E2011: Theoretical fundamentals of computer science Topic 3: Numeral systems - Exercises

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Problem 1

Implement a 2-bit adder using logical gates.

Plan

- which numbers can be represented on 2 bits?

Plan

- which numbers can be represented on 2 bits?
- what is the range of results?

Plan

- which numbers can be represented on 2 bits?
- what is the range of results?
- how many bits you need for the result?

Plan

- which numbers can be represented on 2 bits?
- what is the range of results?
- how many bits you need for the result?
- write the truth table and derive the fuctions for the outputs

Plan

- which numbers can be represented on 2 bits?
- what is the range of results?
- how many bits you need for the result?
- write the truth table and derive the fuctions for the outputs
- design the circuit

Solution

Input: $a=\left[a_{1} a_{0}\right], b=\left[b_{1} b_{0}\right]$.
Output: $s=\left[c s_{1} s_{0}\right] ; c$: carry
Truth table:

a_{1}	a_{0}	b_{1}	b_{0}	c	s_{1}	s_{0}
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Solution

Truth table:

a_{1}	a_{0}	b_{1}	b_{0}	c	s_{1}	s_{0}
0	0	0	0	0	0	0

Input: $a=\left[a_{1} a_{0}\right], b=\left[b_{1} b_{0}\right]$.
Output: $s=\left[c s_{1} s_{0}\right] ; c$: carry

0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Problem 2

Using bitwise operations, extract the R, G, B values from a HTML-like specification (in hexa) of the form "\#RRGGBB", where each symbol corresponds to a hexa digit. Example, from "\#ABCDEF", you should get $R=" A B ", G=" C D ", B=" E F "$.

Solution

- let x be the input value (on 24 bits, i.e. 6 bytes)
- $R=x \gg 16$ (right shift by 16 bits)
- $G=(x \ll 4) \gg 16$ (left shift followed by right shift)
- $B=x \& F F$ (bitwise AND)
- can you see what happened in each case?
- can you find other solutions?

