# E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra - Exercises 

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Some useful tools:

- Logic.ly: https://logic.ly/demo/ - demo version is enough to try out some simple designs
- LogiSim: http://www.cburch.com/logisim/download.html-a free, portable (Java) application with many features
- Digital: https://github.com/hneemann/Digital - another educational tool for digital circuits


## Exercise 1

Show that:

$$
X(X+Y)=X \quad \text { (law of absorption) }
$$

## Exercise 1

Show that:

$$
X(X+Y)=X \quad \text { (law of absorption) }
$$

Proof:

$$
\begin{aligned}
X(X+Y) & =X \cdot X+X \cdot Y \\
& =X+X \cdot Y \\
& =X(1+Y) \\
& =X
\end{aligned}
$$

## Exercise 2

Show that:

$$
X Y+Y Z+\bar{X} Z=X Y+\bar{X} Z
$$

## Exercise 2

Show that:

$$
X Y+Y Z+\bar{X} Z=X Y+\bar{X} Z
$$

Proof:

$$
\begin{aligned}
X Y+Y Z+\bar{X} Z & =X Y+(X+\bar{X}) Y Z+\bar{X} Z \\
& =X Y+X Y Z+\bar{X} Y Z+\bar{X} Z \\
& =(X Y+X Y Z)+(\bar{X} Y Z+\bar{X} Z) \\
& =X Y+\bar{X} Z
\end{aligned}
$$

## Exercise 3

## Prove de Morgan's theorem using truth table.

## Exercise 4

Using de Morgan's theorem, expand

$$
\overline{\bar{X}+\bar{Y}+\bar{Z}}
$$

and construct the corresponding truth table.

## Exercise 5

Identify the boolean function corresponding to the following truth table:

| $X$ | $Y$ | $Z$ | $W$ | $F(X, Y, Z, W)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

## Exercise 5-cont'd

Function identification:

$$
F(X, Y, Z, W)=X \bar{Y} Z W+X Y \overline{Z W}+X Y \bar{Z} W+X Y Z \bar{W}+X Y Z W
$$

## Exercise 6

## Simplify previous function.

## Exercise 6

Simplify previous function.

$$
\begin{aligned}
F(X, Y, Z, W) & =X \bar{Y} Z W+X Y \overline{Z W}+X Y \bar{Z} W+X Y Z \bar{W}+X Y Z W \\
& =X Z W(\bar{Y}+Y)+X Y \bar{Z}(\bar{W}+W)+X Y Z \bar{W} \\
& =X Z W+X Y \bar{Z}+X Y Z \bar{W} \\
& =X Y \bar{Z}+X Z(W+Y \bar{W}) \\
& =X Y \bar{Z}+X Z(Y+W) \\
& =X Y \bar{Z}+X Y Z+X Z W \\
& =X Y(Z+\bar{Z})+X Z W \\
& =X Y+X Z W \\
& =X(Y+Z W)
\end{aligned}
$$

## Exercise 7

Design the logic circuits corresponding to the initial and simplified forms of the previous function, respectively.

## Exercise 7

Design the logic circuits corresponding to the initial and simplified forms of the previous function, respectively.


