E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Outline

(1) Introduction
(2) Fundamentals of Boolean algebra
(3) Other operators
(4) From truth table to functions and circuits

Introduction: "0/1"

Babbage's punched cards

Basic relay device

George Boole (1815-1864)

- 1844: "On a general method in analysis"; gold prize in mathematics from Royal Society
- logical system: "An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities" \longrightarrow "algebra of logic"

Victor Shestakov (1907-1987)

- Moscow State University (1934)
- theory of electric switches based on Boolean logic
- algebraic logic model for 2-, 3-, 4-poles switches

Claude Shannon (1916-2001)

- "father of information theory"
- MIT
- thesis on theory of electrical circuits based on Boolean algebra

```
G "michael jackson" AN x +
```

$\leftarrow \rightarrow$ C google.com/search?q="michael+jackson" + AND $+\% 28$ coffee + OR + whiskey $\% 29+$ NOT + dance $\& 5 C a$. .
<3
】

Google "michael jackson" AND (coffee OR whiskey) NC \times \&
Images Videcs News Books Maps Flights Finence All filters - Tools

About $B, 690,000$ results (0.47 seconds)
(0) Instagram
https://wwwwinstagram.com , reel , B_SxDLqnd_z !
Is this how Michael Jackson drank coffee? - - Instagram

102K likes, 1585 comments - thewilliamsfam on April 22, 2020: "Is this how
Michael Jackson drank coffee? * Dance/Concept Credit:
Instagram - Apr 22, 2020

Q Quora
ht.ps./Ivrwnw.quora.com > Did-Michael-Jackson-drink-cor... :

Did Michael Jackson drink coffee?

Feb 8, 2019 - No. Michael Jackson drank Herbal Tea and Gatorade instead of Coffee.
Source: Do you think Michael drank coffee? - Michael Jackson Answers.
3 answers - Top answer I would say a definite no. Of course he had certainly tried coffee bu...
What was Michael Jackson's favorite alcoholic drink? 10 answers Jun 18, 2017
Did Michael Jackson drink wine? 1 answer Nov 12, 2022
Why don' Michael Jackson's sons sing and dance? I... 11 answers Oct 13, 2020
Has Michael Jackson ever gotten drunk before7 5 answers Feb 25, 2018
More results from waw.quora.comReddit
htips./ivrww.redditcorn \& Jokes > comments > why_does...
Why doesn't Michael Jackson drink coffee? : r/Jokes
Mar 7, 2023 - Why doesn't Michael Jackson drink coffee? ... Because he prefers "Tea-
hee!" ... This is approximately 17.333 repeating times better than the ...
75 answers - Top answer. Because he was the king of pop
[0. Images for "michael jackson" AND (coffee OR whiskey) N... :dance moves

micheal jackson

Fundamentals

- binary logic: "tertium non datur": law of excluded middle
- symbolism: 0: FALSE, 1: TRUE
- variables: stand for one of the two possible values, are usually represented by letters (or strings)
- operators: nary functions of variables, usually unary or binary
- variables: X, Y
- negation: NOT, $\neg X$
- conjunction: AND, $X \wedge Y$
- disjunction: OR, $X \vee Y$

Equivalence with sets and number operations

- negation: $\neg X \equiv \bar{X} \equiv C(X)$

Equivalence with sets and number operations

- conjunction:

$$
X \wedge Y \equiv X \cdot Y \equiv X \cap Y
$$

Equivalence with sets and number operations

- disjunction:

$$
X \vee Y \equiv X+Y \equiv X \cup Y
$$

Example:

- commutative law:

$$
X \wedge Y=Y \wedge X \text { or } X \cdot Y=Y \cdot X
$$

$$
X \vee Y=Y \vee X \text { or } X+Y=Y+X
$$

- in the following we will use the usual algebraic notation, and skip • when not necessary
- associative law:

$$
\begin{gathered}
(X Y) Z=X(Y Z) \\
(X+Y)+Z=X+(Y+Z)
\end{gathered}
$$

- distributive law

$$
X(Y+Z)=X Y+X Z
$$

Example:

$$
X(Y+Z)=X Y+X Z
$$

Truth tables for functions (and circuits)

Each logic function is fully described by enumerating all possible inputs and corresponding outputs (2^{n} values for n distinct inputs/variables).

