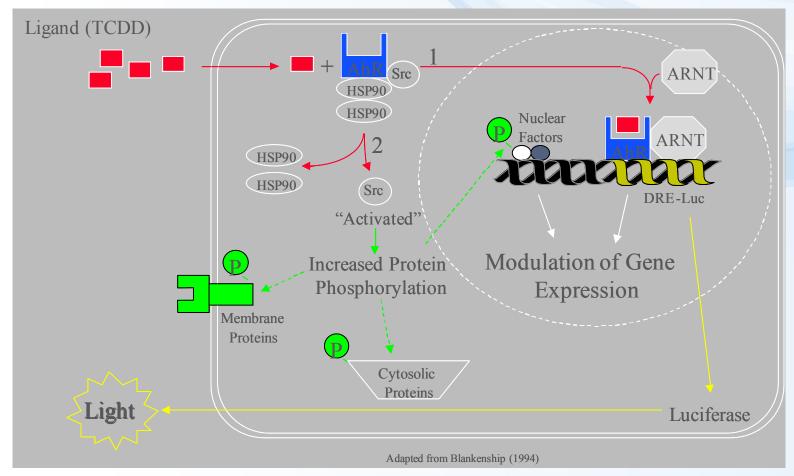
 $+ \operatorname{compound}_n \times \operatorname{TEF}_n \}$

Toxic equivalency factors for PCDDs, PCDFs and PCBs:

PCDD Congener	WHO-TEF	PCDF Congener	WHO-TEF	PCB Congener	WHO-TEF
2,3,7,8-TCDD	(1)	2,3,7,8-TCDF	0.1	Non-ortho	
12,3,7,8-PeCDD	1	12,3,7,8-PeCDF	0.05	PCB#81	0.0005
123478-HxCDD	0.1	23478-PeCDF	0.5	PCB#77	0.0005
123678-HxCDD	0.1	123478-HxCDF	0.01	PCB#126	0.1
12,3,7,89-HxCDD	0.1	123678-HxCDF	0.1	PCB#169	0.01
1234678-HpCDD	0.01	234678-HxCDF	0.1	Mono-ortho	
OCDD	0.0001	12,3,7,89-HxCDF	0.1	PCB#105	0.0001
		1234678-HpCDF	0.01	PCB#114	0.0005
		1234789-HpCDF	0.01	PCB#118	0.0001
		OCDF	0.0001	PCB#123	0.0001
				PCB#156	0.0005
				PCB#157	0.0005
				PCB#167	0.00001
				PCB#189	0.0001

Eljarrat & Barceló, Trends Anal. Chem.22: 655

Final concentration is expressed as "Equivalents of TCDD" (e.g. ng TEQ / kg = ng TCDD / kg)


Biomarkers/bioanalytical methods for AhR toxicity

- In vivo studies
 - liver enlargement, reduction of thymus weight, wasting syndrome, reproductive and developmental disorders
- In vivo biomarkers
 - EROD activity, CYP 1A1 and 1B1 expression (discussed in biomarker section)
- in vitro assessment of chemical potencies
 - EROD (ethoxyresorufin-O-deethylase activity) in cell cultures;
 - CALUX/CAFLUX assays (luciferase expression – reporter gene assays)
 - GRAB assay (AhR-DNA binding)
 - yeast bioassay;
 - immunoassays;
 - detection of CYP1A mRNA (qPCR) or AhR protein (western blotting)

