
E2011: Theoretical fundamentals of computer science
Topic 4: Introduction to computer architectures

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX



Outline

1 Introduction

2 A bit of computer architecture
Central processing unit
Memory

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures2 / 36



Motivation

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures3 / 36



An abstract view of a computer system

Physics: electrons

Transistors, diodes - 
devices

Analog circuits: 
amplifiers, filters

Logic: adders, 
memory

Digital circuits: gates

Microarchitecture: 
data paths, 
controllers

Architecture: 
instructions, 

registers

Operating system: 
device drivers, 

kernels

Application software: 
programs

A
bs

tra
ct

io
n

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures4 / 36



Another view

Hardware

System software

Applications

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures5 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Eight great ideas in computer design

(from Patterson and Hennessy’s “Computer Organization and Design”)

1 design for Moore’s Law

2 use abstraction to simplify design

3 make the common case fast

4 performance via parallelism

5 performance via pipelining

6 performance via prediction

7 hierarchy of memories

8 dependability via redundancy

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures6 / 36



Moore’s law

The number of transistors in cost-effective integrated circuit double every
18-24 months.

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures7 / 36



Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures8 / 36



Chip manufacturing process

(from Patterson and Hennessy’s “Computer
Organization and Design”)

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures9 / 36



Performance

what is the performance of a computer?

response time vs throughput

hardware vs software performance

energy per instruction

measuring performance

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures10 / 36



Performance

what is the performance of a computer?

response time vs throughput

hardware vs software performance

energy per instruction

measuring performance

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures10 / 36



Performance

what is the performance of a computer?

response time vs throughput

hardware vs software performance

energy per instruction

measuring performance

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures10 / 36



Performance

what is the performance of a computer?

response time vs throughput

hardware vs software performance

energy per instruction

measuring performance

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures10 / 36



Performance

what is the performance of a computer?

response time vs throughput

hardware vs software performance

energy per instruction

measuring performance

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures10 / 36



(from Patterson and Hennessy’s “Computer Organization and Design”)

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures11 / 36



General architecture

In a very simplistic view,

Computer = Central Processing Unit + Memory

CPU

Data and 
Instructions 

Memory

CPU

Data 
Memory

Instructions 
Memory

von Neumann
architecture

Harvard
architecture

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures12 / 36



Central Processing Unit (CPU)

Control Unit

Arithmetic and Logic Unit (ALU)

C P U

Input
device

Output
device

Memory
unit

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures13 / 36



Central Processing Unit (CPU)

CPU exectures instructions read from memory

instructions for loading and storing values

instructions that operate on values from registers, e.g. additions,
bitwise operations, math functions etc.

branching instructions

etc

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures14 / 36



CPU

Registers: internal (to CPU) memory cells used

MEMORY

INSTRUCTIONS

R2=LOAD 0x100

R1=100

0x100 | 10

0x090 | 0

0x120 | 0

CPU

0x110 | 110

R3=ADD R1,R2

STORE 0x110=R3

R
E

G
IS

T
E

R
S

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures15 / 36



Speed, clock, cycles

internal clock: used to maintain
synchronicity of th operations

the frequency of the clock (in
MHz, or GHz nowadays) gives
the speed of the CPU: one
operation may start on each tick

One cycle

A
m

pl
itu

de

One cycle

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures16 / 36



Instruction cycle

Main steps in executing an instruction

fetch: read instruction from memory

decode: figure out what to do

execute: take values from register and execute instruction

store: save the result in a register

Fetch Decode Execute Store

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures17 / 36



CPU: more details

Store

Load

FP

* /

+ -

FP

Decode Instruction

Floating Point Register File

AGU ALU

SSE/MMX (etc)

program code

Integer Register File

Cache

CPU

RAM

register: fast internal
storage; small - several
bytes per register

register file: the set of
similar registers within
CPU

register are specialized:
storing integer, floating
point, instructions,
addresses etc

AGU: address generation
unit - handles data
access

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures18 / 36



CPU: pipelines

Fetch Decode Execute Store

Fetch Decode Execute Store

Fetch Decode Execute Store

Fetch Decode Execute Store

Fetch Decode Execute Store

t1 t2 t3 t4 t5 t6 t7

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures19 / 36



CPU: CISC vs RISC

CISC: Complex Instruction Set
Computer

the original ISA

one instruction may take several
cycles

emphasizes hardware over
software

complex instructions (e.g
memory-to-memory
LOAD/STORE)

shorter programs

high cycles per second

RISC: Reduced Instruction Set
Computer

improvement on CISC

one clock-cycle per instruction

emphasis on software

register-to-register
LOAD/STORE

uses many internal registers

low cycles per second

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures20 / 36



CPU: CISC vs RISC

Example: compute A× B. Assume A is stored at memory location 1200,
and B at 1201, respectively.