NOT

X	\bar{X}
0	1
1	0

AND

X	Y	$X \cdot Y$
0	0	0
0	1	0
1	0	0
1	1	1

OR

X	Y	$X+Y$
0	0	0
0	1	1
1	0	1
1	1	1

Fundamental laws and theorems

- $\overline{\bar{X}}=x$
- OR operations:

$$
\begin{aligned}
X+0 & =X \\
X+1 & =1 \\
X+X & =X \text { (idempotence) } \\
X+\bar{X} & =1
\end{aligned}
$$

- AND operations:

$$
\begin{aligned}
X \cdot 0 & =0 \\
X \cdot 1 & =X \\
X \cdot X & =X \text { (idempotence) } \\
X \cdot \bar{X} & =0
\end{aligned}
$$

Fundamental laws and theorems

- dual of distributive law:

$$
X+Y Z=(X+Y)(X+Z)
$$

Proof:

$$
\begin{aligned}
(X+Y)(X+Z) & =X X+X Z+Y X+Y Z & & \\
& =X+X Z+Y X+Y Z & & \because X X=X \\
& =X(1+Z)+Y X+Y Z & & \\
& =X+Y X+Y Z & & \because 1+Z=1 \\
& =X(1+Y)+Y Z & & \\
& =X+Y Z & & \because 1+Y=1
\end{aligned}
$$

Fundamental laws and theorems

- dual of distributive law:

$$
X+Y Z=(X+Y)(X+Z)
$$

Proof (by brute force approach - truth table):

X	Y	Z	$X+Y$	$X+Z$	$Y Z$	$(X+Y)(X+Z)$	$X+Y Z$
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

Fundamental laws and theorems

- absorption law:

$$
\begin{aligned}
X+X Y & =X \\
X(X+Y) & =X
\end{aligned}
$$

- identity theorem:

$$
\begin{aligned}
X+\bar{X} Y & =X+Y \\
X(\bar{X}+Y) & =X Y
\end{aligned}
$$

- De Morgan's theorem:

$$
\begin{aligned}
\overline{X+Y} & =\overline{X Y} \\
\overline{X Y} & =\bar{X}+\bar{Y}
\end{aligned}
$$

Other operators

XOR

"exclusive OR"

X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

-7

NAND

"negated-AND"

X	Y	$\overline{X Y}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR

"negated-OR"

X	Y	$\overline{X+Y}$
0	0	1
0	1	0
1	0	0
1	1	0

Truth table \longrightarrow function \longrightarrow circuit

Consider the following truth table:

X	Y	Z	$F(X, Y, Z)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

What is the corresponding logic function?

Method

Write the function as a sum of products (i.e. disjunction of conjunctions): for each " 1 " in the function column, take the sum (OR) of the corresponding fundamental product (ANDs). Then simplify the expression.

X	Y	Z	$F(X, Y, Z)$	products
0	0	0	1	$\bar{X} \cdot \bar{Y} \cdot \bar{Z}$
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	$X \cdot \bar{Y} \cdot \bar{Z}$
1	0	1	0	
1	1	0	1	$X \cdot Y \cdot \bar{Z}$
1	1	1	0	

$$
\begin{array}{rrr|c|l}
X & Y & Z & F(X, Y, Z) & \text { products } \\
\hline 0 & 0 & 0 & 1 & \bar{X} \cdot \bar{Y} \cdot \bar{Z} \\
0 & 0 & 1 & 0 & \\
0 & 1 & 0 & 0 & \\
0 & 1 & 1 & 0 & \\
1 & 0 & 0 & 1 & X \cdot \bar{Y} \cdot \bar{Z} \\
1 & 0 & 1 & 0 & \\
1 & 1 & 0 & 1 & X \cdot Y \cdot \bar{Z} \\
1 & 1 & 1 & 0 & \\
F(X, Y, Z)=\bar{X} \cdot \bar{Y} \cdot \bar{Z}+X \cdot \bar{Y} \cdot \bar{Z}+X \cdot Y \cdot \bar{Z}
\end{array}
$$

Implementation:

$$
F(X, Y, Z)=\bar{X} \cdot \bar{Y} \cdot \bar{Z}+X \cdot \bar{Y} \cdot \bar{Z}+X \cdot Y \cdot \bar{Z}
$$

Simplification:

$$
\begin{aligned}
F(X, Y, Z) & =\bar{X} \cdot \bar{Y} \cdot \bar{Z}+X \cdot \bar{Y} \cdot \bar{Z}+X \cdot Y \cdot \bar{Z} \\
& =(\bar{X}+X) \bar{Y} \cdot \bar{Z}+X \cdot Y \cdot \bar{Z} \\
& =\bar{Y} \cdot \bar{Z}+X \cdot Y \cdot \bar{Z} \\
& =\bar{Z}(\bar{Y}+X Y) \\
& =\bar{Z}(X+\bar{Y})
\end{aligned}
$$

Questions?