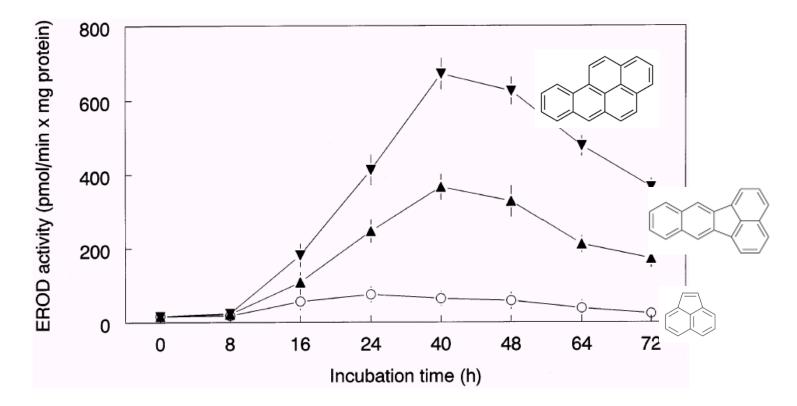
In vitro CALUX/CAFLUX assays

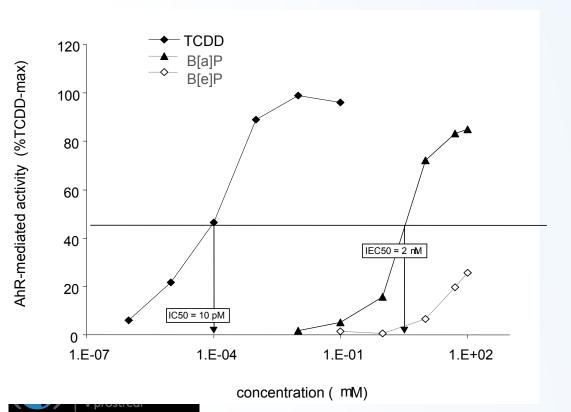
CALUX – Chemical Assisted Luciferase Expression DR-CALUX (Dioxin Responsive CALUX) (i.e. Luciferase Reporter Gene Assay with H4IIE.luc cells)

Centrum pro výzkum toxických látek v prostředí

DETECTION of EROD activity - example

M. Till et al. / Chemico-Biological Interactions 117 (1999) 135–150



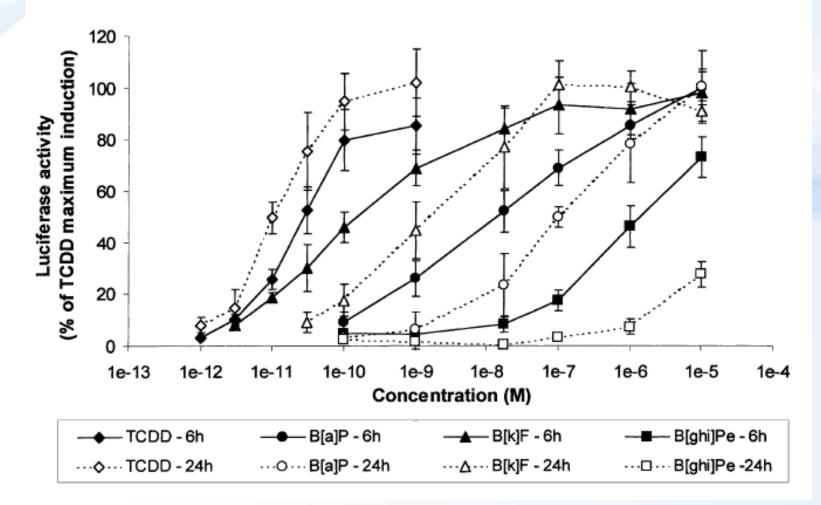

Fig. 2. Time course of induction of CYP1A1-catalyzed 7-ethoxyresorufin *O*-deethylase (EROD) activity in primary cultures of rat hepatocytes, after addition of 1.7×10^{-5} M benzo[*a*]pyrene (- ∇ -), 1.9×10^{-6} M benzo[*k*]fluoranthene (- Δ -) or 9.4×10^{-5} M acenaphthylene (- \bigcirc -). EROD activity was determined in cell homogenates. The data represent means \pm S.D. from four independent experiments.

140

v prostředí

Comparing toxicity of compounds \rightarrow Application in Risk Assessment

- Quantification of effects (EC₅₀)
- Comparison with the effect of reference toxicant (2,3,7,8-TCDD)
 - → relative potencies (REPs) to TCDD
 (= in vitro "Toxic Equivalency Factors" ~ TEFs)


TCDD:	IC ₅₀
PAH:	IEC ₅₀

Relative Potency (REP) = Induction Equivalency Factor IEF = IC₅₀ / IEC₅₀

REP interpretation: How many times is the compound "weaker" inducer than TCDD ?

Example - relative potencies of PAHs (two exposure periods) "CALUX" assay

M. Machala et al./Mutation Research 497 (2001) 49-62

Longer period: lower induction due to (partial) metabolization of PAHs (CYPs, oxidation) to products less potent to AhR