The following instruction(s) performs the multiplication and stores the
result at the first memory location.

CISC

MUL 1200,1201

RISC

Load A, 1200

Load B, 1201

Mul A, B

Store 1200, A

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures21 / 36



CPU: multilevel cache

cache: fast memory closer to CPU

improves data access speed by reducting emphmiss penalty

CPU

L1
 c

ac
he

L2
 c

ac
he

L3
 c

ac
he Main 

memory 
(RAM)

Price

Storage space

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures22 / 36



Moving bits and bytes - data buses

a (computer) bus refers to
hardware and protocols for
transferring data

internal buses: data (memory)
bus, system bus, control bus, etc

external (expansion) buses:
connects devices to computer

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures23 / 36



Parallelism

SMP: symmetric multiprocessor systems

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures24 / 36



Parallelism

SMP: symmetric multiprocessor systems

Advantages:

increased throughput

redundancy, hency reliability

easy configuration.

more processes executing at
same time: MultiProcessing.

Drawbacks:

increased traffic over bus, longer
distances between two CPUs

risk of bottlenecks on shared
resources

coordination becomes much
more complex

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures25 / 36



Parallelism

Multicore

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures26 / 36



Parallelism
Multicore - example OpenSPARC (Sun Microsystems)

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures27 / 36



Parallelism

Multicore

Advantages:

run instructions in parallel on
different cores

usually use a single die, or onto
multiple dies but in single chip
package

more energy efficient: higher
performance at lower energy

less traffic, shorter distances
than SMP

Drawbacks:

overhead in writing specific code

dual-core processor does not
work at 2× speed of single
processor, but 60%− 80% more
speed

some operating systems still not
exploit the multicore

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures28 / 36



Memory organization

Computer = Central Processing Unit + MemoryMain Memory in the System

3

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E
CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY 
CONTROLLER

CPU performance is limited by the memory performanceVlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures29 / 36



Wishes:

instantaneous access to any bit (0-latency)

infinite capacity

cheap (i.e. 0$)
infinite bandwidth

Reality:

larger memory is slower: more time to locate the desired position

faster memory is more expensive (SRAM vs DRAM)

larger bandwidth is more expensive

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures30 / 36



Wishes:

instantaneous access to any bit (0-latency)

infinite capacity

cheap (i.e. 0$)
infinite bandwidth

Reality:

larger memory is slower: more time to locate the desired position

faster memory is more expensive (SRAM vs DRAM)

larger bandwidth is more expensive

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures30 / 36



Memory technology

SRAM

Static Random Access Memory

per bit: 2 transistors for access,
4 transistors for storage

it keeps state as long as the
power is on

DRAM

Dynamic Random Access
Memory

per bit: 1 capacitor, 1 access
transistor

loses charge over time → needs
refresh cycles

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures31 / 36



level 0 (volatile): CPU registers:
data for instructions, etc

level 1 (volatile): L1 cache:
SRAM, separate data and
instruction space, KBs/core

level 2 (volatile): L2/3 cache:
SRAM, normally within the
same chip as CPU, MBs/core

level 3 (volatile): main memory:
usually DRAM; tens GBs (less
often hundreds GBs or 1TB); in
embedded devices could be
SRAM (KBs-MBs in size)

level 4 (permanent): disks, SSD
- TBs in size

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures32 / 36



Memory - other storage media
Floppy disks - now mostly extinct

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures33 / 36



Magnetic tapes - still relevant since 50s...

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures34 / 36



Magnetic tapes - still relevant since 50s...

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures35 / 36



Flash memory

non-volatile electronic memory
that can be electrically
reprogrammed

based on NAND or NOR gates

limited number of write/erase
cycles

data degradation over time

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures36 / 36



Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 4: Introduction to computer architectures37 / 36


	Introduction
	A bit of computer architecture
	Central processing unit
	Memory


