
E2011: Theoretical fundamentals of computer science
Introduction to algorithms

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Outline

1 Algorithms
Pseudocode

2 Analysis of algorithms

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 2 / 29

Physics: electrons

Transistors, diodes -
devices

Analog circuits:
amplifiers, filters

Logic: adders,
memory

Digital circuits: gates

Microarchitecture:
data paths,
controllers

Architecture:
instructions,

registers

Operating system:
device drivers,

kernels

Application software:
programs

A
b
st

ra
ct

io
n

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Basic concepts about operating systems3 / 16Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 3 / 29

Algorithm

a step-by-step procedure to solve a task/problem

word algorithm originates from the Latin version of the name
Muh.ammad ibn Mūsā al-Khwārizm̄ı (IX-th century) - a highly
influential Arab mathematician

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 4 / 29

an algorithm has an input and an output

the procedure describes how the input is used to obtain the output

attributes of an algorithm:
▶ correctness
▶ efficiency
▶ complexity

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 5 / 29

Example - Greatest Common Divisor

(one of the oldest algorithms - Euclid (III-IV centuries BC))

Algorithm 1 Euclid’s algorithm

Input: a, b ∈ N∗

Output: GCD
1: r ← a mod b
2: while r ̸= 0 do ▷ We have the answer if r is 0
3: a← b
4: b ← r
5: r ← a mod b
6: end while
7: GCD← b ▷ The gcd is b

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 6 / 29

while r ̸= 0 do
a← b
b ← r
r ← a mod b

end while
GCD← b

Example: GCD of a = 72 and b = 120
r a b

before “while” 72 72 120

iteration 1 48 120 72

iteration 2 24 72 48

iteration 3 0 48 24

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 7 / 29

Pseudocode

a means of describing an algorithm

not directly interpretable by a computer; needs to be implemented in
a programming language

has a less strict syntax and vocabulary than a programming language

it is independent on the programming language

shortcuts are allowed if their meaning is clear (e.g.
θ∗ = argminθ Ω(θ))

describes the solution with enough granularity so it can be
implemented

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 8 / 29

Main ingredients of the pseudocode

variables - store some values (e.g. x , y); may refer to simple (e.g.
scalar) values, or more complicated data structures (vectors, matrices,
lists, etc.)

input to specify the required values for the algorithm to compute the
output

variables are assigned values: x ← 50 or x ← y , but values are never
assigned variables or other values: 50← x is a nonsense

mathematical operators can be used as usual

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 9 / 29

Main ingredients of the pseudocode

If-then-else structure

specifies the conditional
execution of a part (branch) of
the code

the else part may be missing

the ⟨condition⟩ is a Boolean
predicate that is evaluated to
either True or False (or,
equivalently, to ̸= 0 or 0.)

if ⟨condition⟩ then
code for ⟨condition⟩ is True

else
code for ⟨condition⟩ is False

end if

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 10 / 29

Main ingredients of the pseudocode

While-do loop

specifies a repeated execution of
a set of operations (instruction
block)

the block is executed as long as
the ⟨condition⟩ is True and no
forced exit is encountered

if the condition is False at the
very beginning, the block is not
executed at all

while ⟨condition⟩ do
instruction
...

end while

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 11 / 29

Main ingredients of the pseudocode

Repeat-until loop

specifies a repeated execution of
an instruction block

the block is executed as long as
the ⟨condition⟩ is False and no
forced exit is encountered

the block is executed at least
once

repeat
instruction
...

until ⟨condition⟩

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 12 / 29

Main ingredients of the pseudocode

For loop

executes a block for
a given number of
steps (unless forced
exit is encountered)

typically used with
vectors, lists, etc

for ⟨iterator⟩ do
instructions

end for
for all ⟨iterator⟩ do

instructions
end for

Examples:

sum← 0
for i = 1, . . . , n do

sum← sum + xi
end for
for all a ∈ A do

print(a)
end for

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 13 / 29

Main ingredients of the pseudocode

Procedures

groups a set of instructions into a construct that can be invoked
(called) with or without parameters

the parameters may function as input/output or in/out parameters

procedure ⟨name⟩(⟨params⟩)
block

end procedure

Functions

special procedures with only input parameters which returns a value

much like the mathematical equivalent (e.g. sin(x))

function ⟨name⟩(⟨params⟩)
body
return value

end function

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 14 / 29

Main ingredients of the pseudocode

continue: used in loops; indicates a jump to the test condition, any
instructions after it are not executed

break: used in loops; indicates an exit from the loop, continuing
execution with the instruction after the loop

