E2011: Theoretical fundamentals of computer science Introduction to algorithms

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

э

ヨト イヨト

э

Algorithm

- a step-by-step procedure to solve a task/problem
- word algorithm originates from the Latin version of the name Muhammad ibn Mūsā al-Khwārizmī (IX-th century) - a highly influential Arab mathematician

- an algorithm has an input and an output
- the procedure describes how the input is used to obtain the output
- attributes of an algorithm:
 - correctness
 - efficiency
 - complexity

Example - Greatest Common Divisor

(one of the oldest algorithms - Euclid (III-IV centuries BC))

Algorithm 1 Euclid's algorithm **Input:** $a, b \in \mathbb{N}^*$ Output: GCD 1: $r \leftarrow a \mod b$ 2: while $r \neq 0$ do \triangleright We have the answer if r is 0 $3: a \leftarrow b$ 4: $b \leftarrow r$ 5: $r \leftarrow a \mod b$ 6: end while 7: GCD $\leftarrow b$ \triangleright The gcd is b

< 回 > < 回 > < 回 >

while $r \neq 0$ do $a \leftarrow b$ $b \leftarrow r$ $r \leftarrow a \mod b$ end while $GCD \leftarrow b$

Example: GCD of a = 72 and b = 120

	r	а	b
before "while"	72	72	120
iteration 1	48	120	72
iteration 2	24	72	48
iteration 3	0	48	24

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Pseudocode

- a means of describing an algorithm
- not directly interpretable by a computer; needs to be *implemented* in a programming language
- has a less strict syntax and vocabulary than a programming language
- it is independent on the programming language
- shortcuts are allowed if their meaning is clear (e.g. $\theta^* = \arg \min_{\theta} \Omega(\theta)$)
- describes the solution with enough granularity so it can be implemented

- variables store some values (e.g. x, y); may refer to simple (e.g. scalar) values, or more complicated data structures (vectors, matrices, lists, etc.)
- *input* to specify the required values for the algorithm to compute the *output*
- variables are assigned values: x ← 50 or x ← y, but values are never assigned variables or other values: 50 ← x is a nonsense
- mathematical operators can be used as usual

If-then-else structure

- specifies the conditional execution of a part (branch) of the code
- the else part may be missing
- the ⟨condition⟩ is a Boolean predicate that is evaluated to either True or False (or, equivalently, to ≠ 0 or 0.)

if (condition) then
 code for (condition) is True
else
 code for (condition) is False
end if

While-do loop

- specifies a repeated execution of a set of operations (*instruction block*)
- the block is executed as long as the (condition) is True and no forced exit is encountered
- if the condition is False at the very beginning, the block is not executed at all

while $\langle \textit{condition} \rangle$ do instruction

end while

Repeat-until loop

- specifies a repeated execution of an instruction block
- the block is executed as long as the (condition) is False and no forced exit is encountered
- the block is executed at least once

repeat instruction ... until (condition)

For loop

- executes a block for a given number of steps (unless forced exit is encountered)
- typically used with vectors, lists, etc

for ⟨iterator⟩ do
 instructions
end for
for all ⟨iterator⟩ do
 instructions
end for

Examples: $sum \leftarrow 0$ for i = 1, ..., n do $sum \leftarrow sum + x_i$ end for for all $a \in A$ do print(a) end for

4 3 4 3 4 3 4

Procedures

- groups a set of instructions into a construct that can be invoked (*called*) with or without parameters
- the parameters may function as input/output or in/out parameters
 procedure (name)((params))
 block

end procedure

Functions

- special procedures with only input parameters which returns a value
- much like the mathematical equivalent (e.g. sin(x))

function $\langle name \rangle (\langle params \rangle)$ body return value end function

伺下 イヨト イヨト

- **continue**: used in loops; indicates a jump to the test condition, any instructions after it are not executed
- **break**: used in loops; indicates an exit from the loop, continuing execution with the instruction after the loop

