E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

2 Fundamentals of Boolean algebra

3 Other operators

4 From truth table to functions and circuits

ヨト イヨト

Introduction: "0/1"

Babbage's punched cards

Basic relay device

通 ト イ ヨ ト イ ヨ ト

George Boole (1815-1864)

- 1844: "On a general method in analysis"; gold prize in mathematics from Royal Society
- logical system: "An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities" → "algebra of logic"

Victor Shestakov (1907-1987)

- Moscow State University (1934)
- theory of electric switches based on Boolean logic
- algebraic logic model for 2-, 3-, 4-poles switches

Claude Shannon (1916-2001)

• "father of information theory"

MIT

 thesis on theory of electrical circuits based on Boolean algebra

- binary logic: "tertium non datur": law of excluded middle
- symbolism: 0: FALSE, 1: TRUE
- *variables*: stand for one of the two possible values, are usually represented by letters (or strings)
- operators: nary functions of variables, usually unary or binary

- variables: X, Y
- negation: **NOT**, $\neg X$
- conjunction: **AND**, $X \wedge Y$
- disjunction: **OR**, $X \vee Y$

Equivalence with sets and number operations

・ 何 ト ・ ヨ ト ・ ヨ ト

• negation:
$$\neg X \equiv \overline{X} \equiv C(X)$$

æ

Equivalence with sets and number operations

э

A B b A B b

Equivalence with sets and number operations

Example:

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

13 / 27

く≣⇒

æ

• commutative law:

$$X \land Y = Y \land X$$
 or $X \cdot Y = Y \cdot X$

$$X \lor Y = Y \lor X$$
 or $X + Y = Y + X$

- in the following we will use the usual algebraic notation, and skip · when not necessary
- associative law:

$$(XY)Z = X(YZ)$$

$$(X+Y)+Z=X+(Y+Z)$$

distributive law

$$X(Y+Z) = XY + XZ$$

Example:

X(Y+Z) = XY + XZ

æ

イロト イポト イヨト イヨト

Truth tables for functions (and circuits)

Each logic function is fully described by enumerating all possible inputs and corresponding outputs $(2^n \text{ values for } n \text{ distinct inputs/variables})$.

ΝΟΤ			AN	1D			0	R			
	X	\overline{X}		X	Y	$X \cdot Y$		Х	Y	X + Y	
	0	1		0	0	0	•	0	0	0	-
	1	0		0	1	0		0	1	1	
		1		1	0	0		1	0	1	
				1	1	1		1	1	1	

- $\overline{\overline{X}} = X$
- **OR** operations:

$$X + 0 = X$$

$$X + 1 = 1$$

$$X + X = X \text{ (idempotence)}$$

$$X + \overline{X} = 1$$

• AND operations:

$$X \cdot 0 = 0$$

$$X \cdot 1 = X$$

$$X \cdot X = X \text{ (idempotence)}$$

$$X \cdot \overline{X} = 0$$

▶ < ∃ >

• dual of distributive law:

$$X + YZ = (X + Y)(X + Z)$$

Proof:

$$(X + Y)(X + Z) = XX + XZ + YX + YZ$$

= X + XZ + YX + YZ
= X + XZ + YX + YZ
= X + YX + YZ
= X + YX + YZ
= X + YZ $\therefore 1 + Z = 1$
= X + YZ
 $\therefore 1 + Y = 1$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

• dual of distributive law:

$$X + YZ = (X + Y)(X + Z)$$

Proof (by brute force approach - truth table):

Χ	Y	Ζ	X + Y	X + Z	YΖ	(X+Y)(X+Z)	X + YZ
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

• absorption law:

$$X + XY = X$$
$$X(X + Y) = X$$

• identity theorem:

$$X + \overline{X}Y = X + Y$$
$$X(\overline{X} + Y) = XY$$

• De Morgan's theorem:

$$\overline{X+Y} = \overline{XY}$$
$$\overline{XY} = \overline{X} + \overline{Y}$$

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

Other operators

∃ ► < ∃ ►

Truth table \longrightarrow function \longrightarrow circuit

Consider the following truth table:

Χ	Y	Ζ	F(X, Y, Z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

What is the corresponding logic function?

< 回 > < 回 > < 回 >

Method

Write the function as a sum of products (i.e. disjunction of conjunctions): for each "1" in the function column, take the sum (OR) of the corresponding *fundamental product* (ANDs). Then simplify the expression.

Χ	Y	Ζ	F(X, Y, Z)	
0	0	0	1	$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	$X \cdot \overline{Y} \cdot \overline{Z}$
1	0	1	0	
1	1	0	1	$X \cdot Y \cdot \overline{Z}$
1	1	1	0	
1	1	1	0	

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

	X	Y	Ζ	F(X, Y, Z)	products		
	0	0	0	1	$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$		
	0	0	1	0			
	0	1	0	0			
	0	1	1	0			
	1	0	0	1	$X \cdot \overline{Y} \cdot \overline{Z}$		
	1	0	1	0			
	1	1	0	1	$X \cdot Y \cdot \overline{Z}$		
	1	1	1	0			
$F(X, Y, Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + X \cdot \overline{Y} \cdot \overline{Z} + X \cdot Y \cdot \overline{Z}$							

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Implementation:

$$F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + X \cdot \overline{Y} \cdot \overline{Z} + X \cdot Y \cdot \overline{Z}$$

æ

Simplification:

$$F(X, Y, Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + X \cdot \overline{Y} \cdot \overline{Z} + X \cdot Y \cdot \overline{Z}$$
$$= (\overline{X} + X)\overline{Y} \cdot \overline{Z} + X \cdot Y \cdot \overline{Z}$$
$$= \overline{Y} \cdot \overline{Z} + X \cdot Y \cdot \overline{Z}$$
$$= \overline{Z}(\overline{Y} + XY)$$
$$= \overline{Z}(X + \overline{Y})$$

26 / 27

æ

Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

æ

(日)