Table 2

Derived from	IEF _{TCDD(24h)}	IEF _{TCDD(24h)}		IEF _{TCDD(6h)}		IEF _{B[a]P(6 h)}	
	EC50	EC25	EC50	EC25	EC50	EC25	
Flu	ni ^a	ni	ni	ni	ni	ni	
Ant	ni	ni	ni	ni	ni	ni	
Fla	2.27E-8	9.31E-7	9.84E-5	1.11E-4	1.05E-2	5.59E-3	
Ру	1.78E-6	3.38E-6	2.59E-5	4.45E-5	7.57E-3	6.21E-3	
B[a]A	7.04E-6	9.60E-6	7.64E-7	2.40E-6	0.39	0.50	
Chry	1.01E-4	1.07E - 4	1.41E-2	3.26E-2	3.25	2.04	
B[b]F	3.35E-5	4.82E-5	4.90E-2	2.32E-1	8.83	12.81	
B[k]F	1.64E-3	2.94E-3	0.28	0.57	67.76	36.33	
B[a]P	9.01E-5	1.99E-4	1.11E-2	2.02E-2	1.0	1.0	
DB[ah]A	1.17E-3	1.52E-3	0.06	0.20	11.46	11.72	
I[123-cd]P	2.96E-4	5.01E-4	0.86	1.24	44.20	29.70	
B[ghi]Pe	ni	ni	2.27E-5	4.68E-5	5.47E-3	2.99E-3	
DB[al]P	4.90E-6	1.13E-6	2.52E-5	3.26E-5	2.36E-2	1.88E-2	
NPyr	2.05E-4	3.83E-4	5.80E-3	1.31E-2	1.10	0.88	
CPP	2.48E-7	6.53E-7	6.20E-6	1.72E-5	4.23E-3	3.38E-3	
B[a]Pe	6.19E-6	6.28E-6	2.27E-4	3.05E-4	3.37E-2	1.68E-2	
DB[ae]F	9.30E-6	1.18E-5	2.75E-5	1.33E-4	1.74E-3	6.74E-3	
DB[ai]P	1.65E-4	4.41E-4	4.29E-2	3.82E-2	2.59	1.75	
DB[ae]P	1.80E-5	3.90E-5	1.08E-3	3.90E-3	0.49	0.13	
DB[ah]P	7.14E-5	3.70E-4	2.65E-2	5.43E-2	2.80	2.68	
DB[ak]F	1.23E-3	1.37E-3	1.55E-2	2.02E-2	2.69	1.65	
5-MeChry	9.48E-5	1.59E-4	4.05E-2	5.08E-2	3.07	2.46	
DB[aj]A	3.70E-4	5.21E-4	3.07E-2	4.04E-2	2.16	2.16	
B[j]F	3.68E-4	7.40E-4	4.05E-2	6.33E-2	2.25	2.51	
B[c]Phe	4.49E-7	1.07E-6	6.21E-5	7.51E-5	4.64E-3	3.76E-3	
B[e]P	5.15E-7	6.30E-7	3.71E-5	8.17E-5	2.27E-3	2.86E-3	
DMBA	5.41E-6	1.30E-5	4.71E-2	3.98E-2	0.46	0.9	
1-MePyr	2.07E-6	2.82E-6	4.80E-5	7.20E-5	8.54E-3	6.33E-3	
DB[ac]A	1.92E-4	4.23E-4	3.53E-2	7.80E-2	1.75	2.78	
Pic	4.11E-5	5.54E-5	1.90E-3	5.20E-3	0.12	0.25	

IEFs of PAHs relative to TCDD or B[a]P derived from EC50 or EC25 values in 24 and 6 h exposure assays

^a ni, no induction observed.

M. Machala et al./Mutation Research 497 (2001) 49-62

Summary – Nuclear receptors

- Important physiological functions,
- Important roles in pathologies and chemical toxicity (ENDOCRINE DISRUPTION)
- NRs with well studied roles in toxicity: ER and AhR
 - Other NRs (AR, RAR/RXR, ThR) important but less explored
- All NRs share similar structure and mechanisms of action
 - Act as direct transcription factors on DNA
- Natural ligands of NRs are small lipophilic hormones
 - steroids, thyroids, retinoids
 - Various regulatory functions
 - Role in toxicity: NR interact with structurally similar xenobiotics
- Various mechanisms beyond the toxicity
 - Adverse are both STIMULATIONS and INHIBITIONS directly at the receptor site (e.g. "antiandrogenicity)
 - Additional mechanisms –in blood (Thyroids), metabolism (Thyroids) clearance (Retinoids), heterodimerization and transport of hormones, "crosstalk" of different NRs
- Other key information to remember
 - REPORTER GENE ASSAYS (principle, use, what is CALUX?)
 - Characterization of chemical "toxic potentials"
 - General concept of "REPs" (valid for activation of all NRs)
 - Specifically for AhR concept of TEFs / TEQs