 \sqrt{x} with precision $\epsilon > 0$ - binary search

Algorithm 2 \sqrt{x} via binary search	
1: function SQRT1($x \in \mathbb{R}_+, \epsilon > 0$)	10: if $middle^2 > x$ then
2: $low \leftarrow 0$	11: $high \leftarrow middle$
3: if $x > 1$ then	12: else
4: $high \leftarrow x$	13: $low \leftarrow middle$
5: else	14: end if
6: $high \leftarrow 1$	15: end while
7: end if	16: return low
8: while $high - low > \epsilon$ do	17: end function
9: $middle = 0.5(high - low)$	

э

イロト 不得下 イヨト イヨト

 \sqrt{x} with precision $\epsilon > 0$ - Babylonian method

Algorithm 3 \sqrt{x} - Babylonian algorithm	
1: function $\operatorname{SQRT2}(x \in \mathbb{R}_+, \epsilon > 0)$	
2: $r_0 \leftarrow x/2$	▷ some initial guess
3: $r_1 \leftarrow (r_0 + x/r_0)/2$	
4: while $ r_1 - r_0 > \epsilon$ do	
5: $r_0 \leftarrow r_1$	
6: $r_1 \leftarrow (r_0 + x/r_0)/2$	
7: end while	
8: return <i>r</i> ₁	
9: end function	

э

< □ > < □ > < □ > < □ > < □ > < □ >

- there might be several algorithms for a given problem
- the choice of the "best" algorithm is not always obvious
- execution time, memory requirements, implementation options, etc are factors to keep in mind

Flowcharts: alternative to pseudocode

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

GCD - with flowchart

Input: $a, b \in \mathbb{N}^*$ Output: GCD 1: $r \leftarrow a \mod b$ 2: while $r \neq 0$ do 3: $a \leftarrow b$ 4: $b \leftarrow r$ 5: $r \leftarrow a \mod b$ 6: end while 7: GCD $\leftarrow b$

<日

<</p>

э

Analysis of algorithms

What's more important than performance?

- modularity
- correctness
- maintainability
- functionality
- robustness

- user-friendliness
- programmer time
- simplicity
- extensibility
- reliability

▲ 国 ト → 国 ト

Insertion sort

Problem: sort a sequence of numbers $[a_i], i = 1, ..., N$ in increasing order.

3

< 回 > < 回 > < 回 > <

Insertion sort

Algorithm 4 Insertion sort **Input:** $[a_i], i = 1, ..., N$ **Output:** sorted [*a_i*] for j = 2, ..., N do key $\leftarrow a_i$ $i \leftarrow i - 1$ $\rightarrow \rightarrow \rightarrow$ while i > 0 AND $a_i > key$ do key $a_{i+1} \leftarrow a_i$ $i \leftarrow i - 1$ end while $a_{i+1} \leftarrow key$ end for

A (1) < A (1) < A (1) </p>

Running time analysis

- depends on the ordering of the sequence: if it's ordered already, we just sweep once through it
- idea 1: find the dependency of the running time on the sequence size
- idea 2: find the upper limit of the running time
- idea 3: ignore machine-dependent part, concentrate on the intrinsic time

Running time analysis - two scenarios T(n) = ?

- worst case scenario: gives the upper limit on the running time
- average-case: gives the expected running time

• • = • • = •

Running time analysis - asymptotic analysis

Main ideaStudyT(n) as $n \to \infty$

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

"Big-Oh notation" - complexity function

- $\mathcal{O}(g(n)) = \{f(n) | \exists c_1, c_2 > 0, n_0 \in \mathbb{N} : 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0\}$
- e.g. for polynomial functions, consider just the dominating term:

$$an^3 + bn^2 + cn + d = \mathcal{O}(n^3), \forall a, b, c, d \in \mathbb{R}$$

Complexity of the insertion sort algorithm

• worst case: the sequence is reversed (decreasing order)

$$T(n) = \sum_{j=2}^{n} \mathcal{O}(j) = \mathcal{O}(n^{2})$$

 average case: consider all permutations of n elements as equally probable

$$T(n) = \sum_{j=2}^{n} \mathcal{O}(j/2) = \mathcal{O}(n^2)$$

Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

э

イロト イボト イヨト イヨト