E2011: Theoretical fundamentals of computer science Topic 3: Numeral systems - Exercises

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem 1

Implement a 2-bit adder using logical gates.

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

• which numbers can be represented on 2 bits?

э

- which numbers can be represented on 2 bits?
- what is the range of results?

ヨト イヨト

- which numbers can be represented on 2 bits?
- what is the range of results?
- how many bits you need for the result?

- which numbers can be represented on 2 bits?
- what is the range of results?
- how many bits you need for the result?
- write the truth table and derive the fuctions for the outputs

- which numbers can be represented on 2 bits?
- what is the range of results?
- how many bits you need for the result?
- write the truth table and derive the fuctions for the outputs
- design the circuit

Solution

Input:
$$a = [a_1a_0], b = [b_1b_0].$$

Output: $s = [cs_1s_0]; c$: carry

Trut	ı tab	le:						
a_1	a_0	b_1	b_0	С	<i>s</i> ₁	<i>s</i> ₀		
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1 .		< @ >	< ≣ ►	< ≣ →	Ξ

Solution

Truth table:

Truu	i tab	ie.				
a_1	a_0	b_1	b_0	С	s_1	<i>s</i> ₀
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1 🗸	-1	√1 ⊳	• • • • •

Input:
$$a = [a_1a_0], b = [b_1b_0].$$

Output: $s = [cs_1s_0]; c:$ carry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using bitwise operations, extract the R, G, B values from a HTML-like specification (in hexa) of the form "#RRGGBB", where each symbol corresponds to a hexa digit. Example, from "#ABCDEF", you should get R="AB", G="CD", B="EF".

Solution

- let x be the input value (on 24 bits, i.e. 6 bytes)
- R = x >> 16 (right shift by 16 bits)
- $G = (x \ll 4) >> 16$ (left shift followed by right shift)
- B = x&FF (bitwise AND)
- can you see what happened in each case?
- can you find other solutions?

通 ト イ ヨ ト イ ヨ ト