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 15 / 29

√
x with precision ϵ > 0 - binary search

Algorithm 2
√
x via binary search

1: function sqrt1(x ∈ R+, ϵ > 0)
2: low ← 0
3: if x > 1 then
4: high← x
5: else
6: high← 1
7: end if
8: while high − low > ϵ do
9: middle = 0.5(high− low)

10: if middle2 > x then
11: high← middle
12: else
13: low ← middle
14: end if
15: end while
16: return low
17: end function

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 16 / 29

√
x with precision ϵ > 0 - Babylonian method

Algorithm 3
√
x - Babylonian algorithm

1: function sqrt2(x ∈ R+, ϵ > 0)
2: r0 ← x/2 ▷ some initial guess
3: r1 ← (r0 + x/r0)/2
4: while |r1 − r0| > ϵ do
5: r0 ← r1
6: r1 ← (r0 + x/r0)/2
7: end while
8: return r1
9: end function

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 17 / 29

there might be several algorithms for a given problem

the choice of the ”best” algorithm is not always obvious

execution time, memory requirements, implementation options, etc
are factors to keep in mind

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 18 / 29

Flowcharts: alternative to pseudocode

START
END

INPUT:
variables

OUTPUT:
variables

Instruction or
block of

instructions
test

False True

Procedure

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 19 / 29

GCD - with flowchart

Input: a, b ∈ N∗

Output: GCD
1: r ← a mod b
2: while r ̸= 0 do
3: a← b
4: b ← r
5: r ← a mod b
6: end while
7: GCD← b

START

INPUT:
a, b positive

integers

r ← a mod b

r = 0
a ← b
b ← r

r ← a mod b

OUTPUT: “GCD
is “, b

END

NO

YES

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 20 / 29

Analysis of algorithms

What’s more important than performance?

modularity

correctness

maintainability

functionality

robustness

user-friendliness

programmer time

simplicity

extensibility

reliability

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 21 / 29

Insertion sort

Problem: sort a sequence of numbers [ai], i = 1, . . . ,N in increasing order.

8 25 6 7

8 25 6 7

82 5 6 7

82 5 6 7

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 22 / 29

Insertion sort

Algorithm 4 Insertion sort

Input: [ai], i = 1, . . . ,N
Output: sorted [ai]

for j = 2, . . . ,N do
key ← aj
i ← j − 1
while i > 0 AND ai > key do

ai+1 ← ai
i ← i − 1

end while
ai+1 ← key

end for

a i
1 Ni j

key

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 23 / 29

Running time analysis

depends on the ordering of the sequence: if it’s ordered already, we
just sweep once through it

idea 1: find the dependency of the running time on the sequence size

idea 2: find the upper limit of the running time

idea 3: ignore machine-dependent part, concentrate on the intrinsic
time

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 24 / 29

Running time analysis - two scenarios
T (n) =?

worst case scenario: gives the upper limit on the running time

average-case: gives the expected running time

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 25 / 29

Running time analysis - asymptotic analysis

Main idea

Study
T (n) as n→∞

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 26 / 29

”Big-Oh notation” - complexity function

O(g(n)) = {f (n)|∃c1, c2 > 0, n0 ∈ N : 0 ≤ c1g(n) ≤ f (n) ≤
c2g(n),∀n ≥ n0}
e.g. for polynomial functions, consider just the dominating term:

an3 + bn2 + cn + d = O(n3), ∀a, b, c , d ∈ R

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 27 / 29

Complexity of the insertion sort algorithm

worst case: the sequence is reversed (decreasing order)

T (n) =
n∑

j=2

O(j) = O(n2)

average case: consider all permutations of n elements as equally
probable

T (n) =
n∑

j=2

O(j/2) = O(n2)

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 28 / 29

Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Introduction to algorithms 29 / 29

	Algorithms
	Pseudocode

	Analysis of algorithms

